Tianyuan Mathematical Centerin Southwest China
Tianyuan Mathematical Centerin Southwest China


一类形变反应扩散模型的多脉冲波


报告专家:李骥(华中科技大学)

报告时间:8月9日(周二)16:00-17:00 



摘要:We consider a reaction-diffusion system with mechanical deformation of

medium. This system consists of an excitable system bi-directionally coupled with an elasticity equation. The main content consists of two parts. First, for gamma sufficiently small, simple pulse of homoclinic type exists. We prove that the traveling pulse is linearly stable. Specifically, there is at most one nontrivial eigenvalue near the origin and it is negative. Second, for gamma large, we show existence of double twisted front-back wave loop, indicating bifurcations of various complicated traveling waves, including N-front, N-back and wave train. Then we prove that N-fronts are linearly

stable. Our arguments are mainly based on geometric singular perturbation theory, exponential dichotomy, heteroclinic bifurcation and the Melnikov method.

[lecture]0809微分方程--李骥-01.jpg


VIDEOS

  • 一类形变反应扩散模型的多脉冲波
  • 16:00 - 17:00, 2022-08-09 at 腾讯会议
  • 李骥







分享
回到顶部