Monomial basis and indecomposibility of
certain cyclotomic quiver Hecke algebras
associated to Borcherds-Cartan datum
报告专家:胡峻 教授(北京理工大学)
报告时间:10月30日(周四)16:00-17:00
报告地点:国家天元数学西南中心516
报告摘要:
I will talk about a joint work with Huansheng Li, which considers the cyclotomic quiver Hecke algebras associated to Borcherds-Cartan datum.
We construct explicit monomial bases for the cyclotomic quiver Hecke algebras $R^\Lambda(\beta)$ associated to Borcherds-Cartan datum when $a_{ii}<0$ for any $i\in Supp(\beta)$, and show that the degree $0$ components of the centers of these cyclotomic quiver Hecke algebras are all one-dimensional, which implies that these cyclotomic quiver Hecke algebras are indecomposable. The proof relies on a generalization of the graded dimension formulae of the cyclotomic KLR algebras to the Borcherds-Cartan datum setting, as well as a complete classification of all permutations whose right descent set consists of a single reflection.
专家简介:
胡峻,北京理工大学数学与统计学院教授,中国数学会理事与北京市数学会常务理事。主要从事代数群、量子群、Schur代数、Hecke代数以及KLR代数的结构与表示的研究,在典型群与Brauer代数之间的正特征域上的Schur-Weyl对偶、分圆KLR代数的Z-分次表示以及分圆Hecke代数的模表示等方面取得一系列出色成果,解决了包括Lusztig、Brundan、Kleshchev、王伟强等人提出的一些猜想。在Adv. Math.、Proc. Lond. Math. Soc.、Trans. Amer. Math. Soc.、Math. Ann.、Int. Math. Res. Not.等国际期刊发表学术论文。获教育部高等学校科学研究优秀成果自然科学奖一等奖,主持国家自然科学基金重点项目。
邀请人:任丽

