Energy stable higher order ETD-MS method for gradient flows

报告专家:王晓明 教授 (南方科技大学)

报告时间:2022722日(周五) 上午1000-1100

报告地点:国家天元数学西南中心516

  腾讯会议:844-533-117  密码0722

摘要: We present a methodology to construct efficient high-order in time accurate numerical schemes for a class of gradient flows with appropriate Lipschitz continuous nonlinearity. There are several ingredients to the strategy: the exponential time differencing (ETD), the multi-step (MS) methods, the idea of stabilization, and the technique of interpolation. They are synthesized to develop a generic $k^{th}$ order in time efficient linear numerical scheme with the help of an artificial regularization term. To validate our theoretical analysis, the thin film epitaxial growth without slope selection model is examined with a fourth-order ETD-MS discretization in time and Fourier pseudo-spectral in space discretization. Our numerical results on convergence and energy stability are in accordance with our theoretical results.

 

简介:

王晓明教授本科和硕士就读于复旦大学,博士毕业于印第安纳大学布鲁明顿分校,并在库朗研究所接受了博士后训练。回国前是美国佛罗里达州立大学数学系终身正教授并担任数学系系主任,现任南方科技大学讲席教授、数学系系主任、深圳国家应用数学中心执行主任、国家特聘专家。王晓明教授的主要研究方向为应用与计算数学,特别是和流体相关的偏微分方程的建模、分析与计算。

 

 

 7.22王晓明-01.jpg

VIDEOS

  • Energy stable higher order ETD-MS method for gradient flows
  • 10:00 - 11:00, 2022-07-22 at 腾讯会议
  • 王晓明