QUANTITATIVE MAXIMAL RIGIDITIES OF RICCI CURVATURE BOUNDED BELOW

报告专家:Xiaochun Rong   (首都师范大学、美国Rutgers大学

报告时间:2024725日(星期四)

报告地点:西南中心516报告厅

报告题目:QUANTITATIVE MAXIMAL RIGIDITIES OF RICCI CURVATURE BOUNDED BELOW

报告摘要:In Riemannian geometry, a maximal rigidity on an n-manifold M of Ricci curvature bounded below by (n1)H is a statement that a geometric or a topological quantity of M is bounded above by that of an n-manifold of constant sectional curvature H, and “=” implies that M has constant sectional curvature H. A quantitative maximal rigidity of Ricci curvature bounded below by (n 1)H is a statement that if a geometric quantity is almost maximal, then M admits a nearby metric of constant sectional curvature H (often additional conditions are required). In this talk, we will survey some recent advances in Metric Riemannian geometry in establishing quantitative maximal rigidities.


专家简介:戎小春是国际知名的度量黎曼几何专家教育部长江学者特聘教授曾获美国斯隆研究奖(Sloan Research Fellowships),美国数学会会士应邀在2002年国际数学家大会做45分钟报告

戎小春教授于1978-1984年在首都师范大学获本科和硕士学位, 1990年在纽约州立大学石溪分校获博士学位。毕业后曾在美国哥伦比亚大学和芝加哥大学任教,现为美国罗格斯(Rutgers)大学数学系杰出(Distinguished)教授。戎小春教授主要从事微分几何和度量黎曼几何的研究,在黎曼几何中的收敛和塌陷理论及其应用、正曲率流形几何和拓扑, Alexandrov几何等方面作出了若干基础性的贡献,已在Adv. Math., Amer. J. Math.Ann. of MathDuke Math.GAFA.Invent. Math.J. Diff. Geom等国际知名期刊上发表论文50余篇。

邀请人:盛利

[lecture]戎小春-01.png