Self-intersection Number of Negative 

Curves on Fermat Surfaces (I, II)


报告专家:王振建 初级研究员(合肥国家实验室)

报告时间:6月4日(星期三)下午16:00-17:00

                         6月6日(星期五)下午16:00-17:00

课程地点:国家天元数学西南中心516

课程摘要:

Part 1 (6月4日): The Bounded Negativity Conjecture(BNC,有界负性猜想) states that the self-intersection numbers of irreducible and reduced curves on a given smooth complex projective surface are uniformly bounded from below by a global constant which depends only on the surface itself. It has been an open problem for about 100 years. In this talk, we will give a brief review on various methods to study BNC, together with some well known problems related to it .

Part 2 (6月6日): The prediction of Bounded Negativity Conjecture is still open even for hypersurfaces in the three-dimension projective space. In this talk, we will give an explicit formula for the intersection numbers of ALL integral curves on Fermat surfaces, and give some hints to prove or disprove the BNC for Fermat surfaces.

专家简介:王振建,初级研究员。主要研究领域为代数几何和微分几何, 特别关注代数簇的拓扑性质和几何性质、与Mixed Hodge Structures有关的问题以及一些数学公开问题。截至目前, 主持青年科学基金项目1项, 在Manuscripta Math., Math. Nachr., Pacific J. Math., Internat. J. Math.等期刊发表学术论文数篇。

邀请人:胡京辰


王振建-01.jpg