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Abstract. We present in this note a unified approach on how to design
simple, efficient and energy stable time discretization schemes for the
Allen-Cahn or Cahn-Hilliard Navier-Stokes system which models two-
phase incompressible flows with matching or non-matching density. Spe-
cial emphasis is placed on designing schemes which only require solving
linear systems at each time step while satisfy discrete energy laws that
mimic the continuous energy laws. We construct the time discretization
schemes in weak formulations so that they can be used with any consis-
tent Galerkin type spacial discretization schemes such as finite element
methods and spectral/spectral-element methods.
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1. Introduction

The interfacial dynamics of two-phase immiscible fluids have attracted
much attention for more than a century. A classical way to study the mov-
ing interfaces is to employ a mesh that has grid points on the interfaces
and deforms according to the motion of the boundary. However, keeping
track of the moving mesh may cause computational difficulties such as
mesh entanglement for large displacement or deformation of internal do-
mains. Typically, sophisticated remeshing schemes have to be used in these
cases. As an alternative, fixed-grid methods that regularize the interface
have been highly successful in treating deforming interfaces. These include
the volume-of-fluid method [43, 44], the front-tracking method [24, 25] and
the level-set method [53, 9]. Instead of formulating the flow in two domains
separated by an interface, these methods represent the interfacial tension
as a body-force or bulk-stress spreading over a narrow region covering the
interface. A single set of governing equations can be written over the entire
domain, and solved on a fixed grid in a purely Eulerian framework.

In recent years, the diffuse interface approach, i.e., the phase-field model,
whose origin can be traced back to [61] and [71], has been successfully
used to model two-phase incompressible fluids under various situations (cf.
[35, 2, 50, 38, 48, 78] and the references therein). The phase field model can
be viewed as a physically motivated level-set method. Instead of choosing
an artificial smoothing function for the interface, the diffuse-interface model
describes the interface by a mixing energy. In particular, the energetic vari-
ational phase-field approach leads to a well-posed nonlinear coupled system
that satisfies an energy law, making it possible to design numerical schemes
which satisfy a corresponding discrete energy law that automatically en-
sures their numerical stability (cf., for instance, [23, 45, 4, 63, 64]).

Most of the analysis and simulation of the phase-field model for two-
phase flows have been restricted to the matched density case or with a
Boussinesq approximation when the density difference is small. The stan-
dard energetic phase-field model was derived from a variational procedure
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with a matched density, so a direct extension to the case of variable density
does not lead to an energy law, making it difficult to carry out mathe-
matical and numerical analysis. For problems with small density ratio, a
common practice is to use a Boussinesq approximation where the variable
density ρ is replaced by a background constant density ρ0 while an external
gravitational force is added to model the effect of density difference (cf., for
instance, [48]). While using the Boussinesq approximation leads to a well-
posed dissipative phase-field system, its physical validity is based on the
assumption that the density ratio between the two phases is small. Hence,
it can not be used for two-phase flows with large density ratio. In this case,
one approach is to view the mixture as a compressible fluid in the mixing
layer with a mass-averaged velocity [50]. Another approach is to assume
that the two components mix by advection only (i.e., without diffusion)
and remain solenoidal. In [63], we took the second viewpoint and proposed
a physically consistent modification to the momentum equation such that
the modified phase-field system, in the case of variable density, admits an
energy law.

The coupled phase-field system for two-phase incompressible flows
presents formidable challenges for algorithm design, analysis and implemen-
tation, particularly so when the density ratio is large. Some of the numerical
difficulties associated with this coupled nonlinear system include:

• the coupling of the velocity and pressure though the incompress-
ibility constraint;

• the stiffness of the phase equation associated with the interfacial
width η;

• and in the case of variable density, the equation to update the
pressure becomes difficult to solve when the density ratio is large.

Some simple, efficient and energy stable schemes for the Allen-Cahn and
Chan-Hilliard phase-field models have been constructed recently in [63] and
[64]. These schemes are designed by combining the following approaches to
deal with the aforementioned difficulties:

• A common strategy to decouple the computation of the pressure
from velocity is to use a projection type scheme as in the case
for Navier-Stokes equations (cf., for instance, a recent review in
[32]). However, most of the numerical analysis for projection type
schemes are limited to problems with constant density and vis-
cosity. The few exceptions which deal with variable density are
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[28, 56, 29], which serve as inspiration for the numerical schemes
we present below.

• To alleviate the difficulty associated with the stiffness caused by the
thin interfacial width, a stabilizing term in the phase equation was
introduced in [77, 46] (see also [75]). This stabilizing term allows us
to treat the nonlinear term in the phase equation explicitly without
suffering from any time step constraint. Alternatively, one can also
use the so called convex splitting approach [21] which leads to un-
conditionally stable scheme with a nonlinear system whose solution
is the unique minimizer of a convex functional (cf. [74, 73]).

• A typical projection type scheme will lead to an elliptic equation
with density as a variable coefficient for the pressure. The numerical
solution of this elliptic equation could become very expensive as
the when the density ratio is large. We shall consider a pressure
stabilized formulation to avoid solving a pressure elliptic equation
with density as a variable coefficient (cf. [29]).

The main purpose of this note is to present a unified approach for the
design and stability analysis of simple, efficient and energy stable schemes
for the Allen-Cahn and Cahn-Hilliard phase-field models. While many of the
schemes and results to be discussed here have appeared in several recent
papers [65, 63, 64], the presentation is essentially self-contained and in a
uniform style.

The rest of this note is organized as follows. In the next section, we
present the Allen-Cahn and Cahn-Hilliard phase-field models for two-phase
incompressible Newtonian flows, first with the case matched density afol-
lowed by the case of variable density. We emphasize that these phase-field
models admit an energy law. In Section 3, we provide a brief overview
for some projection type schemes for the Navier-Stokes equations that we
shall use to decouple the computation of the pressure from that of the ve-
locity. In Section 4, we present two classes of energy stable schemes for
the Allen-Cahn and Cahn-Hilliard equations. In Section 5, we consider the
phase-field models with matched density and viscosity, and construct en-
ergy stable schemes by combining the ideas presented in Sections 3 and
4. In Section 6, we extend the results to the case of variable density and
viscosity. We discuss briefly the extension to complex fluids in Section 7
and conclude with a few remarks in the last section.
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2. phase-field model for two-phase incompressible and
immiscible flows

We consider a mixture of two immiscible, incompressible Newtonian fluids
with densities ρ1, ρ2 and viscosities µ1, µ2. In order to identify the regions
occupied by the two fluids, we introduce a phase function φ such that

φ(x, t) =

{
1 fluid 1

−1 fluid 2
, (2.1)

with a thin smooth transition layer of thickness η connecting the two fluids
so the interface of the mixture can be described by the zero level set of the
phase function: {x : φ(x, t) = 0}. Let F (φ) = 1

4η2 (φ2−1)2 be the Ginzburg-
Landau double-well potential, and define the mixing energy functional

W (φ,∇φ) = λ

∫
Ω

(
1
2
|∇φ|2 + F (φ)

)
dx, (2.2)

where λ is the mixing energy density and η is the capillary width of the in-
terface thickness. The above represents the competition between the hydro-
philic and hydro-phobic properties of the two-phase flow. The mixing energy
density λ can be related to the traditional surface tension coefficient σ in
the sharp interface limit [78]. Indeed, consider an one-dimensional interface
and assume that the diffusive mixing energy in the region equals to the
traditional surface energy:

σ = λ

∫ +∞

−∞

{
1
2

(
dφ

dx

)2

+ F (φ)

}
dx. (2.3)

Let us further assume that the diffuse interface is at equilibrium, and thus
has zero chemical potential,

δW

δφ
= λ{−d

2φ

dx2
+ F ′(φ)} = 0. (2.4)

Since limx→±∞ F (φ) = 0, that is, φ = ±1 for unmixed components, and
limx→±∞

dφ
dx = 0, multiplying the above equation by dφ

dx and integrating
over (−∞,+∞), we get

1
2

(
dφ

dx

)2

= F (φ), (2.5)

which implies equal partition of the free energy between the two terms at
equilibrium. Equation (2.5) can be solved together with the boundary con-
dition φ(0) = 0 for any given F (φ) by direct integration. For the potential
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F (φ) = 1
4η2 (1− φ2)2, (2.5) leads to φx = 1√

2η
(1− φ2) whose solution, with

the condition φ(0) = 0, is:

φ(x) = tanh
(

x√
2η

)
. (2.6)

Thus, at the equilibrium, the capillary width η is a measure of the thick-
ness of the diffuse interface. Substituting (2.6) into (2.3), we arrive at the
following matching condition:

σ =
2
√

2
3

λ

η
(2.7)

Therefore, as the interfacial thickness η shrinks toward zero, so should the
mixing energy density parameter λ; their ratio gives the surface tension
coefficient in the sharp interface limit.

Obviously, the correspondence between the diffuse- and sharp-interface
models is meaningful only when the former is at equilibrium. During the
relaxation of the diffuse interface, one cannot speak of a constant interfacial
tension. Although one may view this as a deficiency of the diffuse-interface
model, it in fact reflects the reality that the interface has its own dynam-
ics which cannot be summarized by a constant σ except under limiting
conditions.

The dynamics of the phase function φ can be determined by a gradient
flow:

φt + (u · ∇)φ = −γ δW
δφ

. (2.8)

One can take the variational derivative δW
δφ in H−1 and set f(φ) = F ′(φ),

leading to the (conserved) Cahn-Hilliard phase equation,

φt + (u · ∇)φ = −γ∆(∆φ− f(φ)); (2.9)

or take the variational derivative δW
δφ in L2, leading to the (non-conserved)

Allen-Cahn phase equation

φt + (u · ∇)φ = γ(∆φ− f(φ)). (2.10)

For immiscible two-phase flows, we can introduce a non-local Lagrange
multiplier ξ(t) in the Allen-Cahn case to enforce the volume fraction con-
servation (cf. [77]), namely:

φt + (u · ∇)φ = γ(∆φ− f(φ) + ξ(t)),
d

dt

∫
Ω

φdx = 0.
(2.11)
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Note that the right-hand side of the dynamic equation (2.9) or (2.10) dic-
tates the relaxation of the phase-field variable φ, with a relaxation time
proportional to 1/γ. In the limit of γ approaching zero, we recover the
kinematic condition for the interface. Moreover, as η approaches zero, the
dynamics of φ will preserve the profile of the transition, a key advantage of
the phase-field approach.

The momentum equation for the two-phase system takes the usual form:

ρ(ut + (u · ∇)u) = ∇ · τ, (2.12)

where the total stress τ = µD(u) − pI + τe with µ being the dynamic
viscosity coefficient, D(u) = ∇u + ∇uT and that τe is the extra elastic
stress induced by the interfacial surface tension.

2.1. The case of matched density

We consider first the case ρ1 = ρ2 = ρ0. Then, using the least-action-
principle and the mixing energy functional defined above, it can be shown
that τe = −λ∇φ⊗∇φ (cf. [34, 48, 57]). Using the identity

∇ · (∇φ⊗∇φ) = ∆φ∇φ+
1
2
∇|∇φ|2, (2.13)

and absorbing the gradient term into the pressure p, the momentum equa-
tion becomes:

ρ0(ut + (u · ∇)u) = ∇ · (µD(u)− pI − λ(∇φ⊗∇φ))

= ∇ · (µD(u))−∇p− λ∆φ∇φ,
(2.14)

where, for notational simplicity, we still use p to denote the modified pres-
sure p+ λ

2 |∇φ|
2. Note that µ is a slave variable of φ and can be determined,

for example, by

µ(φ) =
µ1 − µ2

2
φ+

µ1 + µ2

2
. (2.15)

Then, the Allen-Cahn phase field model for the case of matched density
and viscosity consists of (2.11), (2.14) and the incompressibility condition

∇ · u = 0, (2.16)

together with the boundary conditions

u|∂Ω = 0,
∂φ

∂n
|∂Ω = 0, (2.17)

and initial conditions

u|t=0 = u0, φt=0 = φ0. (2.18)
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By taking the inner product of (2.14) with u, and (2.11) with −λ(∆φ −
f(φ) + ξ(t)), we can derive the following energy law:

d

dt
{ρ0

2
‖u‖2 +

λ

2
‖∇φ‖2 + λ(F (φ), 1)}

= −1
2
‖√µD(u)‖2 − λγ‖∆φ− f(φ) + ξ(t)‖2.

(2.19)

On the other hand, the Cahn-Hilliard phase-field model consists of (2.9),
(2.14) and (2.16) together with the boundary conditions

u|∂Ω = 0,
∂φ

∂n
|∂Ω = 0,

∂(∆φ− f(φ))
∂n

|∂Ω = 0, (2.20)

and the initial conditions (2.18). Similarly, by taking the inner product of
(2.14) with u, and (2.9) with −λ(∆φ−f(φ)+ ξ(t)), we derive the following
energy law for the Cahn-Hilliard phase-field model:

d

dt
{ρ0

2
‖u‖2 +

λ

2
‖∇φ‖2 + λ(F (φ), 1)}

= −1
2
‖√µD(u)‖2 − λγ‖∇(∆φ− f(φ))‖2.

(2.21)

2.2. The case of variable density

When the density ratio is small, a usual approach is to use the Boussinesq
approximation, i.e., replacing (2.14) by

ρ0(ut + (u · ∇)u) = ∇ · (µD(u))−∇p− λ∆φ∇φ+ g(ρ1, ρ2), (2.22)

where ρ0 = ρ1+ρ2
2 and g(ρ1, ρ2) is an additional gravitational force to ac-

count for the density difference. However, when the density ratio is large,
the above Boussinesq approximation is no longer valid. It is clear that the
momentum equation should now be

ρ(ut + (u · ∇)u) = ∇ · (µD(u))−∇p− λ∆φ∇φ. (2.23)

However, unlike in the matched density case, the mass conservation (which
was not included in the phase-field system in favor of the phase equation)

ρt +∇ · (ρu) = 0, (2.24)

is no longer a consequence of incompressibility (2.16). Therefore, the corre-
sponding Allen-Cahn (resp. Cahn-Hilliard) phase-field model (2.11) (resp.
(2.9)), (2.23) with the incompressibility condition (2.16) no longer admit
an energy law. In this case, one approach is to view the mixture as a com-
pressible fluid with ∇·u 6= 0 in the mixing layer, where u is a mass-averaged
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velocity [50]. Another approach [63] is to assume the two components mix
by advection only (i.e., without diffusion). Thus, the velocity at a spatial
point is defined as that of the component occupying that point; it is spa-
tially continuous and remains solenoidal. We then need to modify (2.23) in
a physically consistent way for the modified system to have an energy law.
To this end, we set σ =

√
ρ. By using the mass conservation (2.24), we have

σ(σu)t = ρut +
1
2
ρtu = ρut −

1
2
∇ · (ρu)u. (2.25)

Therefore, it is physically consistent to replace ρut in (2.23) by σ(σu)t +
1
2∇ · (ρu)u, leading to the modified momentum equation [63]

σ(σu)t + (ρu · ∇)u+
1
2
∇ · (ρu)u

−∇ · µD(u) +∇p+ λ∆φ∇φ = 0.
(2.26)

In the above ρ and µ are slave variables of φ, given by

ρ(φ) =
ρ1 − ρ2

2
φ+

ρ1 + ρ2

2
, µ(φ) =

µ1 − µ2

2
φ+

µ1 + µ2

2
. (2.27)

Thanks to the property that∫
Ω

(ρu · ∇)v · vdx+
1
2

∫
Ω

∇ · (ρu)v · vdx = 0, if u · n|∂Ω = 0, (2.28)

we can then derive that the Allen-Cahn phase-field model for the case
of variable density (2.11), (2.26), (2.16) with (2.17) satisfies the following
energy law:

d

dt
{1
2
‖
√
σu‖2 +

λ

2
‖∇φ‖2 + λ(F (φ), 1)}

= −1
2
‖√µD(u)‖2 − λγ‖∆φ− f(φ) + ξ(t)‖2.

(2.29)

Similarly, for the the Cahn-Hilliard phase-field model for the case of variable
density (2.9), (2.26), (2.16) with (2.20), we have

d

dt
{1
2
‖
√
σu‖2 +

λ

2
‖∇φ‖2 + λ(F (φ), 1)}

= −1
2
‖√µD(u)‖2 − λγ‖∇(∆φ− f(φ))‖2.

(2.30)

It is a great challenge to design simple and efficient schemes for solv-
ing the coupled, nonlinear Allen-Cahn and Cahn-Hilliard phase-field sys-
tems described above. In the next two sections, we shall describe simple
and efficient schemes for solving the Navier-Stokes equations and Allen-
Cahn/Cahn-Hilliard equations, respectively. Then, we shall use the ideas
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in the next two sections as building blocks to design simple, efficient and
energy stable schemes for the Allen-Cahn and Cahn-Hilliard phase-field
systems in Sections 7 and 8.

3. Some efficient time discretization schemes for
Navier-Stokes equations

We consider in this section the time dependent Navier-Stokes equations:

ut + (u · ∇)u = ν∆u−∇p+ f, (x, t) ∈ Ω× (0, T ],

∇ · u = 0, (x, t) ∈ Ω× (0, T ],

u|∂Ω=0, u|t=0 = u0.

(3.1)

In the above, Ω ⊂ Rd (d = 2, 3) is a bounded domain; ν is the kinematic
viscosity coefficient, f is the external force; the unknown functions are the
velocity vector u and the pressure p.

To fix the idea, we assumed a homogeneous Dirichlet boundary condition
in the above, although other admissible boundary conditions can be treated
as well.

One of the main difficulties in numerically solving the Navier-Stokes
equations is that the pressure p is coupled with the velocity u through the
incompressibility constraint for u. The most effective way to decouple the
computation of pressure from that of the velocity is to employ a projection
type scheme which was originally proposed by Chorin [12] and Temam
[69]. Many improved versions have been introduced over the last forty
years (cf., for instance, [26, 41, 72, 52, 40, 66, 54, 67, 70, 20, 30, 31, 33, 39]);
and an extensive literature has been devoted to the numeri-
cal analysis of these projection type schemes (cf., for instance,
[59, 66, 36, 18, 19, 67, 55, 27, 58, 6, 30, 31, 33, 51, 49]). We refer to the recent
review paper [32] for a detailed account on the various type of projection
schemes. Here, we shall describe two projection type schemes which will be
used later for the phase-phase model.

3.1. Pressure-correction schemes

The original projection method, proposed by Chorin [12] and Temam [69],
was motivated by the idea of operator splitting, its semi-discrete version
reads as follows: Find ũk+1 by solving

ũk+1 − uk

δt
− ν∆ũk+1 + (uk · ∇)ũk+1 = f(tk+1),

ũk+1|∂Ω = 0;
(3.2)
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then, find (pk+1, uk+1) by solving

uk+1 − ũk+1

δt
+∇pk+1 = 0,

∇ · uk+1 = 0,

uk+1 · n|∂Ω = 0.

(3.3)

The above scheme is called a projection method because un+1 in the second
step (3.3) can be interpreted as the projection of ũn+1 onto the divergence
free space

H = {u ∈ (L2(Ω))d : ∇ · u = 0, u · n|∂Ω = 0}. (3.4)

By taking the divergence of the first equation in (3.3), we find that the
second step (3.3) is equivalent to

∆pk+1 =
1
δt
∇ · ũk+1,

∂pk+1

∂n
|∂Ω = 0;

uk+1 = ũk+1 − δt∇pk+1.

(3.5)

Remark 3.1: The above scheme is computationally efficient, when com-
pared with a coupled discretization, since at each time step, one only needs
to solve a linear second-order equation for ũk+1, and a Poisson equation for
pk+1. Furthermore, it is a common practice, especially when a fast Poisson
solver is available as in the case of finite differences or spectral methods,
to replace the semi-implicit treatment of the nonlinear term (uk · ∇)ũk+1

in (3.2) by the explicit treatment (uk · ∇)ũk. Therefore, at each time step,
one only needs to solve a Poisson type equation for ũk+1 and a Poisson
equation for pk+1.

On the other hand, this scheme has a poor accuracy due to the non-
physical boundary condition ∂pk+1

∂n |∂Ω = 0 in (3.5). It is shown in [66]
that this scheme is only 1

2 -order accurate for the velocity in L2(0, T ;H1)
and pressure in L2(0, T ;L2), and first-order accurate for the velocity in
L2(0, T ;L2).

The first significantly improved projection type scheme appears to be
the so called pressure-correction scheme introduced in [26]. Its first-order
version reads as follows:

Find ũk+1 by solving

ũk+1 − uk

δt
− ν∆ũk+1 + (uk · ∇)ũk+1 +∇pk = f(tk+1),

ũk+1|∂Ω = 0;
(3.6)
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then, find (pk+1, uk+1) by solving

uk+1 − ũk+1

δt
+∇(pk+1 − pk) = 0,

∇ · uk+1 = 0,

uk+1 · n|∂Ω = 0.

(3.7)

By taking the divergence of the first equation in (3.7), we find that the
second step is equivalent to

∆(pk+1 − pk) =
1
δt
∇ · ũk+1,

∂(pk+1 − pk)
∂n

|∂Ω = 0;

uk+1 = ũk+1 − δt∇(pk+1 − pk).
(3.8)

Taking the inner product of (3.6) with 2δtũk+1, using the identity

(b− a, 2b) = |b|2 − |a|2 + |b− a|2 (3.9)

and the property

(u · ∇v, v) = 0, ∀u ∈ H, v ∈ (H1(Ω))d, (3.10)

where H is defined in (3.4), we find

‖ũk+1‖2 − ‖ũk‖2 + ‖ũk+1 − uk‖2 + 2νδt‖∇ũk+1‖2 + 2δt(∇pk, ũk+1)

= 2δt(f(tk+1), ũk+1) ≤ νδt‖∇ũk+1‖2 + Cδt‖f(tk+1)‖2H−1 .

(3.11)

On the other hand, we rewrite (3.7) as

uk+1 + δt∇pk+1 = ũk+1 + δt∇pk

and take the inner product of the above with itself on both sides, notice
that (∇pk+1, uk+1) = −(pk+1,∇ · uk+1) = 0, we obtain

‖uk+1‖2 + (δt)2‖∇pk+1‖2 = ‖ũk+1‖2 + 2δt(∇pk, ũk+1) + (δt)2‖∇pk‖2.
(3.12)

Summing up (3.11) and (3.12), we arrive at

‖uk+1‖2 − ‖ũk‖2 + ‖ũk+1 − uk‖2 + νδt‖∇ũk+1‖2

+ (δt)2‖∇pk+1‖2 − (δt)2‖∇pk‖2 ≤ Cδt‖f(tk+1)‖2H−1 .

Summing up the above inequality for k = 0, 1, . . . , n ≤ T
δt , we proved the

following result.
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Lemma 3.1: The scheme (3.6)-(3.7) is unconditionally stable in the sense
that

‖un+1‖2 + νδt

n∑
k=0

‖∇ũk+1‖2 ≤ ‖u0‖2 + C‖f‖2C(0,T ;H−1).

It is also shown that the above scheme is first-order accurate for the
velocity in L∞(0, T ;L2) ∩ L2(0, T ;H1) and pressure in L2(0, T ;L2) (cf.
[66, 32]). However, second-order pressure-correction schemes can be easily
constructed. A popular second-order version reads:

3ũk+1 − 4uk + uk−1

2δt
− ν∆ũk+1 + (2uk − uk−1) · ∇ũk+1 +∇pk = f(tk+1),

ũk+1|∂Ω = 0;
(3.13)

3uk+1 − 3ũk+1

2δt
+∇(pk+1 − pk) = 0,

∇ · uk+1 = 0,

uk+1 · n|∂Ω = 0.

(3.14)

It can be shown, similar to the proof for Lemma 3.1, that the above
scheme is also unconditionally stable. The only complication is that the
term (3ũk+1 − 4uk + uk−1, ũk+1) needs to be treated carefully, we refer to
[27, 33] for more detail on this matter. As for the error analysis, it is shown
(cf. [27, 68]) that the above scheme is second-order for the velocity in the
L2(0, T ;L2(Ω))-norm, but it is only first-order accurate for the velocity in
L2(0, T ;H1(Ω))-norm and the pressure in L2(0, T ;L2(Ω))-norm. The proof
is much more involved and we refer to [27, 32] for more detail.

The scheme (3.13)-(3.14) is only first-order accurate for the pressure
[68] due to the non-physical boundary condition

∂pk+1

∂n
|∂Ω =

∂pk

∂n
|∂Ω = · · · = ∂p0

∂n
|∂Ω (3.15)

implied by (3.14). An improved second-order scheme, is proposed in [70]:

3ũk+1 − 4uk + uk−1

2δt
− ν∆ũk+1 + (2uk − uk−1) · ∇ũk+1 +∇pk = f(tk+1),

ũk+1|∂Ω = 0;
(3.16)
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3uk+1 − 3ũk+1

2δt
+∇ψk+1 = 0,

∇ · uk+1 = 0,

uk+1 · n|∂Ω = 0;

(3.17)

pk+1 = ψk+1 + pk − 2νδt
3
∇ · ũk+1. (3.18)

It is shown (cf. [33]) that the above scheme is still unconditionally stable
but its accuracy is improved to order 3

2 , instead of first-order for the scheme
(3.13)-(3.14), for the velocity in L2(0, T ;H1(Ω))-norm and the pressure in
L2(0, T ;L2(Ω))-norm.

3.2. Pressure-stabilization schemes

As we shall see later, for two-phase flows with variable density, the pressure-
correction schemes presented above will lead to a pressure elliptic equation
with variable coefficients which may become difficult to solve when the
density ratio is large. Hence, we shall present below a pressure-stabilization
scheme which will lead to a pressure Poisson equation even in the case of
variable density.

The idea behind the pressure-stabilization scheme is to replace the di-
vergence free condition by

∇ · u− ε∆p = 0,
∂p

∂n
|∂Ω = 0, (3.19)

with ε = δt or

∇ · u− ε∆pt = 0,
∂pt

∂n
|∂Ω = 0, (3.20)

with ε = (δt)2.
A first-order pressure-stabilization scheme based on (3.19) reads:

uk+1 − uk

δt
− ν∆ũk+1 +N(uk, uk+1) +∇pk = f(tk+1),

ũk+1|∂Ω = 0;
(3.21)

δt∆pk+1 = ∇ · uk+1,
∂pk+1

∂n
|∂Ω = 0, (3.22)

where

N(uk, uk+1) = (uk · ∇)uk+1 +
1
2
(∇ · uk)uk+1. (3.23)
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Note that in the above scheme, ∇·uk 6= 0. Hence, we don’t have the desired
property ((uk · ∇)uk+1, uk+1) = 0. By adding an additional term 1

2 (∇ ·
uk)uk+1, we have (N(uk, uk+1), uk+1) = 0 which is essential for proving
the stability of the scheme.

It is shown in [59] that the original projection method introduced in [12]
and [69] can be reformulated as the stabilized scheme (3.21)-(3.22). There-
fore, Its accuracy is comparable to the original projection method but not
as accurate as the first-order scheme (3.6)-(3.7). Namely, it is of first order
for the velocity in the L2(0, T ;L2(Ω))-norm, but it is only of order 1

2 for the
velocity in L2(0, T ;H1(Ω))-norm and the pressure in L2(0, T ;L2(Ω))-norm
(cf. [59]).

The computational complexity of the scheme (3.21)-(3.22) is essentially
the same as that of the scheme (3.6)-(3.7). However, as we shall see later,
it leads to a simplified scheme for two-phase flows with variable density.

A second-order pressure-stabilization scheme based on (3.20) is as fol-
lows:

3uk+1 − 4uk + uk−1

2δt
− ν∆ũk+1 +N(2uk − uk−1, uk+1) +∇pk = f(tk+1),

ũk+1|∂Ω = 0;
(3.24)

δt∆(pk+1 − pk) = ∇ · uk+1,
∂pk+1

∂n
|∂Ω = 0. (3.25)

The accuracy of the second-order scheme (3.24)-(3.25) is essentially the
same as the second-order pressure-correction scheme (3.13)-(3.14) (cf. [67]).

Remark 3.2: For all the pressure-correction schemes, the pressure compu-
tation is decoupled from that of the velocity. Therefore, it appears that the
discretization spaces, Xh for the velocity and Mh for the pressure, do not
necessarily need to satisfy the so called inf-sup condition [3, 5]. However,
it has been shown that the inf-sup condition is needed for the pressure-
correction schemes to achieve optimal accuracy (see, for instance, a detailed
explanation in [32]).
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4. Some efficient time discretization schemes for
Allen-Cahn and Cahn-Hilliard equations

We consider in this section the Allen-Cahn equation

φt −∆φ+
1
ε2
f(φ) = 0, (x, t) ∈ Ω× (0, T ],

∂

∂n
φ|∂Ω = 0,

(4.1)

and the Cahn-Hilliard equation

φt −∆(−∆φ+
1
ε2
f(φ)) = 0, (x, t) ∈ Ω× (0, T ],

∂

∂n
φ|∂Ω = 0,

∂

∂n
(∆φ− 1

ε2
f(φ))|∂Ω = 0,

(4.2)

with the initial condition φ|t=0 = φ0. In the above, f(φ) = F ′(φ) with
F (φ) being a given energy potential, and n is the outward normal. In many
situations, it is more convenient to rewrite the fourth-order equation (4.2)
into a system of second-order equations:

φt = ∆w,
∂

∂n
w|∂Ω = 0,

w = −∆φ+
1
ε2
f(φ),

∂

∂n
φ|∂Ω = 0.

(4.3)

We have introduced a parameter ε explicitly in (4.1) and (4.2) in order to
highlight additional difficulties which may arise when ε� 1.

The Allen-Cahn equation was originally introduced by Allen and Cahn
in [1] to describe the motion of anti-phase boundaries in crystalline solids,
while the Cahn-Hilliard equation was introduced by Cahn and Hilliard
in [8] to describe the complicated phase separation and coarsening phe-
nomena in a solid. These equations have been used extensively in mate-
rials science as models for phase transition, pattern formation etc., and
have been the subject of extensive mathematical and numerical studies.
On the other hand, the Allen-Cahn and Cahn-Hilliard equations have also
been widely in phase-field models for multi-phase flows (cf., for instance,
[50, 11, 2, 10, 48, 78, 77, 16]).

An important feature of the Allen-Cahn and Cahn-Hilliard equations
is that they can be viewed as the gradient flow of the Liapunov energy
functional

E(φ) :=
∫

Ω

(
1
2
|∇φ|2 +

1
ε2
F (φ)

)
dx (4.4)
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in L2 and H−1, respectively. More precisely, by taking the inner product
of (4.1) with −∆φ+ 1

ε2 f(φ), we immediately find the following energy law
for (4.1):

∂

∂t
E(φ(t)) = −

∫
Ω

| −∆φ+
1
ε2
f(φ)|2dx; (4.5)

and similarly, the energy law for (4.2) is

∂

∂t
E(φ(t)) = −

∫
Ω

|∇(−∆φ+
1
ε2
f(φ))|2dx. (4.6)

Therefore, it is important to design efficient and accurate numerical schemes
that satisfy a corresponding discrete energy law, or in other words, energy
stable.

Let us consider first a simple first-order semi-implicit scheme for the
Allen-Cahn equation (4.1):

1
δt

(φn+1 − φn) = ∆φn+1 − 1
ε2
f(φn),

∂

∂n
φn+1|∂Ω = 0. (4.7)

In order to prove a stability result for the above scheme, we need to
make the following assumption on f(φ) = F ′(φ):

max
x∈R

|f ′(x)| ≤ L. (4.8)

Note that the assumption (4.8) is not satisfied by the double-well potential
F (φ) = 1

4 (φ2 − 1)2. However, since the Allen-Cahn equation satisfies the
maximum principle and it is shown in [7] that for a truncated potential F (φ)
with quadratic growth at infinities, the maximum norm of the solution for
the Cahn-Hilliard equation is bounded, we can replace F (φ) by

F (φ) =


(φ− 1)2, φ > 1
1
4 (φ2 − 1)2, φ ∈ [−1, 1]

(φ+ 1)2, φ < −1,

, (4.9)

which satisfies (4.8) with L = 2.
Under the assumption (4.8), it is not hard to show that under the con-

dition

δt ≤ 2ε2

L
, (4.10)

the scheme (4.7) is energy stable in the sense that

E(φn+1) ≤ E(φn), ∀n ≥ 0.
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Indeed, taking the inner product of (4.7) with φn+1− φn and using the
identity (3.9), we find

1
δt
‖φn+1 − φn‖20+

1
2
(‖∇φn+1‖20 − ‖∇φn‖20 + ‖∇(φn+1 − φn)‖20)

+
1
ε2

(f(φn), φn+1 − φn) = 0.
(4.11)

For the last term in (4.11), we use the Taylor expansion

F (φn+1)− F (φn) = f(φn)(φn+1 − φn) +
f ′(ξn)

2
(φn+1 − φn)2. (4.12)

Therefore, by using (4.8), we find

1
δt
‖φn+1 − φn‖20 +

1
2
(‖∇φn+1‖20 − ‖∇φn‖20 + ‖∇(φn+1 − φn)‖20)

+
1
ε2

(F (φn+1)− F (φn), 1)

=
1

2ε2
(f ′(ξn)(φn+1 − φn), φn+1 − φn) ≤ L

2ε2
‖φn+1 − φn‖20,

which implies the energy stability.
The condition (4.10) is quite restrictive when ε << 1. To remove this

restriction, an implicit treatment for the nonlinear term is usually necessary.
Following [17], a simple, yet unconditionally energy stable, second-order
scheme for the Allen-Cahn equation is as follows:

φn+1 − φn

δt
−∆

φn+1 + φn

2
+

1
ε2
f̃(φn+1, φn) = 0,

∂

∂n
φn+1|∂Ω = 0,

(4.13)

where

f̃(φ, ψ) =


F (φ)− F (ψ)

φ− ψ
if φ 6= ψ

f(φ) if φ = ψ

(4.14)

Similarly, the corresponding scheme for the Cahn-Hilliard equation (4.3) is:

φn+1 − φn

δt
= ∆

wn+1 + wn

2
,

∂

∂n
wn+1|∂Ω = 0,

wn+1 + wn

2
= −∆

φn+1 + φn

2
+

1
ε2
f̃(φn+1, φn) = 0,

∂

∂n
φn+1|∂Ω = 0.

(4.15)

It is clear that the above schemes are second-order accurate since they
are based on a modified Crank-Nicolson scheme. To show that they are
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unconditionally energy stable, let us consider the scheme (4.13) and take
the inner product with φn+1 − φn, we find
1
δt
‖φn+1 − φn‖2 +

1
2
(‖∇φn+1‖2 − ‖∇φn‖2) +

1
ε2

(F (φn+1)− F (φn), 1) = 0,

which is exactly

E(φn+1) = E(φn)− 1
δt
‖φn+1 − φn‖2. (4.16)

Similar result can be established for the scheme (4.15).
While the scheme (4.13) enjoys the second-order accuracy and uncondi-

tional energy stability, it is however not very convenient in practice since (i)
a non-linear equation has to be solved at each time step; (ii) the non-linear
equation may have multiple solutions; and (iii) the unique solvability can
only be guaranteed for δt sufficiently small.

We shall present below two classes of schemes which are more suitable
in practice.

4.1. Convex splitting schemes

The idea of convex splitting was first introduced by Eyre [21]. Recently, the
idea has been applied to various gradient flows (cf. [74, 73]). Assuming that
we can split F (φ) as the difference of two convex functions, i.e.,

F (φ) = Fc(φ)− Fe(φ) with F ′′c (φ), F ′′e (φ) ≥ 0. (4.17)

Then, the first-order convex splitting scheme reads:

φn+1 − φn

δt
−∆φn+1 +

1
ε2

(fc(φn+1)− fe(φn)) = 0,

∂

∂n
φn+1|∂Ω = 0,

(4.18)

where fc(φ) = F ′c(φ) and fe(φ) = F ′e(φ).

Theorem 4.1: The scheme (4.18) is unconditionally energy stable. More
precisely, we have

E(φn+1) ≤ E(φn)− 1
δt
‖φn+1 − φn‖2 − 1

2
‖∇(φn+1 − φn)‖2. (4.19)

Furthermore, the solution φn+1 of the nonlinear equation (4.18) is the
unique minimizer of the convex functional

Q(φ) =
∫

Ω

(
1
δt
|φ|2 +

1
2
|∇φ|2 +

1
ε2
Fc(φ)− gnφ)dx, (4.20)

where gn = − 1
δtφ

n − 1
ε2 fe(φn).
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Proof: Taking the inner product of (4.18) with φn+1 − φn, and using the
Taylor expansion

Fc(φn)− Fc(φn+1) = F ′c(φ
n+1)(φn − φn+1) +

F ′′c (ξn)
2

(φn − φn+1)2,

Fc(φn+1)− Fc(φn) = F ′c(φ
n)(φn+1 − φn) +

F ′′c (ηn)
2

(φn+1 − φn)2,

thanks to (4.17), we find that

1
δt
‖φn+1 − φn‖2 +

1
2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇(φn+1 − φn)‖2)

+
1
ε2

[(F (φn+1), 1)− (F (φn), 1)]

= − 1
2ε2

(F ′′c (ξn) + F ′′c (ηn), (φn − φn+1)2) ≤ 0,

which implies (4.19).
On the other hand, it is clear that (4.18) is the Euler-Lagrange equation

of minφ∈H1(Ω)Q(φ). Since Q(φ) is convex, φn+1 is its unique minimizer.

One can also construct second-order convex splitting schemes. However,
there does not seem to be a second-order convex splitting scheme for general
F (φ) = Fc(φ)−Fe(φ). Its construction depends on the exact form of F (φ).
For F (φ) = 1

4 (φ2 − 1)2 and f(φ) = F ′(φ) = φ3 − φ, a second-order convex
splitting scheme is as follows (cf. [37]):

φn+1 − φn

δt
−∆

φn+1 + φn

2
+

1
4ε2

((φn+1)2 + (φn)2)(φn+1 + φn)

− 1
2ε2

(3φn − φn−1) = 0,

∂

∂n
φn+1|∂Ω = 0,

(4.21)

Theorem 4.2: The scheme (4.21) is unconditionally stable. More pre-
cisely, we have

E(φn+1)+
1

4ε2
‖φn+1−φn‖2 ≤ E(φn)+

1
4ε2

‖φn−φn−1‖2− 1
δt
‖φn+1−φn‖2.

(4.22)
Furthermore, (4.21) admits a unique solution which is the minimizer of a
convex functional.
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Proof: We take the inner product of (4.21) with φn+1 − φn. Since

(3φn−φn−1, φn+1 − φn) = (φn+1 + φn − (φn+1 − 2φn + φn−1), φn+1 − φn)

= ((φn+1)2 − (φn)2, 1)

− 1
2
(‖φn+1 − φn‖2 − ‖φn − φn−1‖2 + ‖φn+1 − 2φn + φn−1‖2),

we obtain

1
δt
‖φn+1 − φn‖2 +

1
2
(‖∇φn+1‖2 − ‖∇φn‖2)

+
1

4ε2
((φn+1)4 − (φn)4 − 2((φn+1)2 − (φn)2), 1)

+
1

4ε2
(‖φn+1 − φn‖2 − ‖φn − φn−1‖2 + ‖φn+1 − 2φn + φn−1‖2) = 0,

which implies (4.22).
Next, we show that the solution of (4.21) is the unique minimizer of a

convex functional. To this end, we rewrite φn+1 as the solution of

φ

δt
− 1

2
∆φ+ rn(φ) = gn,

∂

∂n
φ|∂Ω = 0,

(4.23)

where

rn(φ) =
1

4ε2
((φ)2 + (φn)2)(φ+ φn),

gn =
φn

δt
+

1
2
∆φn +

1
2ε2

(3φn − φn−1).

Setting Rn(φ) =
∫
rn(φ)dφ and

Q(φ) =
∫

Ω

(
1
δt

+
1
4
|∇φ|2 +Rn(φ)− gnφ)dx,

we find that (4.23) is the Euler-Lagrange equation of minφ∈H1(Ω)Q(φ).
Since

r′n(φ) =
1

4ε2
(2φ(φ+ φn) + φ2 + (φn)2) =

1
4ε2

(2φ2 + (φ+ φn)2) ≥ 0,

we conclude that Q(φ) is convex and φn+1 is its unique minimizer.
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4.2. Stabilized schemes

Compared to the implicit schemes such as (4.15), the convex splitting
schemes admit a unique solution which is the minimizer of a convex func-
tional. Therefore, they are computationally more efficient than the implicit
schemes such as (4.15). However, they still need to solve a nonlinear equa-
tion at each time step.

The stabilized first-order semi-implicit method reads

(
1
δt

+
S

ε2
)(φn+1 − φn)−∆φn+1 +

1
ε2
f(φn) = 0,

∂

∂n
φn+1|∂Ω = 0,

(4.24)

where S is a stabilizing parameter to be specified.
The stabilizing term S

ε2 (φn+1−φn) introduces an extra consistency error
of order Sδt

ε2 ut(ξn). We note that this error is of the same order as the
error introduced by the explicit treatment of the nonlinear term which
is, 1

ε2 (f(u(tn+1)) − f(u(tn))) = δt
ε2ut(ηn). Therefore, the stabilized semi-

implicit scheme (4.24) is of the same order of accuracy, in terms of δt and
ε, as the standard semi-implicit scheme — (4.24) with S = 0, or the first-
order convex splitting scheme (4.18). However, we have the following result
for the stabilized scheme.

Lemma 4.1: Assuming that (4.8) holds. Then, for S ≥ L
2 , the stabilized

scheme (4.24) is unconditionally stable and the following energy law holds
for any δt:

E(φn+1) ≤ E(φn), ∀n ≥ 0. (4.25)

Proof: Taking the inner product of (4.24) with φn+1 − φn, we obtain

(
1
δt

+
S

ε2
)‖φn+1 − φn‖20 +

1
2
(‖∇φn+1‖20 − ‖∇φn‖20 + ‖∇φn+1 −∇φn‖20)

+
1
ε2

(f(φn), φn+1 − φn) = 0.

Using again the Taylor expansion (4.12) and (4.8), we find

(f(φn), φn+1 − φn) ≥ (F (φn+1)− F (φn), 1)− L

2
(φn+1 − φn, φn+1 − φn).

We can then conclude the desired result from the above two relations.
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We now consider the first-order stabilized semi-implicit method for the
Cahn-Hilliard equation (4.3):

1
δt (φ

n+1 − φn)−∆wn+1 = 0, ∂wn+1

∂n |∂Ω = 0, (4.26a)

−∆φn+1 + S
ε2 (φn+1 − φn) + 1

ε2 f(φn) = wn+1, ∂φn+1

∂n |∂Ω = 0.(4.26b)

As in the Allen-Cahn case, the extra consistency error introduced by the
stabilization term is of the same order, in terms of δt and ε, as the dom-
inating truncation error in the standard semi-implicit scheme, (4.26) with
S = 0.

Lemma 4.2: For S ≥ L
2 , the stabilized scheme (4.26) is unconditionally

stable and the following energy law holds for any δt:

E(φn+1) ≤ E(φn) ∀n ≥ 0. (4.27)

Proof: Taking the inner product of (4.26a) with δtwn+1 and that of
(4.26b) with φn+1 − φn, and using (4.12), we find

(φn+1 − φn, wn+1) + δt‖∇wn+1‖20 = 0,

and
1
2
(‖∇φn+1‖20 − ‖∇φn‖20 + ‖∇(φn+1 − φn)‖20)

+
S

ε2
‖φn+1 − φn‖20 +

1
ε2

(F (φn+1)− F (φn), 1)

− 1
2ε2

(f ′(ξn)(φn+1 − φn), φn+1 − φn) = (wn+1, φn+1 − φn).

On the other hand, taking the inner product of (4.26a) with
√

2δt(φn+1 −
φn), we obtain√

2
δt
‖φn+1 − φn‖20 = −

√
2δt(∇wn+1,∇(φn+1 − φn))

≤ δt‖∇wn+1‖20 +
1
2
‖∇(φn+1 − φn)‖20.

Summing up the above three relations and using (4.8), we arrive at√
2
δt
‖φn+1 − φn‖20 +

S

ε2
‖φn+1 − φn‖20 +

δt

2
‖∇wn+1‖20

+
1
2
(‖∇φn+1‖20 − ‖∇φn‖20) +

1
ε2

(F (φn+1)− F (φn), 1)

=
1

2ε2
(f ′(ξn)(φn+1 − φn), φn+1 − φn)

≤ L

2ε2
‖φn+1 − φn‖20.
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We conclude that the desired result holds under the condition S ≥ L
2 .

A second-order semi-implicit scheme based on the second-order BNF
and Adam-Bash forth is as follows:

1
2δt

(3φn+1 − 4φn + φn−1)−∆φn+1 +
1
ε2

(2f(φn)− f(φn−1)) = 0,

∂φn+1

∂n
|∂Ω = 0.

(4.28)

Its stabilized version reads:
1

2δt
(3φn+1 − 4φn + φn−1) +

S

ε2
(φn+1 − 2φn + φn−1)−∆φn+1

+
1
ε2

(2f(φn)− f(φn−1)) = 0,
∂φn+1

∂n
|∂Ω = 0.

(4.29)

The stabilizing term S
ε2 (φn+1 − 2φn + φn−1) introduces an extra con-

sistency error of order Sδt2

ε2 utt(ξn) which is of the same order as the error
introduced by replacing f(φn+1) with 2f(φn) − f(φn−1). Therefore, the
stabilized semi-implicit scheme (4.29) is of the same order of accuracy, in
terms of δt and ε, as the semi-implicit scheme (4.28).

The following stability results for the scheme (4.28) and its stabilized
version (4.29) are proved in [65].

Lemma 4.3: Under the condition

δt ≤ 2ε2

3L
, (4.30)

the solution of the scheme (4.29) with S ≥ 0 satisfies

E(φn+1) + (
1

4δt
+
S + L

2ε2
)‖φn+1 − φn‖20

≤ E(φn) + (
1

4δt
+
S + L

2ε2
)‖φn − φn−1‖20, ∀n ≥ 1.

(4.31)

Remark 4.1: The above lemma is valid for all S ≥ 0 which include in par-
ticular the usual second-order semi-implicit scheme (S = 0). The stability
condition (4.30) is only slightly more restrictive than the condition (4.10)
for the first-order semi-implicit scheme (4.7).

Unlike in the first-order case, we were unable to show theoretically that
the stabilized scheme (4.29) with S > 0 has better stability than (4.28),
which is (4.29) with S = 0. However, ample numerical evidences indicate
that the stabilized version (4.29) with a suitable S allows much large time
steps than that is allowed by the unstabilized version (4.28) (cf. [46]).
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Remark 4.2: Beside the two classes of schemes presented above, another
class of schemes, namely, the operator splitting schemes [76], are often used
to solve Allen-Cahn type equations. While a properly designed operator
splitting scheme can also be unconditionally stable and very efficient for the
nonlinear reaction-diffusion equations including the Allen-Cahn type equa-
tions [15, 14], it is not particularly suitable for interface problems that we
are interested here, since the diffusion step in an operator splitting scheme
does not have any mechanism to keep an interface profile. Furthermore, the
operator splitting approach can not be efficiently applied to Cahn-Hilliard
type equations.

5. Numerical schemes for the case of matched density

In this section, we shall construct simple, yet energy stable numerical
schemes for the coupled nonlinear phase-field systems in the case of matched
density. To simply the presentation, we shall also assume in this section that
the two fluids have the same viscosity µ0 and defer the treatment of vari-
able viscosity to the next section, although the schemes and results in this
section extend directly to the case of variable viscosity.

Hereafter, we shall assume that F (φ) takes the following modified form

F (φ) =


1
η2 (φ− 1)2, φ > 1
1

4η2 (φ2 − 1)2, φ ∈ [−1, 1]
1
η2 (φ+ 1)2, φ < −1

, (5.1)

which satisfies

max
x∈R

|f ′(x)| ≤ 2
η2
. (5.2)

5.1. Allen-Cahn phase-field model

We consider first the Allen-Cahn phase-field model consisting of the equa-
tions (2.10), (2.14), (2.16) with the boundary condition (2.17) and initial
condition (2.18).

To fix the idea and simplify the presentation, we shall consider the Allen-
Cahn phase equation (2.10), instead of (2.11) with the Lagrange multiplier
ξ(t), as the Lagrange multiplier does not introduce any computational or
analytical difficulties.

The term ∆φ∇φ in (2.14) is not very convenient in practice, particularly
if a finite element method is used. It also introduces additional difficulty for
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proving the discrete energy law, since the test function, ∆φ− f(φ) we used
in the continuous case, is usually not in the discrete subspace. Therefore,
we shall reformulate (2.14) before constructing numerical schemes. Thanks
to (2.11), we can replace ∆φ in (2.14) by 1

γ (φt + u · ∇φ) after absorbing
the term (f(φ) − ξ(t))∇φ = ∇(F (φ) − ξ(t)φ) into ∇p (but still use the
same notation for the modified p). Therfore, the reformulated Allen-Cahn
phase-field model reads:

φt + u · ∇φ− γ(∆φ− f(φ)) = 0 (5.3a)

ρ0(ut + (u · ∇)u)− µ0∆u+∇p+
λ

γ
(φt + u · ∇φ)∇φ = 0, (5.3b)

∇ · u = 0, (5.3c)

together with the boundary condition (2.17) and initial condition (2.18).
Taking the inner product of (5.3a) with λ

γφt and that of (5.3b) with u,
we find that the above system satisfies the following energy law

d

dt

∫
Ω

(
1
2
ρ0|u|2 +

λ

2
|∇φ|2 + λF (φ))dx

= −
∫

Ω

(
µ0|∇u|2 +

λ

γ
|φt + u · ∇φ|2

)
dx.

(5.4)

A first-order scheme for the system (5.3) based on the pressure-
correction method (3.6)-(3.7) and the stabilized scheme (4.24) is as follows:
Given initial conditions u0 and φ0, we compute (φn+1, ũn+1, un+1, pn+1) for
n ≥ 0 by (

1
δt

+
S

η2
)(φn+1 − φn) + (ũn+1 · ∇)φn − γ(∆φn+1 − f(φn)) = 0,

∂nφ
n+1|∂Ω = 0;

(5.5a)


ρ0(

ũn+1 − un

δt
+ un · ∇ũn+1)− µ0∆ũn+1 +∇pn

+
λ

γ
(
φn+1 − φn

δt
+ ũn+1 · ∇φn)∇φn = 0,

ũn+1|∂Ω = 0;

(5.5b)


ρ0
un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0,

∇ · un+1 = 0,

n · un+1|∂Ω = 0.

(5.5c)
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Remark 5.1: At each time step, the above scheme involves a weakly
coupled linear system for (φn+1, ũn+1). In fact, if we replace ũn+1 by ũn

in (5.5a), then φn+1 and ũn+1 are decoupled and can be obtained separately
by solving two elliptic equations.

We show below that the above scheme admits a discrete energy law.

Theorem 5.1: For S ≥ γ, the scheme (5.5) is unconditionally stable and
satisfies the following discrete energy law:

[ρ0‖un+1‖2 + λ‖∇φn+1‖2 + 2λ(F (φn+1), 1)] +
δt2

ρ0
‖∇pn+1‖2

+ 2µ0δt‖∇ũn+1‖2 +
2λδt
γ

‖ψn+1‖2

≤ [ρ0‖un‖2 + λ‖∇φn‖2 + 2λ(F (φn), 1)] +
δt2

ρ0
‖∇pn‖2,

where

ψn+1 =
φn+1 − φn

δt
+ ũn+1 · ∇φn. (5.6)

Proof: Taking the inner product of (5.5b) with 2δtũn+1, we derive

ρ0(‖ũn+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2) + 2µ0δt‖∇ũn+1‖2

+ 2δt(∇pn, ũn+1) +
2λδt
γ

(ψn+1∇φn, ũn+1) = 0.
(5.7)

Taking the inner product of (5.5c) with 2δt
ρ0
∇pn, we obtain

δt2

ρ0
(‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇pn+1 −∇pn‖2) = 2δt(ũn+1,∇pn). (5.8)

On the other hand, we derive from (5.5c) that

δt2

ρ0
‖∇pn+1 −∇pn‖2 = ρ0‖ũn+1 − un+1‖2, (5.9)

and

‖un+1‖2 + ‖un+1 − ũn+1‖2 = ‖ũn+1‖2. (5.10)

Combining the above inequalities, we find

ρ0(‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2) + 2µ0δt‖∇ũn+1‖2

+
δt2

ρ0
(‖∇pn+1‖2 − ‖∇pn‖2) +

2λδt
γ

(ψn+1∇φn, ũn+1) = 0.
(5.11)
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Next, taking the inner product of the second equation in (5.5a) with
2λ
γ (φn+1 − φn), we find

2λδt
γ

(ψn+1,
φn+1 − φn

δt
) +

2Sλ
γη2

‖φn+1 − φn‖2

+ λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)
+ 2λ(f(φn), φn+1 − φn) = 0.

(5.12)

We combine (5.11), (5.12) and (4.12) to obtain

ρ0(‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2)

+ 2µ0δt‖∇ũn+1‖2 +
δt2

ρ0
(‖∇pn+1‖2 − ‖∇pn‖2)

+
2λδt
γ

‖ψn+1‖2 +
2Sλ
γη2

‖φn+1 − φn‖2

+ λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)
+ 2λ(F (φn+1)− F (φn), 1)

≤ λ(f ′(ξn)(φn+1 − φn), φn+1 − φn) ≤ 2λ
η2
‖φn+1 − φn‖2.

We can then conclude from the above inequality.

Remark 5.2: The above stability result and the argument in the proof
indicate that if we rewrite the first two coupled equations in (5.5) as a
linear system for the unknown (λ

γ (φn+1 − φn), ũn+1)t, the matrix for the
linear system is then positive definite (but not symmetric). Therefore, the
coupled system can be efficiently solved by using an interative procedure
such as BICGSTAB (cf. for instance [62]). This remark also applies to all
other schemes presented below.

5.2. Cahn-Hilliard phase-field model

We now consider the Cahn-Hilliard phase-field model consisting of the equa-
tions (2.9), (2.14), (2.16).

As in the Allen-Cahn case, the term ∆φ∇φ in (2.14) is not convenient
in practice. It is also more difficult to treat the fourth-order equation (2.9).
Therefore, we split (2.9) into a sequence of two second-order equations as in
(4.3), then replace ∆φ∇φ in (2.14) by (−w+ f(φ))∇φ = −w∇φ+∇F (φ),
and absorb the last term into ∇p, we arrive at the following equivalent
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system:

φt + u · ∇φ = γ∆w, (5.13a)

w = −∆φ+ f(φ), (5.13b)

ρ0(ut + (u · ∇)u)− µ0∆u+∇p− λw∇φ = 0, (5.13c)

∇ · u = 0, (5.13d)

with the boundary condition (2.20) and initial condition (2.18).
Taking the inner product of (5.13a) with λw, that of (5.13b) with λφt

and that of (5.13c) with 4, we find that the above system satisfies the
following energy law

d

dt

∫
Ω

(
1
2
ρ0|u|2 +

λ

2
|∇φ|2 + λF (φ))dx

= −
∫

Ω

(
µ0|∇u|2 + λγ|∇w|2

)
dx.

(5.14)

The following first-order scheme for the system (5.13), based on the
pressure-correction projection method [32, 68] with a stabilized treatment
for the Cahn-Hilliard phase equation [65], was proposed in [64]: Given initial
conditions u0 and φ0, compute (φn+1, wn+1, ũn+1, un+1, pn+1) for n ≥ 0 by


1
δt

(φn+1 − φn) + (ũn+1 · ∇)φn = γ∆wn+1,

wn+1 − S

η2
(φn+1 − φn) = −∆φn+1 + f(φn),

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0;

(5.15a)

 ρ0(
ũn+1 − un

δt
+ un · ∇ũn+1)− µ0∆ũn+1 +∇pn − λwn+1∇φn = 0,

ũn+1|∂Ω = 0,
(5.15b)


ρ0
un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0,

∇ · un+1 = 0,

n · un+1|∂Ω = 0.

(5.15c)

Remark 5.3: At each time step, the above scheme involves a weakly
coupled linear system for (φn+1, wn+1, ũn+1). In fact, if we replace ũn+1

by ũn in (5.15a), then (φn+1, wn+1) and ũn+1 are decoupled and can be
obtained separately by solving two elliptic equations/systems.
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The following result was proved in [64]:

Theorem 5.2: For S ≥ 1, the scheme (5.15) is unconditionally stable and
satisfies the following discrete energy law:

[ρ0‖un+1‖2 + λ‖∇φn+1‖2 + 2λ(F (φn+1), 1)] +
δt2

ρ0
‖∇pn+1‖2

+ 2µ0δt‖∇ũn+1‖2 + 2λγδt‖∇wn+1‖2

≤ [ρ0‖un‖2 + λ‖∇φn‖2 + 2λ(F (φn), 1)] +
δt2

ρ0
‖∇pn‖2.

Proof: The proof is similar to that of Theorem 5.1. For the readers’ con-
venience, we sketch the proof below.

Taking the inner product of (5.15b) with 2δtũn+1, we derive

ρ0(‖ũn+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2) + 2µ0δt‖∇ũn+1‖2

+ 2δt(∇pn, ũn+1)− 2λδt(wn+1∇φn, ũn+1) = 0.
(5.16)

As in the proof of Theorem 5.1, we have (5.8), (5.9) and (5.10). Combining
(5.16), (5.8), (5.9) and (5.10), we find

ρ0(‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2) + 2µ0δt‖∇ũn+1‖2

+
δt2

ρ0
(‖∇pn+1‖2 − ‖∇pn‖2)− 2λδt(wn+1∇φn, ũn+1) = 0.

(5.17)

Next, taking the inner product of the first equation in (5.15a) with
2λδtwn+1, we get

2λ(φn+1 − φn, wn+1) + 2λδt(ũn+1∇φn, wn+1)

+ 2λγδt‖∇wn+1‖2 = 0.
(5.18)

Then, taking the inner product of the second equation in (5.15a) with
2λ(φn+1 − φn), we obtain

2λ(wn+1, φn+1 − φn)− 2λS
η2

‖φn+1 − φn‖2

= λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)
+ 2λ(f(φn), φn+1 − φn).

(5.19)



February 9, 2011 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in review

Modeling and numerical approximation of two-phase incompressible flows 31

Combining (5.17), (5.18), (5.19) and (4.12), we obtain

ρ0(‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2)

+ 2µ0δt‖∇ũn+1‖2 +
δt2

ρ0
(‖∇pn+1‖2 − ‖∇pn‖2)

+ 2λγδt‖∇wn+1‖2 − 2Sλ
η2

‖φn+1 − φn‖2

+ λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)
+ 2λ(F (φn+1)− F (φn), 1)

≤ λ(f ′(ξn)(φn+1 − φn), φn+1 − φn) ≤ 2λ
η2
‖φn+1 − φn‖2.

We can then conclude from the above inequality.

Remark 5.4: One can formally construct second-order stabilized schemes
for both the Allen-Cahn Navier-Stokes and Cahn-Hilliard Navier-Stokes
models. However, the second-order stabilized schemes do not seem to be
unconditionally stable but numerical experiments [77, 65] indicate that they
allow significantly larger time steps than the non-stabilized schemes.

Remark 5.5: For both the Allen-Cahn and Cahn-Hilliard phase-field mod-
els, one can also construct first-order and second-order schemes based on
the convex splitting approach for the phase equation and the pressure-
correction for the Navier-Stokes equations. It can be shown as above that
such a scheme is unconditionally stable. We leave the detail to the interested
readers.

6. Numerical schemes for the case of variable density and
viscosity

We consider in this section the phase-field models with variable density and
viscosity. As described in Section 2, we shall use the modified momentum
equation (2.26) which leads to desired energy laws.

6.1. Allen-Cahn phase-field model

The Allen-Cahn phase-field model for the case of variable density and vis-
cosity consists of (2.10), (2.26), (2.16) with (2.17). For the sake of simplicity,
we use the Allen-Cahn phase equation (2.10) instead of (2.11) with the La-
grange multiplier ξ(t).
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As in the case of matched density and viscosity, the term ∆φ∇φ in
(2.26) is not suitable for numerical approximation. So we shall reformulate
it in a similar fashion and consider the following equivalent system:

φt + u · ∇φ = γ(∆φ− f(φ)), (6.1a)

σ(σu)t + (ρu · ∇)u+
1
2
∇ · (ρu)u−∇ · µD(u) +∇p

+
λ

γ
(φt + u · ∇φ)∇φ = 0, (6.1b)

∇ · u = 0. (6.1c)

Taking the inner product of (6.1a) with λ
γφt and that of (6.1b) with u,

we find that the above system satisfies the following energy law

d

dt

∫
Ω

(
1
2
|σu|2 +

λ

2
|∇φ|2 + λF (φ))dx

= −
∫

Ω

(
µ

2
|D(u)|2 +

λ

γ
|φt + u · ∇φ|2

)
dx.

(6.2)

This coupled nonlinear system presents formidable challenges for algorithm
design, analysis and implementation, particularly so when the density ratio
is large. We shall present below numerical algorithms which admit a discrete
energy law and are easy to solve in practice.

6.1.1. A scheme based on the Chorin-Temam projection method

Unlike in the case of matched density and viscosity, it appears difficult
to prove stability for a scheme based on the pressure-correction scheme
for the case of variable density. Therefore, we shall first present a simple
scheme based on the Chorin-Temam projection method. While this scheme
lacks sufficient accuracy and is not recommended in practice, it embodies
most of the essential ideas in the more accurate schemes that we construct
subsequently.

Since the solution of a discretized phase equation does not necessarily
satisfy a maximum principle, we set

φ̂ =

{
φ, |φ| ≤ 1;

sign(φ), |φ| > 1,
(6.3)

and shall use

ρ(φ) =
ρ1 − ρ2

2
φ̂+

ρ1 + ρ2

2
, µ(φ) =

µ1 − µ2

2
φ̂+

µ1 + µ2

2
. (6.4)

to update the density and viscosity so as to keep their positivity.
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The scheme based on the Chorin-Temam projection and stabilization
reads as follows:
Given initial conditions u0 and φ0, we compute (φn+1, ũn+1, un+1, pn+1) for
n ≥ 0 by

(
1
δt

+
S

η2
)(φn+1 − φn) + (ũn+1 · ∇)φn − γ(∆φn+1 − f(φn)) = 0,

∂

∂n
φn+1|∂Ω = 0;

(6.5a)


σn+1σ

n+1ũn+1 − σnun

δt
+ ρn(un · ∇)ũn+1 +

1
2
(∇ · (ρnun))ũn+1

−∇ · µn+1D(ũn+1) +
λ

γ
(

1
δt

(φn+1 − φn) + (ũn+1 · ∇)φn)∇φn = 0,

ũn+1|∂Ω = 0;

(6.5b)

with

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2

2
, µn+1 =

µ1 − µ2

2
φ̂n+1 +

µ1 + µ2

2
,

σn+1 =
√
ρn+1;

(6.5c)


ρn+1u

n+1 − ũn+1

δt
+∇pn+1 = 0,

∇ · un+1 = 0,

n · un+1|∂Ω = 0.

(6.5d)

Several remarks are in order:

Remark 6.1: From (6.3) and (6.5c), we have ρ1 ≤ ρn+1 ≤ ρ2 and µ1 ≤
µn+1 ≤ µ2, so σn+1 is well defined.

The equations (6.5a)-(6.5b) form a weakly coupled system, for if we
replace ũn+1 by ũn in (6.5a), then we can obtain φn+1 and ũn+1 by solving
two decoupled linear elliptic equations. The system is only weakly non-
linear through σn+1 in (6.5b). Thus, it can be efficiently solved by either
decoupling the weakly coupled system with a lagged velocity for the convec-
tive term in the phase equation, or using a simple sub-iteration process.

Remark 6.2: Equation (6.5d) is decoupled from the other equations. An
equivalent formulation is:

(
1

ρn+1
∇pn+1,∇q) =

1
δt

(ũn+1,∇q), ∀q ∈ H1(Ω),

un+1 = ũn+1 − δt
1

ρn+1
∇pn+1.

(6.6)
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Thus, an elliptic equation with variable 1
ρn+1 needs to be solved at each

time step.

We show below that the above scheme admits a discrete energy law.

Theorem 6.1: For S ≥ γ, the solution of scheme (6.5) satisfies the fol-
lowing discrete energy law:

‖σn+1un+1‖2 + λ‖∇φn+1‖2 + 2λ(F (φn+1), 1)

+ δt

(
2λ
γ
‖ψn+1‖2 + ‖

√
µn+1D(ũn+1)‖2

)
≤ ‖σnun‖2 + λ‖∇φn‖2 + 2λ(F (φn), 1),

where ψn+1 is defined in (5.6).

Proof: Taking the inner product of (6.5b) with 2δtũn+1, using (2.28) and
the fact that

2δt(µn+1D(ũn+1),∇ũn+1) = δt‖
√
µn+1D(ũn+1)‖2, (6.7)

we derive

‖σn+1ũn+1‖2 − ‖σnun‖2 + ‖σn+1ũn+1 − σnun‖2 + δt‖
√
µn+1D(ũn+1)‖2

+
2λδt
γ

(ψn+1∇φn, ũn+1) = 0.
(6.8)

Taking the inner product of (6.5d) with 2δtun+1 , we obtain

‖σn+1un+1‖2 + ‖σn+1(un+1 − ũn+1)‖2 = ‖σn+1ũn+1‖2. (6.9)

Combining the above inequalities and using (5.2), we find

‖σn+1un+1‖2 − ‖σnun‖2 + ‖σn+1(un+1 − ũn+1)‖2 + ‖σn+1ũn+1 − σnun‖2

+ δt‖
√
µn+1D(ũn+1)‖2 +

2λδt
γ

(ψn+1∇φn, ũn+1) = 0.
(6.10)

Taking the inner product of (6.5a) with 2λ
γ (φn+1 − φn), we have

2λδt
γ

‖ψn+1‖2 − 2λδt
γ

(ψn+1, ũn+1 · ∇φn) +
2Sλ
γη2

‖φn+1 − φn‖2

+ λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)
+ 2λ(f(φn), φn+1 − φn) = 0.

(6.11)
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For the last term in (6.11), we combine (6.10), (6.11) and (4.12), to obtain

‖σn+1un+1‖2 − ‖σnun‖2 + δt‖
√
µn+1D(ũn+1)‖2 +

2λδt
γ

‖ψn+1‖2

+
2Sλ
γη2

‖φn+1 − φn‖2 + λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)

+ 2λ(F (φn+1)− F (φn), 1)

≤ λ(f ′(ξn)(φn+1 − φn), φn+1 − φn) ≤ 2λ
η2
‖φn+1 − φn‖2.

We can then conclude from the above inequality.

6.1.2. Schemes based on pressure stabilization

As discussed in Remark 6.2, any scheme with a projection step would result
in an elliptic equation with density as the variable coefficient. Therefore,
we shall construct efficient schemes based on the pressure stabilized formu-
lation (3.20) (cf., for instance, [59, 68, 55, 32]).

The following first-order scheme, originally proposed in [63], is inspired
by the incremental pressure stabilization scheme for the Navier-Stokes equa-
tions presented in [29].

Given initial conditions φ0, p0 = 0, u0 and set ρ̄ = min(ρ1, ρ2). We
compute (φn+1, un+1, pn+1) for n ≥ 0 by

(
1
δt

+
S

η2
)(φn+1 − φn) + (un+1 · ∇)φn − γ(∆φn+1 − f(φn)) = 0,

∂

∂n
φn+1|∂Ω = 0;

(6.12a)



1
2 (ρn+1 + ρn)un+1 − ρnun

δt
+ ρn(un · ∇)un+1 +

1
2
(∇ · (ρnun))un+1

−∇ · µn+1D(un+1) +∇(2pn − pn−1)

+
λ

γ
(
φn+1 − φn

δt
+ un+1 · ∇φn)∇φn = 0,

un+1|∂Ω = 0;

(6.12b)

with

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2

2
, µn+1 =

µ1 − µ2

2
φ̂n+1 +

µ1 + µ2

2
;
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∆(pn+1 − pn) =

ρ̄

δt
∇ · un+1,

∂

∂n
pn+1|∂Ω = 0.

(6.12c)

The above scheme involves a weakly coupled system for (φn+1, un+1)
and a Poisson equation for the pressure increment. So the scheme is par-
ticularly attractive for problems with large density ratios.

Theorem 6.2: For S ≥ γ, the solution of the scheme (6.12) satisfies the
following energy law:

‖σn+1un+1‖2 +
δt2

ρ̄
‖∇pn+1‖2 + λ‖∇φn+1‖2 + 2λ(F (φn+1), 1))

+ δt

(
2λ
γ
‖ψn+1‖2 + ‖µn+1D(un+1)‖2

)
≤ ‖σnun‖2 +

δt2

ρ̄
‖∇pn‖2 + λ‖∇φn‖2 + 2λ(F (φn), 1),

where σk =
√
ρk and ψn+1 is defined in (5.6).

Proof: Taking the inner product of (6.12b) with 2δtun+1, from

(
1
2
(ρn+1 + ρn)un+1 − ρnun, 2un+1) = ‖σn+1un+1‖2 − ‖σnun‖2

+ ‖σn(un+1 − un)‖2,
(6.13)

and using (2.28), we have

‖σn+1un+1‖2 − ‖σnun‖2 + ‖σn(un+1 − un)‖2 + δt‖
√
µn+1D(un+1)‖2

+ 2δt(pn+1 − 2pn + pn−1,∇ · un+1)

− 2δt(pn+1,∇ · un+1) +
2λδt
γ

(ψn+1∇φn, un+1) = 0.

(6.14)

Taking the inner product of (6.12c) with 2δt2

ρ̄ (pn+1−2pn +pn−1), we obtain

− δt2

ρ̄
(‖∇(pn+1 − pn)‖2 − ‖∇(pn − pn−1)‖2 + ‖∇(pn+1 − 2pn + pn−1)‖2)

= 2δt(∇ · un+1, pn+1 − 2pn + pn−1)

Taking the inner product of (6.12c) with − 2δt2

ρ̄ pn+1, we obtain

δt2

ρ̄
(‖∇pn+1‖2 − ‖∇pn‖2 + ‖∇(pn+1 − pn‖2)

= −2δt(∇ · un+1, pn+1)
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Adding the above two equalities together, we get

2δt(pn+1 − 2pn + pn−1,∇ · un+1)− 2δt(pn+1,∇ · un+1)

=
δt2

ρ̄
(‖∇pn+1‖2 − ‖∇pn‖2) +

δt2

ρ̄
‖∇(pn − pn−1)‖2

− δt2

ρ̄
‖∇(pn+1 − 2pn + pn−1)‖2.

(6.15)

Taking the difference of (6.12c) at step n+ 1 and step n, we derive

δt2

ρ̄
‖∇(pn+1 − 2pn + pn−1)‖2 ≤ ρ̄‖un+1 − un‖2 ≤ ‖σn(un+1 − un)‖2

Combining the above inequalities together in (6.14), we derive

‖σn+1un+1‖2 − ‖σnun‖2 + δt‖
√
µn+1D(un+1)‖2

+
δt2

ρ̄
(‖∇pn+1‖2 − ‖∇pn‖2) +

δt2

ρ̄
‖∇(pn − pn−1)‖2

+
2λδt
γ

(ψn+1∇φn, un+1) ≤ 0

Taking the inner product of (6.12a) with 2λ
γ (φn+1−φn) and using the same

procedure as in the proof of Theorem 5.1, finally we obtain

‖σn+1un+1‖2 − ‖σnun‖2 + δt‖
√
µn+1D(un+1)‖2

+
δt2

ρ̄
(‖∇pn+1‖2 − ‖∇pn‖2) +

δt2

ρ̄
‖∇(pn − pn−1)‖2

+
2λδt
γ

‖ψn+1‖2 + λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)

+ 2λ(F (φn+1)− F (φn), 1) ≤ 0.

We can also construct a second-order version of the scheme (6.12). More
precisely, denoting, for any sequence {ak}, a∗,k+1 = 2ak − ak−1, a second-
order version of (6.12) reads:

3φn+1 − 4φn + φn−1

2δt
+ (un+1 · ∇)φ∗,n+1 +

γ

η2
(φn+1 − 2φn + φn−1)

− γ(∆φn+1 − 2f(φn) + f(φn−1)) = 0,

∂nφ
n+1|∂Ω = 0;

(6.16a)
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ρn+1

2δt
(3un+1 − 4un + un−1) + ρn+1(∇ · u∗,n+1)un+1

−∇ · µn+1D(un+1) +∇(pn +
4
3
ψn − 1

3
ψn−1)

+
λ

γ

(
1

2δt
(3φn+1 − 4φn + φn−1) + (un+1 · ∇)φ∗,n+1

)
∇φn+1 = 0,

un+1|∂Ω = 0;

(6.16b)

with

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2

2
, µn+1 =

µ1 − µ2

2
φ̂n+1 +

µ1 + µ2

2
;

∆ψn+1 =
3ρ̄
2δt

∇ · un+1,

∂nψ
n+1|∂Ω = 0,

pn+1 = pn + ψn+1 − µn+1∇ · un+1.

(6.16c)

We note that the numerical procedure for the above scheme is exactly
the same as the scheme (6.12). However, it appears much more difficult to
prove that the above scheme satisfies a discrete energy law.

6.2. Cahn-Hilliard phase-field model

As in the case of matched density and viscosity, the term ∆φ∇φ in (2.26)
is not suitable for numerical approximation. So we shall reformulate it in a
similar fashion and consider the following equivalent system:

φt + u · ∇φ = γ∆w, (6.17a)

w = −∆φ+ f(φ), (6.17b)

σ(σu)t + (ρu · ∇)u+
1
2
∇ · (ρu)u−∇ · µD(u)

+∇p− λw∇φ = 0,
(6.17c)

∇ · u = 0. (6.17d)

Taking the inner product of (6.17a) with λw, that of (6.17b) with λφt

and that of (6.17c) with 4, we find that the above system satisfies the
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following energy law

d

dt

∫
Ω

(
1
2
|σu|2 +

λ

2
|∇φ|2 + λF (φ))dx

= −
∫

Ω

(µ
2
|D(u)|2 + λγ|∇w|2

)
dx.

(6.18)

Since schemes based on the Chorin-Temam projection method are not
sufficiently accurate and efficient, we shall concentrate on constructing
schemes based on the pressure-stabilization formulation (cf., for instance,
[59, 68, 55, 32]), namely, the divergence free condition is replaced by (3.20).
The following first-order scheme, similar to (6.12), was proposed in [64] for
(6.17):

Given initial conditions φ0, p0 = 0, u0. We compute (φn+1, un+1, pn+1)
for n ≥ 0 by 

φn+1 − φn

δt
+ (un+1 · ∇)φn = γ∆wn+1,

wn+1 − S

η2
(φn+1 − φn) = −∆φn+1 + f(φn),

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0;

(6.19a)


1
2 (ρn+1 + ρn)un+1 − ρnun

δt
+ ρn(un · ∇)un+1 +

1
2
(∇ · (ρnun))un+1

−∇ · µn+1D(un+1) +∇(2pn − pn−1)− λwn+1∇φn = 0,

un+1|∂Ω = 0;

(6.19b)

with

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2

2
, µn+1 =

µ1 − µ2

2
φ̂n+1 +

µ1 + µ2

2
.

∆(pn+1 − pn) =
ρ1

δt
∇ · un+1,

∂np
n+1|∂Ω = 0.

(6.19c)

The above scheme only require solving a Poisson equation for the pres-
sure increment, and a weakly coupled system for (φn+1, wn+1, un+1). So it
is particularly suitable for problems with large density ratios.

Theorem 6.3: For S ≥ 1, the scheme (6.19) is unconditionally stable and
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satisfies the following discrete energy law:

‖σn+1un+1‖2 +
δt2

ρ1
‖∇pn+1‖2 + λ‖∇φn+1‖2 + 2λ(F (φn+1), 1))

+ δt
(
2λγ‖∇wn+1‖2 + ‖

√
µn+1D(un+1)‖2

)
≤ ‖σnun‖2 +

δt2

ρ1
‖∇pn‖2 + λ‖∇φn‖2 + 2λ(F (φn), 1),

where σk =
√
ρk.

Proof: The proof follows essentially the same procedure as in the proof of
Theorem 6.2. We sketch the main steps below. For a more detailed proof,
we refer to [64].

Taking the inner product of (6.19b) with 2δtun+1, using (6.13) and (6.7),
we derive

‖σn+1un+1‖2 − ‖σnun‖2 + ‖σn(un+1 − un)‖2 + δt‖
√
µn+1D(un+1)‖2

+ 2δt(pn+1 − 2pn + pn−1,∇ · un+1)

− 2δt(pn+1,∇ · un+1)− 2λδt(wn+1∇φn, un+1) = 0.

(6.20)

Observing that the relations (6.14)-(6.16) for the scheme (6.12) are also
valid here, we combine (6.20) and (6.16) to obtain

‖σn+1un+1‖2 − ‖σnun‖2 + δt‖
√
µn+1D(un+1)‖2

+
δt2

ρ1
(‖∇pn+1‖2 − ‖∇pn‖2) +

δt2

ρ1
‖∇(pn+1 − pn)‖2

− 2λδt(wn+1∇φn, un+1) ≤ 0.

(6.21)

Finally, taking the inner product of the first equation in (6.19a) with
2λδtwn+1, and the second equation in (6.19a) with 2λ(φn+1 − φn) and
using the same procedure as in the proof of Theorem 5.2, we can obtain

‖σn+1un+1‖2 − ‖σnun‖2 + δt‖
√
µn+1D(un+1)‖2

+
δt2

ρ1
(‖∇pn+1‖2 − ‖∇pn‖2) +

δt2

ρ1
‖∇(pn+1 − pn)‖2

+ 2λγδt‖∇wn+1‖2 + λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)
+ 2λ(F (φn+1)− F (φn), 1) ≤ 0.

As in the Allen-Cahn case, we can construct a second-order version of the
scheme (6.19). Still denoting, for any sequence {ak}, a∗,k+1 = 2ak − ak−1,
a second-order version of (6.19) reads:
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3φn+1 − 4φn + φn−1

2δt
+ (un+1 · ∇)φ∗,n+1 = γ∆wn+1,

wn+1 − S

η2
(φn+1 − 2φn + φn−1) = −∆φn+1 + 2f(φn)− f(φn−1),

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0;

(6.22a)

ρn+1

2δt
(3un+1 − 4un + un−1) + ρn+1(∇ · u∗,n+1)un+1 −∇ · µn+1D(un+1)

+∇(pn +
4
3
ψn − 1

3
ψn−1)− λwn+1∇φn = 0,

un+1|∂Ω = 0,

(6.22b)

with

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2

2
, µn+1 =

µ1 − µ2

2
φ̂n+1 +

µ1 + µ2

2
;

∆ψn+1 =
3ρ1

2δt
∇ · un+1,

∂nψ
n+1|∂Ω = 0,

pn+1 = pn + ψn+1 − µn+1∇ · un+1.

(6.22c)

Once again, the numerical procedure for the above scheme is exactly
the same as the scheme (6.19).

7. Phase-field models for complex fluids

The Allen-Cahn and Cahn-Hilliard phase-field models for Newtonian two-
phase fluids can be extended to deal with various type of complex fluids.

Consider for instance an immiscible blend of a nematic liquid crystal
and a Newtonian fluid. There are three types of free energies: mixing energy
of the interface, bulk distortion energy of the nematic, and the anchoring
energy of the liquid crystal molecules on the interface. As in the Newtonian
case, we introduce a phase-field variable φ such that the concentration of
the two components is (1 + φ)/2 and (1− φ)/2, respectively.

The mixing energy density is still expressed in the Landau-Ginzburg
form:

fmix(φ,∇φ) =
λ

2
|∇φ|2 +

λ

4η2
(φ2 − 1)2, (7.1)
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The orientation of the nematic liquid crystal is described by the director
field n(x). The Frank distortion energy expresses the energy penalty for
distorting the orientation [13]:

fbulk = K

[
1
2
∇n : (∇n)T +

(|n|2 − 1)2

4δ2

]
, (7.2)

where K is the elastic constant. The second term on the right-hand side
regularized the original Frank energy to allow defects [47]. The nematic
prefers to orient on the interface along an easy axis [13]; any deviation
from it is penalized by an anchoring energy. Here we assume that the easy
axis is any direction in the tangential plane, and write the anchoring energy
as

fanch =
A

2
(n · ∇φ)2, (7.3)

with the positive constant A representing the anchoring strength. This is
the diffuse-interface counterpart of the Rapini-Popoular energy [60]. Unlike
in the sharp-interface picture, both fmix and fanch are volumetric energy
densities. Finally, the total free energy density for the two-phase material
is written as:

f(φ, n,∇φ,∇n) = fmix +
1 + φ

2
fbulk + fanch (7.4)

where (1+φ)/2 is the volume fraction of the nematic component, and φ = 1
in the purely nematic phase.

Variation of the system’s action functional with respect to the phase-
field variable φ, the nematic director n and the displacement leads to evo-
lution equations for φ, n and the momentum equation. Augmented by the
dissipative effects, the governing equations of the system are:

∂φ

∂t
+ v · ∇φ = γ1∇2 δF

δφ
(7.5a)

∂n

∂t
+ v · ∇n = γ2h, (7.5b)

∇ · v = 0, (7.5c)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ ·

[
µ(∇v +∇vT ) + τe

]
, (7.5d)

where γ1 is the interfacial mobility and γ2 determines the relaxation time
for the director field n. F =

∫
fdΩ is the total free energy of the system,

whose variations produce

δF

δφ
= λ

[
−∇2φ+

φ(φ2 − 1)
ε2

]
+

1
2
fbulk −A∇ · [(n · ∇φ)n] , (7.6)
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and the molecular field

h = −δF
δn

= K

[
−∇ ·

(
1 + φ

2
∇n
)

+
1 + φ

2
(n2 − 1)n

δ2

]
+A(n · ∇φ)∇φ.

(7.7)
The last two terms in equation (7.6) represent coupling between the

phase field and the Frank distortion energy and anchoring energy. When the
interface is thin, fbulk is dominated by the mixing energy near the interface
and therefore negligible. The last term may have an effect on the interfacial
φ profile for strong anchoring. But it is a lower order effect, negligible if
the effects of interfacial tension and surface anchoring are assumed to be
additive (cf. equation (7.8) below). Thus for simplicity, the last two terms
on the right-hand-side of equation (7.6) can often be neglected.

As in the Newtonian case, the elastic stress tensor τe can be derived as
part of the variational procedure (cf. [78]), and in this case takes the form

τe = −λ(∇φ⊗∇φ)−K
1 + φ

2
(∇n) · (∇n)T −A(n · ∇φ)n⊗∇φ. (7.8)

One can show that in the case of matched density, a solution to the above
governing equations obeys the following energy law [78]:

d

dt

∫
Ω

(ρ
2
|u|2 + f

)
dΩ = −

∫
Ω

(
µ∇u : ∇uT + γ1

∣∣∣∣∇δFδφ
∣∣∣∣2 + γ2

∣∣∣∣δFδn
∣∣∣∣2
)
dΩ,

(7.9)
where f is the system’s potential energy density. In the case of variable
density, we can modify the momentum equation (7.5d) as in (2.26) so that
the above energy law still holds for the modified system.

Although the system (7.5) appears to be much more complicated than
its Newtonian counterpart, it is derived using the same energetic variational
procedure and satisfies a similar energy law. Thus, one can also design
efficient, unconditionally stable coupled energy stable schemes for (7.5) by
following the designing principles in the Newtonian case. Alternatively, one
can take a decoupled semi-implicit approach where only the principal linear
differential operators are treated implicitly while all nonlinear terms are
treated explicitly (cf. [46]). In this case, one only needs to solve a sequence
of Poisson type equations at each time step. The price for this simplicity is
that the scheme is only stable for sufficiently small time steps.

8. Concluding remarks

We discussed in this note the phase-field models for two-phase incompress-
ible flows and their numerical approximations.
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The phase-field approach enjoys many advantages as well as suffers from
some shortcomings. The notable advantages include: (i) the interface is
represented by the level set {φ = 0} so there is no need to track the interface;
(ii) no special treatment needed for topological changes; (iii) unlike in a
level-set approach, the interfacial thickness is preserved by the dynamics
of the phase-field models; (iv) it is derived from a energetic variational
procedure which ensures that an energy law is available. On the other hand,
the main challenges and shortcomings of the phase-field model are: (i) The
interface is represented by a smooth curve with a sharp gradient across
the interfacial region of thickness O(η). A numerical mesh needs to resolve
the interfacial region, making it potentially very expensive for η � 1. This
difficulty can be alleviated to some extent by using an adaptive mesh or
moving mesh method. (ii) The choice of the numerical parameters, such as
the interfacial thickness η and the time relaxation parameter γ, is a delicate
matter. While it is theoretically more accurate to choose η and γ as small as
possible, but it comes with added numerical costs as decreasing η requires
more refined mesh to resolve the thinner interfacial region, and decreasing
γ leads to longer relaxation time scales. We refer to [22] for a more detailed
account on these issues.

While we have only discussed the two-phase fluids, the phase-field ap-
proach has been extended to treat multi-phase flows with three or more
phases (see for instance [42]).

We presented a unified approach on how to design simple, efficient and
energy stable time discretization schemes for the coupled nonlinear Allen-
Cahn and Cahn-Hilliard phase-field systems. We placed special emphasis
on designing numerical schemes which require solving only linear systems
while satisfying discrete energy laws that mimic the energy laws satisfied
by the exact solution. Since all of our time discretization schemes can be
cast in a weak formulation, they can be used with any consistent Galerkin
type spacial discretizations such as finite element methods or spectral-
Galerkin/spectral-element methods. In fact, the schemes in Sections 5 and
6 have been implemented with a spectral-Galerkin method and used suc-
cessfully to simulate the dynamics of an air bubble rising in water [63, 64], a
particular challenging situation as the density and viscosity ratios are very
large.

It is hoped that this note will be useful for researchers interested in
modeling and simulation of multi-phase incompressible flows.
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Navier-Stokes. Bull. Soc. Math. France, 98:115–152, 1968.

70. L. J. P. Timmermans, P. D. Minev, and F. N. Van De Vosse. An approximate
projection scheme for incompressible flow using spectral elements. Int. J.
Numer. Methods Fluids, 22:673–688, 1996.

71. J. van der Waals. The thermodynamic theory of capillarity under the hy-
pothesis of a continuous density variation. J. Stat. Phys., 20:197–244, 1893.

72. J. van Kan. A second-order accurate pressure-correction scheme for viscous
incompressible flow. SIAM J. Sci. Stat. Comput., 7:870–891, 1986.

73. Cheng Wang, Xiaoming Wang, and Steven M. Wise. Unconditionally sta-



February 9, 2011 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in review

Modeling and numerical approximation of two-phase incompressible flows 49

ble schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst.,
28(1):405–423, 2010.

74. S. M. Wise, C. Wang, and J. S. Lowengrub. An energy-stable and convergent
finite-difference scheme for the phase field crystal equation. SIAM J. Numer.
Anal., 47(3):2269–2288, 2009.

75. Chuanju Xu and Tao Tang. Stability analysis of large time-stepping methods
for epitaxial growth models. SIAM J. Numer. Anal., 44(4):1759–1779, 2006.

76. N. N. Yanenko. Splitting methods for partial differential equations. In Infor-
mation processing 71 (Proc. IFIP Congr., Ljubljana, 1971), Vol. 2: Applica-
tions, pages 1206–1213. North-Holland, Amsterdam, 1972.

77. X. Yang, J. J. Feng, C. Liu, and J. Shen. Numerical simulations of jet
pinching-off and drop formation using an energetic variational phase-field
method. J. Comput. Phys., 218:417–428, 2006.

78. P. Yue, J. J. Feng, C. Liu, and J. Shen. A diffuse-interface method for simu-
lating two-phase flows of complex fluids. J. Fluid Mech, 515:293–317, 2004.


