Characterizations of completely bounded Fourier multipliers between endpoint spaces


报告题目:Characterizations of completely bounded Fourier multipliers between endpoint spaces

报告专家:邱彦奇(中科院数学所/武汉大学)

报告时间:2022年25日下午15:00-16:00

报告地点:腾讯会议335 228 644(962054)


报告摘要:In this talk, we will talk about our recent work on the full characterizations for completely bounded Fourier multipliers between various endpoint spaces of holomorphic functions. Namely, we characterize the completely bounded Fourier multipliers between Hardy H1 spaces to Hardy H2 spaces or BMOA spaces and between Bergman A1 space to Bergman A2 space or Bloch space. And we will also mention a very new Fourier-Schur type multiplier inequality with critical exponent.  Our approach is a combination of algebraic/representation method (for Hankel operators) and analytic method (of Nehari type) and thus can be easily adapted to suitable abstract settings.  This talk is based on a joint work with Yong Han and Zipeng Wang.


专家简介:邱彦奇,中科院数学所研究员/武汉大学数学与统计学院教授。2007年从清华大学考入巴黎高等师范,2010年获巴黎六大数学硕士学位。2013年获得巴黎六大数学博士学位。2013至2015年在Aix-Marseille大学从事博士后研究工作。2015年通过选拔录取为法国国家科研中心(CNRS)副研究员。2017年入选国家海外青年高层次人才项目并在中科院数学所任副研究员,2019年晋升为研究员,2021年任武汉大学数学与统计学院教授。其研究工作涵盖泛函分析、随机分析和调和分析等分析数学多个领域,取得了一系列重要研究成果。

邀请人:常寅山


[lecture]邱彦奇-01-01.png