Characterization of stabilizability for
linear systems in infinite-dimensional setting
报告专家:汪更生教授(天津大学)
报告时间:5月16日(星期五)下午15:00-16:00
报告地点:国家天元数学西南中心516报告厅
报告摘要:We introduce some necessary and sufficient conditions on the stabilizability for linear control systems in infinite-dimensional setting. In finite-dimensional setting, there have been the famous Hautus test and Kalman condition on the stabilizability for linear control systems. They are necessary and sufficient conditions on the stabilizability in frequency domain. Unfortunately, they cannot characterize the stabilizability in infinite-dimensional setting. Several beautiful counterexample were given by F.-L. Huang (Sichuan University), 1985. We first present necessary and sufficient conditions on the stabilizability/rapid stabilizability for general linear control systems in infinite-dimensional setting in time domian, and then give some necessary and sufficient conditions on the stabilizability/rapid stabilizability in frequency domain for some special cases. We finally show some applications.
专家简介:汪更生,天津大学应用数学中心教授;主要研究分布参数系统控制理论,在偏微分方程的能控能观性、能稳性和时间最优控制等方向有杰出贡献;现任控制领域顶刊SIAM J. Control Optim.和数学控制论顶刊ESAIM: Control Optim. Calc. Var.等的编委,应邀将在2026年国际数学家大会做45分钟报告。
邀请人:张旭