CMC hypersurfaces in warped products: rigidity and quantitative stability
报告人:夏超 (厦门大学)
时间:2022年5月19日 15:00
地点:国家天元数学西南中心516
腾讯会议:882-7334-4303
摘要:Brendle proved Alexandrov's theorem that classified closed embedded constant mean curvature (CMC) hypersurfaces in certain warped products. In joint works with Guohuan Qiu and Junfang Li, among others, we established Reilly type integral formula to reprove Brendle's result. In this talk, we introduce a recent joint work with Julian Scheuer, to establish quantitative stability for closed embedded almost CMC hypersurfaces in warped products, which is based on Li-Xia's new proof of Brendle's result and Scheuer's rigidity-to-stability criteria.
报告人简介:夏超,厦门大学教授、博士生导师,福建省“闽江学者”特聘教授。曾入选国家高层次青年人才计划,获福建省青年科技奖。主要研究领域是微分几何与几何分析,在超曲面几何中的等周型不等式和相关刚性、几何自由边界问题、预定曲率和曲率流、特征值估计等方面取得了若干研究成果,已在J.Differ.Geom.、Math.Ann.、Adv.Math.、Trans.AMS、IMRN、CVPDE, CAG, JGA等国际高水平数学期刊发表论文30余篇。