Tianyuan Mathematical Centerin Southwest China
Tianyuan Mathematical Centerin Southwest China

Sure Explained Variability and Independence Screening

[Math. Dept.]

April 25, 2018  15:00-16:00

E409  School of Mathematics

[colloquium] Min Chen20180425-01.png

SPEAKER

Min Chen (Academy of Mathematics and Systems Science, CAS)

ABSTRACT

In the era of Big Data, extracting the most important exploratory variables available in ultrahigh dimensional data plays a key role in scientific researches. Existing researches have been mainly focusing on applying the extracted exploratory variables to describe the central tendency of their related response variables. For a response variable, its variability characteristic is as much important as the central tendency in statistical inference. This paper focuses on the variability and proposes a new model-free feature screening approach: sure explained variability and independence screening (SEVIS). The core of SEVIS is to take the advantage of recently proposed asymmetric and nonlinear generalized measures of correlation in the screening. Under some mild conditions, the paper shows that SEVIS not only possesses desired sure screening property and ranking consistency property, but also is a computational convenient variable selection method to deal with ultrahigh-dimensional data sets with more features than observations. The superior performance of SEVIS, compared with existing model-free methods, is illustrated in extensive simulations. A real example in ultrahigh-dimensional variable selection demonstrates that the variables selected by SEVIS better explain not only the response variables, but also the variables selected by other methods.

SUPPORTED BY

School of Mathematics, Sichuan University

分享
回到顶部