二阶椭圆方程短期课程



报告人:李春和(电子科技大学)

报告时间:2022年4月22日起

每周二:上午10:30-12:30 每周五:下午是14:00-16:00

地点:每周二:#腾讯会议:960-4459-8159  会议密码:1212

          每周五:#腾讯会议:675-7790-7882  会议密码:1212

7月1日后课程会议号:#腾讯会议:695-4586-3960  会议密码:1212



报告摘要:The purpose of the course is to present some basic methods for obtaining various a priori estimates for second order PDEs of linear elliptic type.  In particular, we focus on maximal principles, Harnack inequalities and their applications.  Ideally, students are familiar with the preliminaries such as real variables and Sobolev spaces.

 If time allow, some related topics will be discussed, e.g.,   fully nonlinear elliptic PDEs and isometric embedding.

Texbook: Qing Han, Fanghua Lin, Elliptic Partial Differential Equations , AMS  and Courant Institute

References:

1.  Caffarelli, L.A. and Cabre, X, Fully Nonlinear Elliptic Equations, AMS Colloquium Publications 43, AMS, Providence. RI. 1995

2. Gilbarg, D., Trudinger, N.S., Eliptic Partial Differential Equations of Second

Order, 2nd ed., Springer-Verlag, 1983.

3. Qing. Han, Jia-Xing. Hong, Isometric embedding of Riemanian manifolds in Euclidean spaces, mathematical survey and monographs, Vol. 130. American mathematical socie


李春和.jpg


VIDEOS

  • 二阶椭圆方程短期课程 I
  • 14:00 - 16:00, 2022-04-22 at 腾讯会议
  • 李春和
  • 二阶椭圆方程短期课程 II
  • 10:30 - 12:30, 2022-04-26 at 腾讯会议
  • 李春和
  • 二阶椭圆方程短期课程 III
  • 14:00 - 16:00, 2022-04-29 at 腾讯会议
  • 李春和
  • 二阶椭圆方程短期课程 IV
  • 10:30 - 12:30, 2022-05-03 at 腾讯会议
  • 李春和
  • 二阶椭圆方程短期课程 V
  • 14:00 - 16:00, 2022-05-06 at 腾讯会议
  • 李春和
  • 二阶椭圆方程短期课程 VI
  • 10:30 - 12:30, 2022-05-10 at 腾讯会议
  • 李春和
  • 二阶椭圆方程短期课程 VII
  • 14:00 - 16:00, 2022-05-13 at 腾讯会议
  • 李春和
  • 二阶椭圆方程短期课程 VIII
  • 10:30 - 12:30, 2022-05-17 at 腾讯会议
  • 李春和
  • 二阶椭圆方程短期课程 IX
  • 14:00 - 16:00, 2022-05-20 at 腾讯会议
  • 李春和