On fillings of contact links of isolated
quotient singularities
报告专家:周正一(中国科学院数学与系统科学研究院)
报告时间:12月25日(星期四)下午16:00-17:00
报告地点:国家天元数学西南中心516
报告摘要:
I will discuss fillings of contact links of isolated quotient singularities and show that when the singularity is terminal, the contact link often does not admit a Liouville filling. In particular, I will explain the odd dimensional real projective space with the standard contact structure is not Liouville fillable if and only if the dimension is larger than 3, confirming a conjecture of Eliashberg. The proof is based on deriving topological information, in particular, the signature, from (orbifold) Floer theory and then applying Atiyah–Singer index theorem along with some elementary yet fun properties of Bernoulli numbers.
专家简介:
周正一,2018年博士毕业于加州大学伯克利分校。2018年至2021年在普林斯顿高等研究院从事博士后研究工作。2021年加入中国科学院数学与系统科学研究院,任副研究员。研究领域是辛拓扑与切触拓扑,主要研究辛场论与辛配边范畴,以及辛/切触拓扑与其他领域的交叉研究。
邀请人:张斌

