Integral points on the Clebsch-Klein surfaces


报告专家:Rafael von Kanel(清华大学高等研究院)

报告时间:2024年1月19日下午15:45-16:45

报告地点:西南中心516

报告摘要:In this talk we present explicit bounds for the Weil height and the number of integral points on classical surfaces first studied by Clebsch (1871) and Klein (1873). Building on Hirzebruch's work in which he related these surfaces to a Hilbert modular surface, we deduced our bounds from a general result for integral points on coarse Hilbert moduli schemes. After explaining this deduction, we discuss the strategy of proof of the general result which combines the method of Faltings (Arakelov, Parsin, Szpiro) with modularity, Masser-Wuestholz isogeny estimates, and results based on effective analytic estimates and/or Arakelov theory. Joint work with Arno Kret.

专家简介:Rafael von Kanel现任清华大学高等研究院副教授,主要从事算术几何领域研究,研究成果发表于Mem. Amer. Math. Soc. , Forum Math. Sigma, Int. Math. Res. Not. 等多个著名国际期刊。

邀请人:许宾

0115许宾02-01.jpg