Total positivity: combinatorics, geometry and representation theory

 

报告题目: Total positivity: combinatorics, geometry and representation theory

 

报告人: 何旭华(香港中文大学)

 

报告时间: 2022-12-2, 16:00-17:00

 

zoom ID:823 2732 8342(942498)

 

 

报告摘要: 

An invertible matrix is called totally positive if all its minors are positive. In 1994, Lusztig developed the theory of total positivity for arbitrary split real reductive groups and their flag manifolds. He further generalized the theory to arbitrary Kac-Moody groups in 2019. The theory of total positivity has found important applications in different areas: cluster algebras, higher Teichmuller theory, the theory of amplituhedron in physics, etc.

In this talk, we will discuss some remarkable combinatorial, geometric and representation-theoretic aspects of total positivity. This talk is based on some recent works with Huanchen Bao (NUS).

 

报告人简介何旭华现为香港中文大学李卓敏数学讲座教授。何教授于2001年在北京大学获得理学学士学位,于2005年在美国麻省理工学院获得博士学位。在加入香港中文大学之前,何教授曾在美国石溪大学、香港科技大学及美国马里兰大学任教,并于2016-2017年在普林斯顿高等研究院担任Von Neumann Fellow。由于在算术代数几何、代数群及表示论方面取得的杰出成就,先后获得2013年晨兴数学金奖、2020年科学探索奖、2022年美国数学会的Chevalley奖,并获邀在2018年国际数学家大会上做45分钟报告。

 

微信图片_20221126200947.jpg

VIDEOS

  • Total positivity: combinatorics, geometry and representation theory
  • 16:00 - 17:00, 2022-12-02 at ZOOM会议
  • 何旭华