Boundary Effect on a Stationary Viscous Shock Profiles for a Hyperbolic System with Cattaneo’s Law
in one dimensional Half Space
报告专家:白寅松 副教授(新疆大学)
报告时间:12月6日(星期六)上午09:30-10:10
报告地点:国家天元数学西南中心401
报告摘要:
In this talk, I will focus on the asymptotic behavior of global solution to initial-boundary value problem of a hyperbolic system with Cattaneo’s law on negative half line. This is a collaborative work with Professor Fan Lili pursued the studies during my doctoral period. We prove that if the speed of travelling wave solution to themed system equals 0 then the asymptotic profile of the global solution is exactly the stationary viscous shock wave composed a time dependent shift growing as logarithmic function under suitable smallness conditions on initial perturbations and shock strength. The proofs are given by applying an weighted L2-energy method.
专家简介:
白寅松,硕士生导师。2015年于法国弗朗什孔泰大学取得数学硕士学位。2024年于武汉大学取得基础数学博士学位。研究方向为偏微分方程的整体解与大时间渐近行为。 目前在Commun. Pure Appl. Anal, Math. Methods Appl, J. Math. Phys. 等杂志上发表论文数篇。
邀请人:何躏

