Optimality conditions for nonsmooth nonconvex-nonconcave min-max problems and generative adversarial networks
报告题目:Optimality conditions for nonsmooth nonconvex-nonconcave min-max problems and generative adversarial networks
报告专家:陈小君(香港理工大学)
报告时间:2022年12月1日19:30-20:30
报告地点:腾讯会议:515-452-254,密码:610065
报告摘要:This talk considers a class of nonsmooth nonconvex-nonconcave min-max problems in machine learning and games. We first provide sufficient conditions for the existence of global minimax points and local minimax points. Next, we establish the first-order and second-order optimality conditions for local minimax points by using directional derivatives. These conditions reduce to smooth min-max problems with Fr´echet derivatives. We apply our theoretical results to generative adversarial networks (GANs) in which two neural networks contest with each other in a game. Examples are used to illustrate applications of the new theory for training GANs.
专家简介:陈小君教授是香港理工大学应用数学系讲座教授,2021当选美国工业与应用数学学会会士、2022年当选美国数学学会会士,美国史丹福大学2021世界排名前2%的高被引科学家,至今已在国际应用数学顶尖学术期刊上发表论文90余篇。陈教授是二十多个分别获澳大利亚研究理事会、日本学术振兴会及香港研究资助局拨款资助的科研项目的负责人。2013年7月至2019年6月出任理大应用数学系系主任、现任香港理工大学大数据分析中心实验室主任、中科院数学与系统科学研究院-香港理工大学应用数学联合实验室主任,陈教授曾多次在国际学术会议上做邀请报告,如曾于2012年在国际数学规划会议上作特邀报告。陈教授担任Journal of Optimization Theory and Applications区域编辑、并担任包括SIAM Journal on Numerical Analysis,SIAM Journal on Optimization等六个国际著名刊物的编委。
邀请人:宋恩彬