Kelvin transforms and the asymptotic analysis
报告人:韩青 教授 (University of Notre Dame)
报告时间:2023年10月16日9:00
报告地点:国家天元数学西南中心516
Abstract: It is well-known that the Kelvin transform plays an important role in studying harmonic functions. With the Kelvin transform, the study of harmonic functions near infinity is equivalent to studying the transformed harmonic functions near the origin. In this talk, we will demonstrate that the Kelvin transform also plays an important role in studying asymptotic behaviors of solutions of nonlinear elliptic near infinity. We will study solutions of the minimal surface equation,the Monge-Ampere equation, and the special Lagrange equation and prove an optimal decomposition of solutions near infinity.
韩青,美国圣母大学数学系终身教授、非线性偏微分方程和几何分析国际著名专家。美国纽约大学库朗数学研究所博士,美国芝加哥大学博士后,曾在德国莱比锡马普所和美国纽约大学库朗数学研究所进行科研,获美国Sloan Research Fellowship。 韩青教授长期致力于非线性偏微分方程和几何分析的研究工作,在等距嵌入、Monge-Ampere方程、调和函数的零点集和奇异集、退化方程等方面做出了一系列原创性的重要研究成果。