Non-relativistic limit for the cubic nonlinear Klein-Gordon equations
报告专家:吴奕飞教授(天津大学)
报告时间:2024年1月17日下午16:00-17:00
报告地点:数学学院西202
报告摘要:In this talk, we focus on the non-relativistic limit of the Cauchy problem for the defocusing cubic nonlinear Klein-Gordon equations. We show that, as the light speed $c$ tends to infinity, the error function is bounded by, (1) in the case of 2D and modulated Schrodinger-wave profiles, $c^{-2}$, uniformly for all time, under $H^2$ initial data; (2) in the case of both 2D and 3D and modulated Schr\"odinger profiles, $c^{-2} +(c^{-2}t)^{\alpha/4}$, under $H^\alpha$ initial data with $2 \leq \alpha \leq 4$. We also show the sharpness of the upper bounds in (1) and (2), and the required minimal regularity on the initial data in (2). This talk is based on a joint work with Zhen Lei.
专家简介:吴奕飞,天津大学教授,国家“高端人才计划”创新领军人才,主要从事偏微分方程理论及数值分析、调和分析等方向的交叉研究,解决了菲尔兹奖获得者T. Tao等提出并遗留了十多年的问题;设计了目前为止非线性Schrodinger方程和KdV方程正则性要求最低的快速格式,主要工作发表在JEMS、CMP、Adv.Math.、Anal. PDE、Numer.Math、Math.Comp.、Numer.Math.等刊物上。
邀请人:吕琦