Interface between concentration inequalities and geometry of Banach spaces
报告人:罗思捷(郑州大学)
时间:2022年5月23日上午10:00-11: 00
地点:腾讯会议:490-336-084
摘要:Concentration inequalities quantify the fluctuations of random variables around their median, which is an essential tool in probability theory and Banach space theory. In this talk, I will first overview some classical concentration inequalities, such as Hoeffding-Azuma inequality, Levy isoperimetric inequality, and McDiarmid inequality, with their link to the asymptotic theory of Banach spaces. Secondly, we will characterize some specific structures of Banach spaces in terms of vector-valued concentration inequalities. Finally, if time permitted, applications of vector-valued concentration inequalities to random matrices will also be discussed.
专家简介:罗思捷,中南大学数学与统计学院讲师。2018年博士毕业于厦门大学,师从程立新教授。2018年至2021年在清华大学丘成桐数学科学中心从事博士后研究工作。罗思捷博士的研究兴趣包括Banach空间上凸函数的保序理论及Banach空间中的概率论。截至目前已在 Proc. Amer. Math. Soc., J. Topol. Anal., J. Theoret. Probab., Sci. China Math., J. Math. Anal. Appl. 等国际刊物发表多篇论文。