Relating l_p regularization and reweighted l_1 regularization


报告专家:王浩(上海科技大学)

报告时间:2022年7月24日上午10:00-11:00

报告地点:腾讯会议983-501-382


摘要:The   iteratively reweighted l1 algorithm is a widely used method for solving   various regularization problems, which generally minimize a differentiable   loss function combined with a convex/nonconvex regularizer to induce sparsity   in the solution. However, the convergence and the complexity of iteratively   reweighted l1 algorithms is generally difficult to analyze, especially for   non-Lipschitz differentiable regularizers such as lp norm regularization with   0 < p < 1. In this paper, we propose, analyze and test a reweighted l1   algorithm combined with the extrapolation technique under the assumption of   Kurdyka-Lojasiewicz (KL) property on the proximal function of the perturbed   objective. Our method does not require the Lipschitz differentiability on the   regularizers nor the smoothing parameters in the weights bounded away from 0.   We show the proposed algorithm converges uniquely to a stationary point of   the regularization problem and has local linear convergence for KL exponent   at most 1/2 and local sublinear convergence for KL exponent greater than 1/2.   We also provide results on calculating the KL exponents and discuss the cases   when the KL exponent is at most 1/2. Numerical experiments show the   efficiency of our proposed method.


报告专家:王浩博士,上海市青年东方学者。现任上海科技大学信息科学与技术学院助理教授,于20155月在美国Lehigh大学工业工程系获得博士学位,并于2010年和2007年在北京航空航天大学数学与应用数学系分别获得理学硕士和学士学位。在攻读博士期间,曾于2012年、2014年和2015年分别在埃克森美孚企业战略实验室、三菱电机研究实验室和群邑集团研发部担任实习研究员。当前研究领域主要为非线性优化、非凸正则化问题等机器学习问题和算法。主要成果在SIAM Journal on OptimizationJournal of Machine Learning Research IEEE on Computers等刊物上发表。