Tianyuan Mathematical Centerin Southwest China
Tianyuan Mathematical Centerin Southwest China



Quenched invariance principles for random walks in random environment conditioned to stay positive


报告专家:洪文明 教授(北京师范大学)

时间:923日(星期五)10:00-11:00

报告地点:腾讯会议:302-731-513  会议密码:0923

https://meeting.tencent.com/dm/dZnJTIVeShar

 

 

摘要:We consider a  random walk  $\{S_n\}_{n\in \mathbb{N}}$ in  random environment (in time) $\xi$. For almost each realization of $\xi$, we prove a quenched invariance principles for the random walk conditioned to stay positive (which specified by the Doob $h$-transform of the original one). To this end, a key step is to  formulate a (quenched) harmonic function. Although the traditional approach Wiener-Hopf factorisation dose not work in this case, we  prove  the existence of the (quenched) harmonic function under the annealed $2+\epsilon$ (for some $\epsilon>0$) moment condition on the increments. This is a joint work with Shengli Liang.

 

专家简介:洪文明,北京师范大学数学科学学院教授、博导,研究方向为概率论;主要研究兴趣包括随机环境中的随机游动,分枝过程及分枝随机游动等。在Electron. J. Probab., J. Theoret. Probab., Sci. China Math., Stochastic Process. Appl., Theory Probab. Appl., Markov Process. Related Fields, Infin. Dimens. Anal. Quantum Probab. Relat. Top.等重要杂志发表论文40多篇。

Cache_6bf9738ee5ec48af..jpg

分享
回到顶部