Linearity Properties of Degenerate Holomorphic 1-forms
报告专家:郝峰教授(山东大学)
报告时间:12月19日(星期五)下午16:00—17:00
报告地点:国家天元数学西南中心516
报告摘要:
On a smooth complex projective variety, the generic vanishing theory tells us that the sets of degenerate holomorphic 1-forms coming from the cohomology jump loci are finite unions of subvector spaces in the space of holomorphic 1-forms. This linearity property comes essentially from the Hodge theoretic property of the variety. It was expected that the sets of degenerate holomorphic 1-forms (not necessarily coming from cohomology jump loci) on a smooth projective subvariety of an abelian variety also have the above linearity property. In this falk. I will discuss some backgrounds and related results on the some (linearity) properties of degenerate holomorphic 1-forms. For the above expectation, I will also give a counterexample of a subvariety of an abelian variety which does not satisfy the linearity property. This is a jointed work with Jiabin Du and Zichang Wang.
专家简介:
郝峰,山东大学、数学学院教授,国家级青年人才,2018年博士毕业于普渡大学。在2018年至2023年期间于德国慕尼黑大学、比利时鲁汶大学从事博士后研究工作。 研究领域为代数几何,主要研究代数簇的拓扑、Hodge理论、以及代数簇的分类。相关研究成果发表在 J. Reine Angew. Math. (Crelle's Journal)、Compos. Math.、Geom. Topol.、Adv. Math.、Int. Math. Res. Not. 等期刊。
邀请人:张斌

