Special unipotent representations of classical Lie groups
报告专家:孙斌勇 院士(浙江大学)
报告时间:2024年5月9日(星期四)下午15:00-16:00
报告地点:四川大学数学学院西303报告厅
课程介绍:Inspired by the study of automorphic forms, Arthur suggested the existence of certain collections of representations of linear real reductive groups. Arthurs desired representations, the special unipotent representations, were defined by Barbasch-Vogan and Adams-Barbasch-Vogan. For classical Lie groups, we construct all the special unipotent representations, by using the theory of local theta correspondence initiated by R. Howe. We also proved that all hese representations are unitarizable, as predicted by Arthur-Barbasch-Vogan. This is a report on a joint work with Dan M. Barbarsch, Jia-Jun Ma and Chen-Bo Zhu.
专家简介:孙斌勇,中国科学院院士,浙江大学数学高等研究院教授、博士生导师。曾获2014年陈嘉庚青年科学奖、2016年中国优秀青年科技人才奖、2016年中国科学院青年科学家奖、2018年国家自然科学奖二等奖、2020年全国争先创新奖等。受邀在2022年国际数学家大会作45分钟报告。
邀请人:王宝富
VIDEOS