Integrable and Superintegrable Extensions of the Rational Calogero-Moser Model


报告人:黄晴教授(西北大学)

时间:4月28日上午9:00-10:00

地点腾讯会议,680 600 123,无密码


摘要:We consider a class of Hamiltonian systems in 3 degrees of freedom, with a particular type of quadratic integral and which includes the rational Calogero-Moser system. We introduce separation coordinates to find the general Liouville integrable system. This gives a coupling of the Calogero-Moser system with a large class of potentials, generalising the series of potentials which are separable in parabolic coordinates. Particular cases are superintegrable, including Kepler and a resonant oscillator. Meanwhile, we study the conformally flat case and generalise all the previous results to this case. By introducing symmetry algebras of the kinetic energy, we reduce the systems from 3 to 2 degrees of freedom, giving rise to many interesting systems, including both Kepler type and Henon-Heiles type potentials on a Darboux-Koenigs $D_2$ background. This is a joint work with Allan P. Fordy.

 

专家简介:黄晴,西北大学数学学院教授、博士生导师。主要从事数学物理、可积系统的研究,在SIGMAProc. R. Soc. Lond.J. Math. Phys.等期刊上发表多篇论文。主持国家自然科学基金青年项目与面上项目,曾获2010年陕西省科学技术奖一等奖(第三完成人)。

黄晴jpg.jpg