Toroidal Lie algebras and vertex algebras

报告专家:谭绍滨 (厦门大学)

报告时间:2024年4月11日上午9:00-10:00

报告地点:国家天元数学西南中心516报告厅 

报告摘要:Toroidal Lie algebras and their representations by vertex operators were first studied by Moody, Rao and Yokonuma in 1990. The toroidal Lie algebras are generalization of the untwisted affine Kac-Moody algebras. In this talk we will first recall the structure of the toroidal Lie algebras and their twisted subalgebras fixed by diagram automorphisms, and the toroidal Lie algebras over quantum tori.  We will also recall the notion of equivariant φ coordinated quasi-modules for vertex algebras, and will then state that there exist a vertex algebra V and an automorphism group G of V equipped with a linear character χ , such that the category of restricted modules for each twisted toroidal Lie algebra or toroidal Lie algebra over quantum torus is isomorphic to category of (G, χ)-equivariant φ-coordinated quasi modules for the vertex algebra V. The arguments will be divided into two cases, the so-called fgc and non-fgc types.

专家简介:谭绍滨,厦门大学特聘教授。现任厦门大学数学科学学院院长、国家天元数学东南中心执委会主任、中国数学会常务理事、福建省数学会副理事长。曾任厦门大学教务处处长、国际合作与交流处处长、台港澳事务办公室主任、厦门大学校长助理,担任第六、七届国务院学位委员会学科评议组成员,教育部高等学校教学指导委员会委员,享受国务院政府特殊津贴。担任”Acta Mathematica Sinica”、“Journal of Mathematical Study”、《数学进展》、《应用数学》等学术期刊编委。曾获国防科工委科技进步一等奖、宝钢优秀教师奖、福建省第五届青年科技奖、福建省第五届高等学校教学名师奖、福建省自然科学二等奖。现主持国家自然科学基金重点项目。

邀请人:任丽

0401-任丽-谭绍滨.jpg