Consensus-based High Dimensional Global Non-convex Optimization in Machine Learning
报告人:金石教授 上海交通大学
报告时间:8月4日16点—17点
报告地点:腾讯会议87141591553 无密码
摘要:We introduce a stochastic interacting particle consensus system for global optimization of high dimensional non-convex functions. This algorithm does not use gradient of the function thus is suitable for non-smooth functions. We prove that under dimensionindependent conditions on the parameters and initial data the algorithms converge to the neighborhood of the global minimum almost surely.
![[lecture]0804控制论--金石-01.jpg [lecture]0804控制论--金石-01.jpg](http://tianyuan.scu.edu.cn/upload/default/20220801/%5Blecture%5D0804%E6%8E%A7%E5%88%B6%E8%AE%BA--%E9%87%91%E7%9F%B3-01.jpg)