Chern connections and conformal metrics


报告专家:马力 教授(北京科技大学)

报告时间:6月19日(星期四)上午10:00-11:00

报告地点:国家天元数学西南中心501

报告摘要:The Chern connection in a non-Kaehler complex manifold is also called the canonical connection, except the null (1,1)-torsion, which makes both the underlying complex structure and the chosen Hermitian metric parallel. With the help of such connections, we may find a good metric by considering the critical metrics of functionals related to torsions or curvatures of the connection. After introducing some preliminary facts about the Hermitian metrics, Chern connections, and Chern curvatures, we discuss some examples. We recall the maximum principle of Chern-Laplace operator and the divergence theorem. We present some formulae of curvatures in the class of conformal metrics. We may also study functionals of metrics such as Gauduchon functional and Vaisman functional in the conformal class of the metric and discuss some open questions. 

专家简介:马力, 北京科技大学教授,博士生导师。1989年博士毕业于中国科学院数学所,师从王光寅研究员和丁伟岳院士;1991年北京大学数学系博士后出站,合作导师张恭庆院士。马力教授主要从事几何分析和非线性分析、偏微分方程的研究。近期在黎曼几何的重要问题比如Yamabe流, Ricci流等方面取得了一系列重要的研究成果。在Adv. Math., J. Math. Pures Appl., Arch. Ration. Mech. Anal., J. Funct. Anal., JDE, Comm. Math. Phy., CVPDE等著名学术期刊上发表多篇论文。长期担任了两个国际数学sci杂志(AGAG, JPDOA)编委。

邀请人:盛利



马力-01.jpg