An asymmetric information mean-field type LQ stochastic Stackelberg differential game

 

报告人:Guangchen Wang

报告人单位:山东大学

时间:22622日(周三)晚上 730~830

线上腾讯会议号:207-756-307 密码610064

 

摘要:This talk is concerned with an asymmetric information LQ stochastic Stackelberg differential game with one leader and two followers, where the game system is governed by mean-field type stochastic differential equation. With the help of some systems of Riccati equations, the followers solve an MF-type stochastic LQ game problem with partial information first, and then, the leader turns to address an optimal control problem driven by linear mean-field type forward-backward stochastic differential filtering equation. By maximum principle, direct construction method and optimal filtering, the open-loop Stackelberg solution is expressed as a feedback form of state, state estimation, and state mean.

 

报告人简介王光臣,山东大学控制科学与工程学院教授,首批青年长江学者。一直从事基于不完备信息的随机系统优化控制理论研究,取得了以倒向分离原理为特色的理论与应用成果,在Springer出版社出版英文专著1部,在控制理论国际知名期刊SIAM J. Control Optim.AutomaticaIEEE-TAC发表学术论文10余篇,目前主持国家杰青项目1项,曾获省部级科技奖3项,陈翰馥奖1项。

 

邀请人:宋恩彬 教授

6.22王光臣-01.jpg