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Abstract

A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are
addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three clas-
ses, namely the pressure-correction methods, the velocity-correction methods, and the consistent splitting methods. For each class of
schemes, theoretical and numerical convergence results available in the literature are reviewed and open questions are discussed. The
essential results are summarized in a table which could serve as a useful reference to numerical analysts and practitioners.
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1. Introduction

A major difficulty for the numerical simulation of incompressible flows is that the velocity and the pressure are coupled
by the incompressibility constraint. The interest in using projection methods to overcome this difficulty in time-dependent
viscous incompressible flows started in the late 1960s with the ground breaking work of Chorin and Temam [8,51]. The
most attractive feature of projection methods is that, at each time step, one only needs to solve a sequence of decoupled
elliptic equations for the velocity and the pressure, making it very efficient for large scale numerical simulations.

Although projection methods can be viewed as fractional/splitting step methods, the usual methodology developed for
fractional step method (see e.g., Yanenko [57] or Glowinski [13, Chap. II]) does not apply directly, since the pressure is
not a dynamic variable, i.e., the Navier–Stokes equations are not of Cauchy–Kovalevskaya type. As a consequence, it is
non-trivial to develop and analyze higher-order projection methods, and over the last 35 years, a large body of literature
has been devoted to the construction, analysis, and implementation of projection-type schemes, and the search for optimal

projection schemes has been a pre-occupation of many researchers worldwide (see e.g., Glowinski [13, Chap. VII] and Prohl
[41] for reviews). Over the years many valuable results as well as a significant amount of erroneous or misleading statements
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have been produced. In the last couple of years, several new developments emerged addressing many theoretical and imple-
mentation issues which had been elusive for a long time (cf. [27,24,26] among others). We now believe that a rather clear
picture of the situation is emerging, and we feel that the time has come for a comprehensive overview of projection methods.

The goal of this paper is fourfold: (i) to present the best approximation results available to date for each class of
schemes; (ii) to review important implementation issues scarcely discussed in the literature; (iii) to correct some erroneous
or misleading statements made in the literature (including some made by ourselves); and (iv) to list some open questions for
future research.

This paper is organized as follows. We introduce some notations and recall some preliminary results in Section 2. In
Sections 3–5 we are only concerned with time discretization; we present the pressure-correction, velocity-correction, and
consistent splitting schemes, respectively, and we review available results for each of them. In Sections 6–9, we discuss var-
ious issues related to space discretization. Then, in Section 10, we consider the problem with open boundary conditions.
Some open questions and concluding remarks are reported in the final section.

2. Notations and preliminaries

We consider the time-dependent Navier–Stokes equations on a finite time interval [0,T] and in an open, connected,
bounded Lipschitz domain X � Rdðd ¼ 2; or 3Þ. At times we shall assume that X has the H2-elliptic regularity property,
meaning that for every right-hand side in L2, the solution to the Stokes problem (with zero boundary condition and zero
divergence) belongs to H2 · H1. This property is known to hold if X is C1;1 or if X is convex in two dimensions (see e.g.,
Grisvard [16], Kellogg and Osborn [33]) and in three dimensions (see Dauge [9]). The H2-regularity hypothesis will be
invoked when stating convergence results on the velocity in the L2-norm. For convergence results on the velocity in the
H1-norm and on the pressure in the L2-norm, we only require X to be Lipschitz.

Since the precise definition of the functional settings is very important for stating stability and convergence results, we
introduce the standard Sobolev spaces Hm(X) (m = 0,±1, . . .) whose norms are denoted by k Æ km. In particular, the norm
and inner product of L2(X) = H0(X) are denoted by k Æk and (Æ, Æ) respectively. To account for homogeneous Dirichlet
boundary conditions we define H 1

0ðXÞ ¼ fv 2 H 1ðXÞ : vjC ¼ 0g. Owing to the Poincaré inequality, for v 2 ½H 1
0ðXÞ�

d , k$vk
is a norm equivalent to kvk1. We also have

krvk2 ¼ kr � vk2 þ kr � vk2
; 8v 2 ½H 1

0ðXÞ�
d . ð2:1Þ

We introduce two spaces of solenoidal vector fields

H ¼ fv 2 ½L2ðXÞ�d ;r � v ¼ 0; v � njC ¼ 0g; ð2:2Þ
V ¼ fv 2 ½H 1ðXÞ�d ;r � v ¼ 0; vjC ¼ 0g. ð2:3Þ

The following well-known L2-orthogonal Helmholtz decomposition, [35],

½L2ðXÞ�d ¼ H �rH 1ðXÞ; ð2:4Þ
plays a key role in the analysis of projection methods. We denote by PH the L2-orthogonal projector onto H, and recall that
PH is stable in [Hr(X)]d, r 6 2, if X has the H2-elliptic regularity stated in the introduction of this section, (see also Remark
1.6 in [52])

kP H ukr 6 Cðr;XÞkukr. ð2:5Þ
Since the nonlinear term in the Navier–Stokes equations does not affect the convergence rate of the splitting error, we

hereafter shall mainly be concerned with the time-dependent Stokes equations written in terms of the primitive variables,
namely the velocity u and the pressure p:

otu� mr2uþrp ¼ f in X� ½0; T �;
r � u ¼ 0 in X� ½0; T �;
ujC ¼ 0 in ½0; T �; and ujt¼0 ¼ u0 in X;

8><
>: ð2:6Þ

where f is a smooth source term and u0 2 H is an initial velocity field. We emphasize that all the results stated in this paper
are applicable to the full nonlinear Navier–Stokes equations provided sufficient regularity on the solution holds (see, for
instance, [46,44,48,10]). Note however that when natural boundary conditions are prescribed, the nonlinear term may have
a tremendous influence on the well-posedness of the problem; we shall not dwell on this difficult problem, see e.g., [28]. For
the sake of simplicity, we mostly consider homogeneous Dirichlet boundary conditions on the velocity. The situation where
a natural boundary condition is prescribed on a part of the boundary is considered in Section 10.

Let Dt > 0 be a time step and set tk = kDt for 0 6 k 6 K = [T/Dt]. Let /0,/1, . . . ,/K be some sequence of functions in a
Hilbert space E. We denote by /Dt this sequence, and we define the following discrete norms:
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k/Dtk‘2ðEÞ :¼ Dt
XK

k¼0

k/kk2
E

 !1=2

; k/Dtk‘1ðEÞ :¼ max
06k6K

k/kkE

� �
. ð2:7Þ

We denote by c a generic constant that is independent of �, Dt, and h (h being the mesh-size), but possibly depends on the
data and the solution. We shall use the expression A [ B to say that there exists a generic constant c such that A 6 cB.

3. The pressure-correction schemes

Pressure-correction schemes are time-marching techniques composed of two sub-steps for each time step: the pressure is
treated explicitly or ignored in the first sub-step and is corrected in the second one by projecting the provisional velocity
onto the space H introduced in (2.2).

3.1. The non-incremental pressure-correction scheme

The simplest pressure-correction scheme has originally been proposed by Chorin and Temam [8,51]. Using the implicit
Euler time stepping, the algorithm is as follows: Set u0 = u0, then for k P 0 compute ð~ukþ1; ukþ1; pkþ1Þ by solving

1

Dt
ð~ukþ1 � ukÞ � mr2~ukþ1 ¼ f ðtkþ1Þ; ~ukþ1jC ¼ 0; ð3:1Þ

1

Dt
ðukþ1 � ~ukþ1Þ þ rpkþ1 ¼ 0;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0.

8<
: ð3:2Þ

The first sub-step accounts for viscous effects and the second one accounts for incompressibility. The second sub-step is
usually referred to as the projection step, for it is a realization of the identity

ukþ1 ¼ P H ~ukþ1.

From the point of view of accuracy, the following holds:

Theorem 3.1. Assuming that ðu; pÞ, solving (2.6), is sufficiently smooth, the solution of (3.1), (3.2), satisfies the following error

estimates:

kuDt � uDtk‘1ð½L2ðXÞ�d Þ þ kuDt � ~uDtk‘1ð½L2ðXÞ�d Þ 6 cðu; p; T ÞDt;

kpDt � pDtk‘1ðL2ðXÞÞ þ kuDt � ~uDtk‘1ð½H1ðXÞ�d Þ 6 cðu; p; T ÞDt1=2.

Proof. See, for instance, Prohl [41], Rannacher [44], and Shen [46] (the first estimate holds if X has the H2-elliptic regularity
property and the second one holds if X is Lipschitz). h

Remark 3.1

(i) From (3.2), we observe that the boundary condition $pk+1 Æ njC = 0 is enforced on the pressure. This artificial Neu-
mann boundary condition induces a numerical boundary layer that prevents the scheme to be fully first-order on the
velocity in the H1-norm and on the pressure in the L2-norm; see Rannacher [44].

(ii) This scheme has an irreducible splitting error of order OðDtÞ. Hence, using a higher-order time stepping scheme for
the operator ot � m$2 does not improve the overall accuracy.
3.2. The standard incremental pressure-correction schemes

Since the pressure gradient is obviously missing in (3.1), it was (probably first) observed by Goda in [14] that adding an
old value of the pressure gradient, say $pk, in the first sub-step and then accordingly correcting the velocity in the second
sub-step increases the accuracy. This idea was made popular by Van Kan who proposed a second-order incremental pres-
sure-correction scheme in [54].4 Using the Backward Difference Formula of second-order (BDF2)5 to approximate the time
derivative, the incremental pressure-correction scheme reads as follows:
4 The analysis of [54] is however rather formal insofar as it shows that the error is of c(h)Dt2, the constant c(h) being a mesh-dependent factor that
behaves like Oð1=h2Þ.

5 The choice of a particular time discretization is not important, throughout the paper, we shall use BDF schemes although Adams schemes are perfectly
acceptable.
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1

2Dt
ð3~ukþ1 � 4uk þ uk�1Þ � mr2~ukþ1 þrpk ¼ f ðtkþ1Þ; ~ukþ1jC ¼ 0; ð3:3Þ

1

2Dt
ð3ukþ1 � 3~ukþ1Þ þ rðpkþ1 � pkÞ ¼ 0;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0.

8><
>: ð3:4Þ

The second sub-step is again a projection since it is equivalent to ukþ1 ¼ P H ~ukþ1.
For reasons that will become clear later, we hereafter refer to this algorithm as the incremental pressure-correction

scheme in standard form, the term ‘‘incremental’’ will be omitted when no confusion can arise.
The scheme needs to be initialized with ð~u1; u1; p1Þ and we make the following hypothesis:

Hypothesis 3.1. ð~u1; u1; p1Þ is computed such that the following estimates hold:

kuðDtÞ � ~u1k0 6 cDt2;

kuðDtÞ � ~u1k1 6 cDt3=2;

kpðDtÞ � p1k1 6 cDt.

8>><
>>:

Note that the above hypothesis holds (cf. [24]) if ð~u1; u1; p1Þ are computed as follows: Set u0 = u0 and p0 = p(0), where
p(0) is determined by solving

r2pð0Þ ¼ r � f ð0Þ; onpð0ÞjC ¼ ðf ð0Þ þ mr2u0Þ � njC;

and evaluate ðu1; ~u1; p1Þ from the following first-order pressure-correction scheme:

1

Dt
ð~u1 � u0Þ � mr2~u1 þrp0 ¼ f ðt1Þ; ~u1jC ¼ 0;

and

1

Dt
ðu1 � ~u1Þ þ rðp1 � p0Þ ¼ 0; r � u1 ¼ 0; u1 � njC ¼ 0.

The accuracy of the above algorithm is stated in the following:

Theorem 3.2. Under the Hypothesis (3.1), if the solution to (2.6) is smooth enough in space and time, the solution to (3.3),

(3.4) satisfies the following error estimates:

kuDt � uDtk‘2ð½L2ðXÞ�d Þ þ kuDt � ~uDtk‘2ð½L2ðXÞ�d Þ 6 cðu; p; T ÞDt2;

kpDt � pDtk‘1ðL2ðXÞÞ þ kuDt � ~uDtk‘1ð½H1ðXÞ�d Þ 6 cðu; p; T ÞDt.

Proof. See Shen [48] for the semi-discrete case using the Crank–Nicolson time stepping, E and Liu [10] for an asymptotic
analysis in a periodic channel, and Guermond [19] for the fully discrete case using BDF2 to march in time. (The first esti-
mate holds if X has the H2-elliptic regularity property and the second one holds if X is Lipschitz.) h

Remark 3.2

(i) Though the scheme (3.3) and (3.4) is second-order accurate on the velocity in the L2-norm, it is plagued by a numer-
ical boundary layer that prevents it to be fully second-order on the velocity in the H1-norm and on the pressure in the
L2-norm. Actually, from (3.4) we observe that $(pk+1 � pk) Æ njC = 0 which implies that

rpkþ1 � njC ¼ rpk � njC ¼ � � �rp0 � njC. ð3:5Þ
It is this non-physical Neumann boundary condition enforced on the pressure that introduces the numerical bound-
ary layer referred to above and consequently limits the accuracy of the scheme.

(ii) Theorem 3.2 is expected to hold if the algorithm is implemented with any A-stable second-order time stepping. Since
this scheme has an irreducible splitting error of OðDt2Þ, using a higher than second-order time stepping for approx-
imating the operator ot � m$2 does not improve the overall accuracy. A related aspect of this scheme is studied by
Strikwerda and Lee [50] who used a normal mode analysis in the half-plane and showed that the pressure approxi-
mation in a standard pressure-correction scheme can be at most first-order accurate.
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3.3. The rotational incremental pressure-correction schemes

To overcome the difficulty caused by the artificial pressure Neumann boundary condition (3.5), Timmermans, Minev
and Van De Vosse proposed in [53] to slightly modify the algorithm as follows. While retaining the viscous step (3.3)
unchanged

1

2Dt
ð3~ukþ1 � 4uk þ uk�1Þ � mr2~ukþ1 þrpk ¼ f ðtkþ1Þ; ~ukþ1jC ¼ 0; ð3:6Þ

they proposed to replace the second step (3.4) by

1

2Dt
ð3ukþ1 � 3~ukþ1Þ þ r/kþ1 ¼ 0;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0;

8<
: ð3:7Þ

/kþ1 ¼ pkþ1 � pk þ mr � ~ukþ1. ð3:8Þ

To understand why the modified scheme performs better, we take the sum of (3.6) and (3.7). Noticing from (3.7) that
r�r� ~ukþ1 ¼ r�r� ukþ1, we obtain

1

2Dt
ð3ukþ1 � 4uk þ uk�1Þ þ mr�r� ukþ1 þrpkþ1 ¼ f ðtkþ1Þ;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0.

8<
: ð3:9Þ

We observe from (3.9) that

onpkþ1jC ¼ ðf ðtkþ1Þ � mr�r� ukþ1Þ � njC;
which, unlike (3.5), is a consistent pressure boundary condition. The splitting error now manifests itself only in the form of
an inexact tangential boundary condition on the velocity.

In view of (3.9), where the operator $ · $ · plays a key role, the algorithm (3.6)–(3.8) is referred to in [25,24] as the
incremental pressure-correction scheme in rotational form.

Theorem 3.3. Assume that the initialization Hypothesis 3.1 holds. Provided the solution to (2.6) is smooth enough in time and

space, the solution ðuk; ~uk; pkÞ to (3.6)–(3.8) satisfies the estimates:

kuDt � uDtk‘2ð½L2ðXÞ�d Þ þ kuDt � ~uDtk‘2ð½L2ðXÞ�d ÞK Dt2;

kuDt � uDtk‘2ð½H1ðXÞ�d Þ þ kuDt � ~uDtk‘2ð½H1ðXÞ�d Þ þ kpDt � pDtk‘2ðL2ðXÞÞK Dt
3
2.

Proof. See Guermond and Shen [24]. (The first estimate holds if X has the H2-elliptic regularity property and the second
one holds if X is Lipschitz.) h

Remark 3.3. In [6], Brown et al. showed, using a normal modes analysis in a semi-infinite periodic channel, that the pres-
sure approximation in the rotational formulation of the incremental pressure-correction algorithm is second-order accu-
rate. Numerical experiments reported in [24] show that this result is valid in a periodic channel only, and that the
convergence rate of 3

2
for the pressure is likely to be the best possible for general domains when using rotational incremental

pressure-correction algorithms. In general, the normal modes analysis cannot be used to prove convergence estimates when
more than one space direction is not periodic. For instance, the normal mode analysis cannot account for sharp corners in
polygonal domains.
3.4. Generalization

The above algorithms generalize to a large class of time-marching algorithms. For instance, assuming v to be a smooth
function, denote by 1

Dt ðbqvkþ1 �
Pq�1

j¼0 bjv
k�jÞ the qth-order backward difference formula (BDFq) that approximates

otv(tk+1). To simplify the notation, for any sequence /Dt :¼ (/0,/1, . . .) we set

D/kþ1 ¼ bq/
kþ1 �

Xq�1

j¼0

bj/
k�j. ð3:10Þ

In particular,

Dvkþ1 ¼
vkþ1 � vk if q ¼ 1;
3

2
vkþ1 � 2vk þ 1

2
vk�1 if q ¼ 2.

8<
: ð3:11Þ
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Likewise, we denote by

pH;kþ1 ¼
Xr�1

j¼0

cjp
k�j ð3:12Þ

the rth order extrapolation for p(tk+1) where p(t) is a smooth function. In particular,

pH;kþ1 ¼
0 if r ¼ 0;

pk if r ¼ 1;

2pk � pk�1 if r ¼ 2.

8><
>: ð3:13Þ

Now, the pressure-correction schemes can be rewritten into the following form:

1

Dt
bq~u

kþ1 �
Xq�1

j¼0

bju
k�j

 !
� mr2~ukþ1 þrpH;kþ1 ¼ f ðtkþ1Þ; ~ukþ1jC ¼ 0; ð3:14Þ

bq

Dt
ðukþ1 � ~ukþ1Þ þ r/kþ1 ¼ 0;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0;

8<
: ð3:15Þ

/kþ1 ¼ pkþ1 � pH;kþ1 þ vmr � ~ukþ1; ð3:16Þ

where v is a user-defined coefficient that may be equal to 0 or 1. The choice v = 0 yields the standard forms of the algo-
rithm, whereas v = 1 yields the rotational forms.

Remark 3.4. If one chooses r = q � 1, then the formal consistency error for the velocity in H1-norm (resp. the pressure in
L2-norm) is of order q (resp. of order r = q � 1). Stability and convergence results are only available for (q, r) = (1, 0) and
(2,1).

If one chooses r = q, then the formal consistency errors for the velocity in H1-norm and the pressure in L2-norm are
both of the same order. However, stability and convergence results are only available for q = r = 1.

The issues related to algorithms using r P 2 are discussed in Section 11.1.
3.5. Implementation

One question often raised in the literature and often clouded in controversy is: which of ~ukþ1 or uk+1 is the ‘‘correct’’
velocity? It is often argued that the end-of-step velocity, namely uk+1, should be the one to be retained in actual compu-
tations since it is divergence free. However, this argument is biased since, although uk+1 is divergence free, its tangential
trace is not enforced to be zero. Hence, the situation is the following: uk+1 is divergence free but does not satisfy the appro-
priate boundary condition, while ~ukþ1 satisfies the Dirichlet condition but is not divergence free.

When looking at Theorems 3.2 and 3.3, we realize that uDt and ~uDt yield the same error estimates; that is, from the accu-
racy point of view there is no objective reason for preferring one field to the other.

From the implementation point of view, there are two arguments in favor of eliminating uDt. First, as argued in Guer-
mond [18], when implementing the method using finite elements and solving the projection step as a weak Poisson problem,
the discrete field ukþ1

h is discontinuous at the interface between elements; hence, ukþ1
h is an awkward quantity to compute.

Second, the field uDt can be entirely removed from the algorithm by simple algebraic manipulations. Indeed, from (3.15) it
is clear that for 0 6 j 6 k � 1

bj

Dt
ðuk�j � ~uk�jÞ þ r

bj

bq
/k�j ¼ 0.

Hence, substituting ~uk�j into (3.14) yields the following algorithm:

D
Dt

~ukþ1 � mr2~ukþ1 þr pH;kþ1 þ
Xq�1

j¼0

bj

bq
/k�j

 !
¼ f ðtkþ1Þ; ~ukþ1jC ¼ 0; ð3:17Þ

r2/kþ1 ¼
bq

Dt
r � ~ukþ1; on/

kþ1jC ¼ 0; ð3:18Þ

/kþ1 ¼ pkþ1 � pH;kþ1 þ vmr � ~ukþ1; ð3:19Þ

where D~ukþ1 is defined in (3.10). It is now clear that uDt is a field that one can completely avoid to compute.
When solving the nonlinear equations, the above conclusion needs to be tempered since one faces the following alter-

native: which of ~uk and uk should be used to compute the nonlinear term? Three semi-implicit forms of the nonlinear term
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are usually advocated: the so-called skew-symmetric form (introduced by Temam [51]), the so-called divergence form, and
the rotational form. These forms yield unconditional stability without requiring the approximate advection field to be
exactly divergence-free. It is shown in [23] that using ~uk for the advection field does not spoil the overall splitting error
of the algorithm. It is shown in [1] that the same result holds if one uses a method of characteristics to evaluate the non-
linear term using ~uk. It is also shown in [20] that the asymptotic error estimates remain unchanged if, instead of ~uk, the field
uk is used to compute the characteristics. Numerical tests reported in [20] show that, when using a method of character-
istics, the error is somewhat smaller if, instead of ~uk, the field uk is used to approximate the characteristics.

3.6. Relation with other schemes

We show in this section that a scheme introduced by Kim and Moin in [34] is equivalent to the rotational form of the
pressure-correction method up to an appropriate change of variables.

3.6.1. The Kim and Moin scheme; strong setting
Although the scheme originally proposed in [34] uses the Crank–Nicolson time stepping, we henceforth adopt the BDFq

approximation of otu(tk+1) to simplify the presentation. This choice does not change our conclusions. Then, the scheme
proposed in [34] can be written as follows: Initialize adequately (uj)j=0,. . .,q�1, then for k P q � 1 compute ûkþ1 solving

1

Dt
bqûkþ1 �

Xq�1

j¼0

bju
k�j

 !
� mr2ûkþ1 ¼ f ðtkþ1Þ; ûkþ1jC ¼

Dt
bq
rwH;kþ1jC; ð3:20Þ

then correct ûkþ1 by computing uk+1 and wk+1 as follows:

bq

Dt
ðukþ1 � ûkþ1Þ þ rwkþ1 ¼ 0;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0;

8<
: ð3:21Þ

where $ww,k+1 is some approximation of $w(tk+1), w(t) being a quantity related to the pressure p(t) via p(t) = w(t) � mDt/
bq$

2w(t). Although in [34] only the case ww,k+1 = wk is considered, the following choices can be used (each of them being
labeled by an integer r):

wH;kþ1 ¼
0 if r ¼ 0;

wk if r ¼ 1;

2wk � wk�1 if r ¼ 2.

8><
>: ð3:22Þ

The problem (3.21) is solved in practice as a Poisson equation supplemented with the Neumann boundary condition

onw
kþ1jC ¼ onw

H;kþ1.

The fact that the viscous step involves the trace of a gradient as a Dirichlet condition renders the method quite inconvenient
for finite element discretization. As a result, successful implementations of this method are only reported with spectral or
finite difference approximations where the traces of derivatives are easily available.

We now show that by rewriting the above algorithm in an adequate L2 setting, we recover the rotational form of the
pressure-correction algorithms described above.

3.6.2. The Kim–Moin scheme; L2 weak setting

We introduce the following changes of variables

~ukþ1 ¼ ûkþ1 � Dt
bq
rwH;kþ1; ð3:23Þ

pkþ1 ¼ wkþ1 � m
Dt
bq
r2wkþ1; ð3:24Þ

pH;kþ1 ¼ wH;kþ1 � m
Dt
bq
r2wH;kþ1. ð3:25Þ

The boundary condition in (3.20) implies ~ukþ1jC ¼ 0. Moreover, using (3.23) to substitute ûkþ1 into the momentum equa-
tion (3.20) and taking into account (3.25), we obtain the following boundary value problem for the new velocity ~ukþ1:

1

Dt
bq~u

kþ1 �
Xq�1

j¼0

bju
k�j

 !
� mr2~ukþ1 þrpH;kþ1 ¼ f ðtkþ1Þ; ~ukþ1jC ¼ 0. ð3:26Þ
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By inspecting (3.21) and (3.23), we observe that uk+1 and ~ukþ1 differ by a gradient, hence, it is convenient to introduce a
quantity /k+1 such that

bq

Dt
ðukþ1 � ~ukþ1Þ þ r/kþ1 ¼ 0;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0.

8<
: ð3:27Þ

Subtracting (3.25) from (3.24), we get

pkþ1 � pH;kþ1 ¼ wkþ1 � wH;kþ1 � m
Dt
bq
r2ðwkþ1 � wH;kþ1Þ.

Then, taking the divergence of (3.21) and using (3.23), we obtain

r2ðwkþ1 � wH;kþ1Þ ¼
bq

Dt
r � ~ukþ1.

That is to say pkþ1 � pH;kþ1 þ mr � ~ukþ1 ¼ wkþ1 � wH;kþ1. Moreover, substituting (3.23) into (3.21), we derive

bq

Dt
ðukþ1 � ~ukþ1Þ þ r wkþ1 � wH;kþ1

� �
¼ 0.

By comparing (3.27) and the above equation, we infer /k+1 = wk+1 � ww,k+1. This means that pk+1 and /k+1 are related by

/kþ1 ¼ pkþ1 � pH;kþ1 þ mr � ~ukþ1. ð3:28Þ
Note finally that (3.24) and (3.25) together with (3.22) imply

pH;kþ1 ¼
0 if r ¼ 0;

pk if r ¼ 1;

2pk � pk�1 if r ¼ 2.

8><
>: ð3:29Þ

In conclusion, the algorithm (3.20)–(3.22) is equivalent to (3.26)–(3.29) up to the change of variables (3.23)–(3.25). In
other words, for q = 1 and r = 0, the algorithm is equivalent to the Chorin–Temam algorithm (3.1) and (3.2). The original
Kim–Moin scheme, corresponding to q = 2 and r = 1, is equivalent to the incremental pressure-correction scheme in rota-
tional form (3.6)–(3.8).

3.7. Numerical tests

We illustrate in this section the convergence properties of the pressure-correction algorithm using BDF2 to march in
time and the first-order extrapolation of the pressure, i.e., pw,k+1 = pk.

3.7.1. Numerical results with spectral approximation
We first consider a square domain X = ]�1,1[2 with Dirichlet boundary conditions on the velocity. A Legendre–Galer-

kin approximation [47] is used in space. Denoting by PN the space of polynomials of degree less than or equal to N, we
approximate the velocity and the pressure in PN � PN and PN�2, respectively.

We take the exact solution (u,p) of (2.6) to be

uðx; y; tÞ ¼ p sin tðsin 2py sin2 px;� sin 2px sin2 pyÞ;
pðx; y; tÞ ¼ sin t cos px sin py.

ð3:30Þ

Then the source term f is given by f = ut � $2u + $p. In the computations reported herein, we take N = 48 so that the spa-
tial discretization errors are negligible compared with the time discretization errors.

In Fig. 1, we show the pressure error field at T = 1 for a typical time step using the standard and the rotational forms of
the algorithm. We observe that for the standard form of the algorithm, a numerical boundary layer appears on the two
boundaries {(x,y) : x 2 (�1,1), y = ±1} where the exact pressure is such that onp 5 0 (onp = 0 on the other two bound-
aries). For the rotational form, there is no numerical boundary layer, but we observe large spikes at the four corners of
the domain. This test suggests that the divergence correction of the rotational form successfully cured the numerical bound-
ary layer problem. However, the large errors at the four corners degrade the global convergence rate of the pressure
approximation.

To better understand why there are localized large errors at the corners of the domain, we have also implemented the
standard and rotational forms of the pressure-correction scheme in a periodic channel X = (0,2p) · (�1,1). The channel is
periodic in the x direction and the velocity is subject to a Dirichlet boundary condition at y = ±1. We choose the same



Fig. 1. Pressure error field at time t = 1 in a square: (left) standard form; (right) rotational form.

Fig. 2. Error field on pressure at time t = 1 in a channel: (left) standard form; (right) rotational form.
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exact solution (u,p) as that given above, and we use a Fourier–Legendre spectral approximation with 48 · 49 modes guar-
anteeing that the spatial discretization errors are negligible compared with the time discretization errors.

In Fig. 2, we show the pressure error field at T = 1 for a typical time step. The main difference between the problem set in
the square domain and that set in the periodic channel is that the former has corner singularities while the latter does not.
Thus, it can be conjectured that the large errors occurring at the corners of the square domain are due to the lack of
smoothness of the domain. This conclusion is confirmed by the numerical experiments using mixed finite elements reported
in the next subsection.

3.7.2. Numerical results with P2=P1 finite elements

To further assess the influence of the smoothness of the domain boundary on the accuracy of the BDF2 rotational pres-
sure-correction method, we have performed convergence tests using P2=P1 finite elements. The tests are performed using
the following analytical solution

u ¼ ðsinðxþ tÞ sinðy þ tÞ; cosðxþ tÞ cosðy þ tÞÞ; p ¼ sinðx� y þ tÞ; ð3:31Þ
in the square domain ]0,1[2 and in the circular domain fðx; yÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 0:5g.

We show in Fig. 3 the error fields on the pressure at time T = 1 for the square and the circular domains. The mesh-size is
h = 1/40 and Dt = 0.00625. The two fields are represented using the same vertical scale. The pressure field on the circular
domain is free of numerical boundary layer, whereas large errors are still present at the corners of the domain for both
formulations.

In Fig. 4 we show the L1-norm of the error on the pressure as a function of Dt. The error is measured at T = 2. One
series of computation is made on the square and the other on the circle. The mesh-size in both computations is h = 1/80. It
is clear that the errors calculated on the circular domain are OðDt2Þ, whereas those calculated on the square are only
OðDt1:6Þ. This result, seems to confirm that the 3

2
convergence rate that we established for the pressure approximation in



Fig. 4. Comparison of convergence rates on pressure in L1-norm at T = 2: (j) for the circular domain; (+) for the square.

Fig. 3. Error field on pressure in a rectangular domain (left) and on a circular domain (right).
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rotational form is the best possible for general domains. However, why the corner singularity affects the convergence rate
for a smooth solution is still not well understood.

4. The velocity-correction schemes

We review in this section a class of schemes which are referred to as velocity-correction schemes in [25,27]. These schemes
have been introduced in a somewhat different (although equivalent) form by Orszag et al. [39] and Karniadakis et al. [31].
The main idea is to switch the role of the velocity and the pressure in the pressure-correction schemes, i.e., the viscous term
is treated explicitly or ignored in the first substep and the velocity is corrected accordingly in the second substep.

4.1. The non-incremental velocity-correction scheme

Set ~u0 ¼ u0, and for k P 0 compute ð~ukþ1; ukþ1; pkþ1Þ by solving

1

Dt
ðukþ1 � ~ukÞ þ rpkþ1 ¼ f ðtkþ1Þ;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0;

8<
: ð4:1Þ

1

Dt
ð~ukþ1 � ukþ1Þ � mr2~ukþ1 ¼ 0; ~ukþ1jC ¼ 0. ð4:2Þ
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It is clear that this algorithm suffers from the dual ailments of the Chorin–Temam algorithm (3.1) and (3.2), i.e., it
enforces onpkþ1jC ¼ f ðtkþ1Þ � n and r2~ukþ1 � njC ¼ 0, whereas the Chorin–Temam scheme enforces mr2~ukþ1 � njC ¼
f ðtkþ1Þ � n and onpk+1jC = 0.

In terms of accuracy, the two algorithms are equivalent as stated in the following theorem.

Theorem 4.1. If the solution to (2.6) is smooth enough in space and time, the solution to (4.1) and (4.2) satisfies the following

error estimates:

kuDt � uDtk‘1ð½L2ðXÞ�d Þ þ kuDt � ~uDtk‘1ð½L2ðXÞ�d Þ 6 cðu; p; T ÞDt;

kpDt � pDtk‘1ðL2ðXÞÞ þ kuDt � ~uDtk‘1ð½H1ðXÞ�d Þ 6 cðu; p; T ÞDt1=2.

Proof. Since the proof is very similar to that of the Chorin–Temam algorithm, we refer the readers to Shen [46], Rannacher
[44], or to the proof of second-order accuracy in Guermond and Shen [25,27]. (The first estimate holds if X has the H2-
elliptic regularity property and the second one holds if X is Lipschitz.) h
4.2. The standard incremental velocity-correction schemes

We now consider the counterpart of the incremental pressure-correction algorithm in standard form. Adopt the nota-
tion of Section 3.4, and let uH;kþ1 ¼

Pr�1
j¼0cju

k�j be a rth order extrapolation of u(tk+1). The standard form of the incremental

velocity-correction method is defined as follows: set ~u0 ¼ u0 and choose ~u1; . . . ; ~uq�1 to be suitably accurate approximations
of uðDtÞ; . . . ; uðtq�1Þ, then for k P q � 1, compute ðukþ1; ~ukþ1; pkþ1Þ by solving

1

Dt
bqukþ1 �

Xq�1

j¼0

bj~u
k�j

 !
� mr2~uH;kþ1 þrpkþ1 ¼ f ðtkþ1Þ;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0;

8><
>: ð4:3Þ

bq

Dt
ð~ukþ1 � ukþ1Þ � mr2ð~ukþ1 � ~uH;kþ1Þ ¼ 0; ~ukþ1jC ¼ 0. ð4:4Þ

Note that (4.3) can also be written as

ukþ1 ¼ P H

Xq�1

j¼0

bj

bq

~uk�j þ Dt
bq

mr2~uH;kþ1 þ f ðtkþ1Þ
� � !

.

Hence, the method (4.3) and (4.4) falls into the class of the projection methods. Since the projection step precedes the vis-
cous step, one could also refer to these methods as ‘‘projection–diffusion’’ methods as in [3].

Let us assume that the following initialization hypothesis holds if (q, r) = (2, 1):

Hypothesis 4.1. ~u1 is computed such that the following estimates hold:

kuðDtÞ � ~u1k0 6 cDt2;

kuðDtÞ � ~u1k1 6 cDt3=2;

kuðDtÞ � ~u1k2 6 cDt.

8><
>:

Note that Hypothesis 4.1 holds if ð~u1; u1; p1Þ are calculated by replacing the BDF2 formula in (4.3) and (4.4) with the
implicit Euler formula at the very first time step.

Theorem 4.2. Under the initialization Hypothesis 4.1 and provided that the solution to (2.6) is smooth enough in time and

space, the solution ðuk; ~uk; pkÞ to (4.3), (4.4) with (q, r) = (2,1) is such that

kuDt � uDtk‘2ð½L2ðXÞ�d Þ þ kuDt � ~uDtk‘2ð½L2ðXÞ�d Þ 6 cðu; p; T ÞDt2;

kuDt � uDtk‘1ð½L2ðXÞ�d Þ þ kuDt � ~uDtk‘1ð½L2ðXÞ�d Þ 6 cðu; p; T ÞDt
3
2;

kuDt � ~uDtk‘1ð½H1ðXÞ�d Þ þ kpDt � pDtk‘1ðL2ðXÞÞ 6 cðu; p; T ÞDt.

Proof. See Guermond and Shen [27]. (The first estimate holds if X has the H2-elliptic regularity property and the two
others hold if X is Lipschitz.) h

Remark 4.1. For r = 1, observe from (4.4) that r2ð~ukþ1 � ~ukÞ � njC ¼ 0 which implies that

r2~ukþ1 � njC ¼ r2~uk � njC ¼ � � � ¼ r2~u0 � njC.
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This in turn implies

onpkþ1jC ¼ ðf ðtkþ1Þ þ mr2~u0Þ � njC. ð4:5Þ
This is obviously an artificial Neumann boundary condition for the pressure, which is responsible for a numerical bound-
ary layer on the pressure that limits the accuracy of the scheme, just as in the case of incremental pressure-correction
schemes in standard form.
4.3. The rotational incremental velocity-correction schemes

The main obstacle in proving error estimates better than first-order on the velocity in the H1-norm and on the pressure
in the L2-norm comes from the fact that the algorithm (4.3) and (4.4) enforces the non-realistic pressure Neumann bound-
ary condition (4.5). This phenomenon is reminiscent of the numerical boundary layer induced by the non-physical bound-
ary condition onpk+1jC = � � � = onp0jC enforced by the pressure-correction method in its standard form. This non-physical
boundary condition needs to be corrected to obtain a better approximation of the pressure. Considering the identity
r2~uH;kþ1 ¼ rr � ~uH;kþ1 �r�r� ~uH;kþ1 and the fact that we are searching for divergence-free solutions, we are led to
replace �r2~uH;kþ1 in (4.3) and (4.4) by r�r� ~uH;kþ1. The new scheme is as follows:

1

Dt
bqukþ1 �

Xq�1

j¼0

bj~u
k�j

 !
þ mr�r� ~uH;kþ1 þrpkþ1 ¼ f ðtkþ1Þ;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0;

8><
>: ð4:6Þ

and

bq

Dt
ð~ukþ1 � ukþ1Þ � mr2~ukþ1 � mr�r� ~uH;kþ1 ¼ 0; ~ukþ1jC ¼ 0. ð4:7Þ

This scheme, introduced by Guermond and Shen in [25,27], is referred to as the rotational form of the velocity-correction

algorithm.
The rotational form yields a better pressure approximation than the standard form as stated in the following theorem.

Theorem 4.3. If the solution to (2.6) is smooth enough in time and space, and under the initialization Hypothesis 4.1, the

solution ðuk; ~uk; pkÞ to (4.6) and (4.7) with (q, r) = (2,1) satisfies the estimates:

kuDt � uDtk‘2ð½L2ðXÞ�d Þ þ kuDt � ~uDtk‘2ð½L2ðXÞ�d Þ 6 cðue; pe; T ÞDt2;

kuDt � ~uDtk‘2ð½H1ðXÞ�d Þ þ kpDt � pDtk‘2ðL2ðXÞÞ 6 cðue; pe; T ÞDt3=2.

Proof. We refer to Guermond and Shen in [27]. (The first estimate holds if X has the H2-elliptic regularity property and the
second one holds if X is Lipschitz.) h

Remark 4.2. Note that for q = r = 1, Theorems 4.2 and 4.3 hold with Dt2 and Dt
3
2 replaced by Dt.
4.4. Implementation

Note that the projection steps (4.3) and (4.6) cannot be solved in the form of weak Poisson problems when using H1-
conforming finite elements since the trace of r�r� ~uH;kþ1 is not well defined when ~uH;kþ1 is in the finite element space.
This difficulty can be avoided by making suitable substitutions as shown below.

Observe first that by adding (4.6) and (4.7) we obtain

D
Dt

~ukþ1 � mr2~ukþ1 þrpkþ1 ¼ f ðtkþ1Þ.

Then, we subtract from (4.6) written at time level k + 1 a linear combination of the equation above written at levels k � j,
j = 0,1, . . . , r � 1, with coefficients cj, to obtain

bq

Dt
ðukþ1 � ~ukþ1Þ þ D

Dt
~ukþ1 � D

Dt
~uH;kþ1 þr/kþ1 ¼ f ðtkþ1Þ � f H;kþ1;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0;

8<
:

where f H;kþ1 ¼
Pr�1

j¼0cjf ðtk�jÞ is rth order extrapolation of f(tk+1). Then the projected velocity uk+1 can be entirely elimi-
nated from the algorithm by rewriting the above equation in the form of a Poisson problem:



J.L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045 6023
r2/kþ1 ¼ r �
bq

Dt
~ukþ1 � D

Dt
~ukþ1 þ D

Dt
~uH;kþ1 þ f ðtkþ1Þ � f H;kþ1

� �
;

on/
kþ1jC ¼ 0;

8><
>: ð4:8Þ

where we have set

/kþ1 ¼ pkþ1 � pH;kþ1 þ vmr � ~uH;kþ1; ð4:9Þ
where v = 0 yields the standard form of the method and v = 1 yields the rotational form. The viscous velocity ~ukþ1 is finally
updated by solving

D
Dt

~ukþ1 � mr2~ukþ1 þrpkþ1 ¼ f ðtkþ1Þ ~ukþ1jC ¼ 0. ð4:10Þ

Another possible implementation consists of performing an integration by parts as in (11.2).

4.5. Numerical experiments

The numerical convergence rates of velocity-correction schemes are similar to those of their pressure-correction coun-
terparts. We refer to Section 3.7 and to [27,39,31] for details.

4.6. Relation with other schemes

In this section we show that the schemes proposed by Orszag et al. [39] and Karniadakis et al. [31] can be interpreted as
the rotational form of the velocity-correction methods.

4.6.1. The schemes in [39,31]

Let us denote by 1
Dt ðbqukþ1 �

Pq�1
j¼0 bju

k�jÞ the qth-order BDF approximation for otu(tk+1). Then, the scheme originally
proposed in [39] and [31] (with a Adams–Moulton type scheme replaced by the BDF scheme; note that this replacement is
made to simplify the presentation and does not change the error behaviors) can be written as follows: Find ûkþ1 and pk+1

such that

1

Dt
bqûkþ1 �

Xq�1

j¼0

bj~u
k�j

 !
þrpkþ1 ¼ f ðtkþ1Þ;

r � ûkþ1 ¼ 0; ûkþ1 � njC ¼ �Dtðmr2uÞH;kþ1 � njC;

8>><
>>: ð4:11Þ

then correct ûkþ1 by computing ~ukþ1 as follows:

bq

Dt
ð~ukþ1 � ûkþ1Þ � mr2~ukþ1 ¼ 0; ~ukþ1jC ¼ 0; ð4:12Þ

where ðr2uÞH;kþ1 ¼
Pr�1

j¼0cjr2uk�j is a rth order extrapolated approximate value of $2u(tk+1). In particular,

ðr2uÞH;kþ1 ¼
0 if r ¼ 0;

�r�r� ~uk if r ¼ 1;

�r�r� ð2~uk � ~uk�1Þ if r ¼ 2.

8><
>: ð4:13Þ

In practice, (4.11) is solved as a Poisson equation supplemented with the Neumann boundary condition

onpkþ1jC ¼ ðf ðtkþ1Þ þ ðmr2uÞH;kþ1Þ � njC;
which is derived from (4.11). Since second derivatives of the velocity are used in the Neumann boundary condition for the
pressure, this class of methods cannot be applied directly in conjunction with a finite element method where these deriv-
atives are usually not available. This is the main reason why successful implementations of these methods are only reported
with spectral or spectral-element approximations where the trace of the second-order derivatives of the velocity are avail-
able. On the other hand, it is reasonable to suspect that, due to the explicit treatment of second derivatives of the velocity,
this type of algorithms can only be conditionally stable with a stability condition like Dt 6 ch2 for finite element approx-
imations and Dt 6 cN�4 for spectral or spectral element approximations. Actually, by rewriting the above algorithms in the
L2 weak framework, we discover that they are equivalent to the velocity-correction algorithms in rotational form; hence,
the above schemes are indeed unconditionally stable (at least for r = 0,1).
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4.6.2. The weak setting

We now rewrite (4.11) and (4.12) in the standard L2 setting. By setting

ukþ1 ¼ ûkþ1 þ Dtmðr2~uÞH;kþ1
; ð4:14Þ

and observing that $ Æ uk+1 = 0 thanks to (4.13), and uk+1 Æ njC = 0, (4.11) can be rewritten as

1

Dt
bqukþ1 �

Xq�1

j¼0

bj~u
k�j

 !
� mðr2uÞH;kþ1 þrpkþ1 ¼ f ðtkþ1Þ;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0.

8><
>: ð4:15Þ

Now, inserting the definition of uk+1 into (4.12), we obtain

bq

Dt
ð~ukþ1 � ukþ1Þ � mr2~ukþ1 þ mðr2uÞH;kþ1 ¼ 0; ~ukþ1jC ¼ 0. ð4:16Þ

Hence, when the space is continuous and up to the change of variable (4.14), the scheme (4.15) and (4.16) is equivalent to
the velocity-correction algorithm in rotational form (4.6) and (4.7).

Remark 4.3. It is reported in [31] that the scheme (4.15) and (4.16) with q = r or q = r + 1 for q P 3 is numerically stable.
However, no rigorous proof of this fact is yet available (see a discussion in Section 11.1).
5. Consistent splitting schemes

We review in this section the consistent splitting scheme introduced in Guermond and Shen [26] and we show that, up to
an appropriate change of variables and when the space is continuous, this algorithm is equivalent to the so-called gauge
method introduced in E and Liu [11] (see also Wang and Liu [55], Brown et al. [6]).

5.1. The key idea

By taking the L2-inner product of the momentum equation in (2.6) with $q and noticing that ðut;rqÞ ¼ �ðr � ut; qÞ ¼ 0,
we obtainZ

X
rp � rq ¼

Z
X
ðf þ mr2uÞ � rq; 8q 2 H 1ðXÞ. ð5:1Þ

Note that if u is known, (5.1) is simply the weak form of a Poisson equation for the pressure. The principle of the consistent
splitting scheme is to compute the velocity and the pressure in two consecutive steps: First, compute the velocity by treating
the pressure explicitly, then update the pressure using (5.1).

Let us use the qth-order backward difference formula (BDFq) to approximate otv(tk+1) and the qth order extrapolation
to approximate p(tk+1). These approximations are denoted by 1

Dt ðbqvkþ1 �
Pq�1

j¼0 bjv
k�jÞ and pH;kþ1 ¼

Pq�1
j¼0 cjp

k�j, respec-
tively. Of course, the present theory is not restricted to these choices. Any implicit consistent approximation of
(ot � m$2)v(tk+1) and any explicit consistent approximation of p(tk+1) is acceptable. We hereafter adopt the notation intro-
duced in (3.10) but instead of (3.13), where (q � 1)th order extrapolation is used, we set

pH;kþ1 ¼
pk if q ¼ 1;

2pk � pk�1 if q ¼ 2;

3pk � 3pk�1 þ pk�2 if q ¼ 3.

8><
>: ð5:2Þ
5.2. Standard splitting scheme

A qth order decoupled approximation to (2.6) is defined as follows: Let u0 ¼ ujt¼0 and p0 = pjt=0 (which can be obtained
by solving (5.1) at t = 0). If q P 2, then for 1 6 k 6 q � 1, let (uk,pk) be the kth order approximation to ðuðkDtÞ; pðkDtÞÞ
(which can be obtained recursively by using the scheme described below using BDF k and the kth order extrapolation of
the pressure). Then, for k P q � 1, seek uk+1 and pk+1 such that

D
Dt

ukþ1 � mr2ukþ1 þrpH;kþ1 ¼ f ðtkþ1Þ; ukþ1jC ¼ 0; ð5:3Þ

ðrpkþ1;rqÞ ¼ ðf ðtkþ1Þ þ mr2ukþ1;rqÞ; 8q 2 H 1ðXÞ. ð5:4Þ
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Note that in the second step we need to compute $2uk+1 which may not be well defined in a finite element discretization.
Hence, we shall derive an alternative formulation which does not require computing $2uk+1 and is more suitable for finite
element discretizations. To this end, we take the inner product of the first step with $q and subtract the result from the
second step. Then, we obtain the following equivalent formulation of (5.3) and (5.4):

D
Dt

ukþ1 � mr2ukþ1 þrpH;kþ1 ¼ f ðtkþ1Þ; ukþ1jC ¼ 0; ð5:5Þ

ðrðpkþ1 � pH;kþ1Þ;rqÞ ¼ D
Dt

ukþ1;rq
� �

; 8q 2 H 1ðXÞ. ð5:6Þ

Remark 5.1

(i) The two schemes (5.3), (5.4) and (5.5), (5.6) are strictly equivalent when space is continuous but they yield two dif-
ferent implementations when the space variables are discretized (see Section 8 for further details).

(ii) Neither scheme (5.3), (5.4) nor (5.5), (5.6) is a projection scheme, for the velocity approximation uk+1 is not diver-
gence-free. Nevertheless, these algorithms are similar to the pressure-correction algorithm with the end-of-step velo-
city eliminated (see (3.17)–(3.19)).

(iii) As in a projection scheme, one only needs to solve a set of Helmholtz-type equations for uk+1 and a Poisson Eqs. (5.4)
or (5.6) (in weak form) for pk+1.

(iv) Just as in a pressure-correction scheme in standard form [27], the Eq. (5.6) implies that on(pk+1 � pw,k+1)joX = 0 which
is an artificial Neumann boundary condition not satisfied by the exact pressure. This boundary condition induces a
numerical boundary layer which, in turn, results in loss of accuracy.

The following result holds; see [26]:

Theorem 5.1. Provided that the solution to (2.6) is smooth enough in time and space, the solution (uDt, pDt) to (5.5), (5.6)

satisfies the estimates:

kuDt � uDtk‘2ð½L2ðXÞ�d ÞK Dt2;

kuDt � uDtk‘1ð½H1ðXÞ�d Þ þ kpDt � pDtk‘1ðL2ðXÞÞK Dt.

Note that the above error estimates are of the same order as those of the second-order pressure-correction scheme in
standard form, but they are less accurate than those of the second-order pressure-correction scheme in rotational form
5.3. Consistent splitting scheme

Similarly to pressure-correction and velocity-correction schemes, the accuracy of the above splitting schemes can be
improved by replacing $2uk+1 in (5.4) by �$ · $ · uk+1, leading to the following algorithm:

D
Dt

ukþ1 � mr2ukþ1 þrpH;kþ1 ¼ f ðtkþ1Þ; ukþ1jC ¼ 0; ð5:7Þ

ðrpkþ1;rqÞ ¼ ðf ðtkþ1Þ � mr�r� ukþ1;rqÞ; 8q 2 H 1ðXÞ. ð5:8Þ

Owing to the identity $2uk+1 = $$ Æ uk+1 � $ · $ · uk+1, this procedure amounts to removing the term $$ Æ uk+1 in (5.4). It
is shown in [27,24] that when this strategy is applied to pressure-correction and velocity-correction schemes it yields an a

priori control on the divergence of uk+1, which in turn leads to improved accuracy on the vorticity and the pressure. Once
again, to avoid computing $ · $ · uk+1 explicitly in the second step, we take the inner product of (5.7) with $q and we
subtract the result from (5.8). This leads to an equivalent alternative form of (5.7) and (5.8):

Dukþ1

Dt
� mr2ukþ1 þrpH;kþ1 ¼ f ðtkþ1Þ; ukþ1jC ¼ 0; ð5:9Þ

ðrwkþ1;rqÞ ¼ D
Dt

ukþ1;rq
� �

; 8q 2 H 1ðXÞ; ð5:10Þ

pkþ1 ¼ wkþ1 þ pH;kþ1 � mr � ukþ1. ð5:11Þ

Another way to implement (5.8) using the integration by parts is shown in (11.2).
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Note that the complexity of the schemes (5.7), (5.8) and (5.9)–(5.11) is the same as that of (5.3), (5.4) or (5.5), (5.6). How-
ever, as ample numerical results indicate, the pressure approximation pk+1 is no longer plagued by an artificial Neumann
boundary condition and, consequently, these schemes provide truly qth order accuracy (at least for q = 1 and 2) for the
velocity, vorticity and pressure. Thus, (5.7), (5.8) and (5.9)–(5.11) are henceforth referred to as consistent splitting schemes.
We note that the scheme proposed in [37], where an intermediate divergence-free acceleration a :¼ ou

ot � mDu is introduced, is
quite similar to (5.9)–(5.11).

The analysis of the stability and the convergence of the consistent splitting scheme is more involved than that of the
standard form. For the time being, only optimal convergence results with q = 1 have been proved; see [26].

Theorem 5.2. Provided that the solution to (2.6) is smooth enough in time and space, the solution (uDt, pDt) of (5.9)–(5.11) with

q = 1 is unconditionally bounded and satisfies the following error estimates:

kuDt � uDtk‘1ð½H1ðXÞ�d Þ þ kpDt � pDtk‘1ðL2ðXÞÞK Dt.

Conjecture 5.1. For q = 2 the following holds:

kuDt � uDtk‘1ð½H1ðXÞ�d Þ þ kpDt � pDtk‘1ðL2ðXÞÞK Dt2.

Although numerical tests seems to confirm the above conjecture, its proof remains elusive.
5.4. Numerical experiments

To demonstrate the accuracy of the consistent splitting schemes, we perform convergence tests with respect to Dt using
mixed P2=P1 finite elements in space.

The analytical solution is that given in (3.30). The domain is X = ]0,1[2 and the meshsize is h � 1/80. We make the tests
on the range 5 · 10�4

6 Dt 6 10�1 so that the approximation error in space is far smaller than the time splitting error.
We have tested the algorithms (5.5), (5.6) and (5.9)–(5.11) using q = 2 to substantiate Conjecture 5.1.
The error on the velocity in the L2-norm and in the H1-norm at T = 1 is reported in Fig. 5. The error is shown as a

function of Dt. The results corresponding to the standard form of the algorithm are reported in the left panel of the figure,
and those corresponding to the rotational form are in the right panel. The standard form of the algorithm is second-order
accurate in the L2-norm, but the convergence rate in the H1-norm is roughly 3

2
. One clearly observes in the right panel of the

figure that the rotational form of the algorithm is second-order accurate both in the L2-norm and the H1-norm. Note that
the saturations observed for very small time steps is due to the approximation error in space which becomes dominant for
very small time steps.

We show in Fig. 6 the error on the pressure measured in the L1-norm for both versions of the algorithm. The results
clearly show that the pressure approximation in standard form is only first-order, whereas in the rotational formulation it is
Fig. 5. Convergence tests with BDF2 and finite elements. Error on the velocity in the L2-norm and in the H1-norm at T = 1.



Fig. 6. Convergence tests with BDF2 and finite elements. Error on the pressure in the L1-norm at T = 1 with standard splitting and consistent splitting.
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truly second-order. The poor convergence rate in the standard form can be attributed to the presence of numerical bound-
ary layers which are induced by the fact that the boundary condition enforced by the approximate pressure, namely
on(pk+1 � 2pk + pk�1)jC = 0, is not consistent.

5.5. Relation with the gauge method

In the gauge formulation [11] of the Navier–Stokes equations, the pressure is replaced by a so-called gauge variable n
and defining an auxiliary vector field m such that m = u + $n. Then, the Stokes problem can be reformulated as follows:

otm� mr2m ¼ f ; mjt¼0 ¼ m0; m � njC ¼ 0; ðm�rnÞ � njC ¼ 0;

r2n ¼ r � m; onnjC ¼ 0.

(
ð5:12Þ

The velocity and the pressure are recovered by

u ¼ m�rn; p ¼ otn� mr2n. ð5:13Þ
This type of formulation has been proposed originally to get rid of the pressure and the saddle-point structure it implies.
Unfortunately, this goal is not quite fulfilled since the boundary condition (m � $n) · njC = 0 implies a coupling between
the m and n variables that has exactly the same complexity as that between the velocity and the pressure in the Stokes
problem.

We now construct a decoupled time discretization of (5.12) using BDFq. Assuming that we have initialized properly
(mj)j=0,. . .,q�1, for k P q � 1 we compute mk+1 such that

D
Dt

mkþ1 � mr2mkþ1 ¼ f ðtkþ1Þ;

mkþ1 � njC ¼ 0; ðmkþ1 �rnH;kþ1Þ � njC ¼ 0;

8<
: ð5:14Þ

where nw,k+1 is an extrapolation for n(tk+1) such that $nw,k+1 Æ njC = 0. A natural choice is

nH;kþ1 ¼ nk if q ¼ 1;

2nk � nk�1 if q ¼ 2.

(
ð5:15Þ

Then, nk+1 is updated by

r2nkþ1 ¼ r � mkþ1; onn
kþ1jC ¼ 0. ð5:16Þ

The fact that the viscous step (5.14) involves the trace of a gradient as a Dirichlet boundary condition renders the
method quite inconvenient from both the theoretical and the practical point of view: a priori energy estimates are difficult
to obtain in this form, and the method cannot be used with H1-conforming finite element methods. In the following we
shall reformulate the scheme (5.14)–(5.16) by making a suitable change of variables to avoid this difficulty.
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5.5.1. The L2 weak setting

To rewrite (5.14)–(5.16) in the L2 setting, we introduce the following changes of variables:

~ukþ1 ¼ mkþ1 �rnH;kþ1;

ukþ1 ¼ mkþ1 �rnkþ1;

pkþ1 ¼ D
Dt

nkþ1 � mr2nkþ1;

pH;kþ1 ¼ D
Dt

nH;kþ1 � mr2nH;kþ1.

ð5:17Þ

Using the definition of pw,k+1, we infer

D
Dt
ðmkþ1 �rnH;kþ1Þ � mr2ðmkþ1 �rnH;kþ1Þ þ rpH;kþ1 ¼ f ðtkþ1Þ;

ðmkþ1 �rnH;kþ1Þ � njC ¼ 0; ðmkþ1 �rnH;kþ1Þ � njC ¼ 0;

8<
:

which, owing to the definition of ~ukþ1, yields

D
Dt

~ukþ1 � mr2~ukþ1 þrpH;kþ1 ¼ f ðtkþ1Þ; ~ukþ1jC ¼ 0.

From the definitions of uk+1 and ~ukþ1 it is clear that

ukþ1 � ~ukþ1 þrðnkþ1 � nH;kþ1Þ ¼ 0;

which yields r2ðnkþ1 � nH;kþ1Þ ¼ r � ~ukþ1. Now, using the definitions of pk+1 and pw,k+1, we infer

pkþ1 � pH;kþ1 ¼ D
Dt
ðnkþ1 � nH;kþ1Þ � mr2ðnkþ1 � nH;kþ1Þ ¼ D

Dt
ðnkþ1 � nH;kþ1Þ � mr � ~ukþ1.

Taking the Laplacian of the above equation, we find

r2ðpkþ1 � pH;kþ1 þ mr � ~ukþ1Þ ¼ r2 D
Dt
ðnkþ1 � nH;kþ1Þ ¼ r � D

Dt
~ukþ1.

Thus, we have proved that, up to an appropriate change of variables and when the space is continuous, the gauge algorithm
(5.14)–(5.16) is equivalent to the following:

D~ukþ1

Dt
� mr2~ukþ1 þrpH;kþ1 ¼ f ðtkþ1Þ; ~ukþ1jC ¼ 0; ð5:18Þ

r2/kþ1 ¼ r � D~ukþ1

Dt
; on/

kþ1jC ¼ 0; ð5:19Þ

pkþ1 � pH;kþ1 þ mr � ~ukþ1 ¼ /kþ1; ð5:20Þ

which is exactly the consistent splitting scheme (5.9)–(5.11) owing to the definitions of pw,k+1 and nw,k+1.

6. Inexact factorization schemes

In this section we turn our attention to the so-called inexact algebraic factorization schemes. This class of methods have
gained some popularity since they do not involve, explicitly, any artificial pressure boundary condition and are believed by
some to provide better convergence rates than their PDE counterparts—pressure-correction schemes. We shall show below
that the inexact factorization methods enforce weakly an artificial pressure boundary condition, and do not provide better
accuracy than their PDE-based counterparts.

6.1. The matrix setting

Let X h � ½H 1
0ðXÞ�

d and Mh � L2
0ðXÞ be two finite-dimensional spaces satisfying the inf–sup condition:

Hypothesis 6.1. There exists b > 0 independent of h such that

inf
qh2Mh

sup
vh2X h

R
X qhr � vh

kqk0kvhk1

P b. ð6:1Þ

We also assume the following interpolation properties:
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Hypothesis 6.2. There exist two spaces W � ½H 1
0ðXÞ�

d , Z � L2
0ðXÞ and two continuous functions �1(h), �2(h) vanishing at 0

such that for all v 2W and q 2 Z

inf
vh2X h

kv� vhk0 6 �1ðhÞkvkW ;

inf
vh2X h

kv� vhk1 6 �2ðhÞkvkW ;

inf
qh2Mh

kq� qhk0 6 �2ðhÞkqkZ .

8>>><
>>>:

ð6:2Þ

For finite elements there is usually some positive integer s such that W ¼ ½H 1
0ðXÞ�

d \ ½H sþ1ðXÞ�d , Z ¼ L2
0ðXÞ \ H sðXÞ,

�1(h) = hs+1, and �2(h) = hs. Many pairs of finite elements spaces satisfying the inf–sup condition are reported in Brezzi–
Fortin [5] and Girault–Raviart [12].

Let Nu = dim(Xh), Np = dim(Mh), and let fvigi¼1;...;Nu
, fqkgk¼1;...;Np

be basis functions for Xh and Mh respectively. We
define the following matrices:

M ¼
Z

X
/i � /j

� �
; K ¼

Z
X

mr/i : r/j

� �
; D ¼ �

Z
X

qkr � /j

� �
. ð6:3Þ

Denoting by U 2 RNu and P 2 RNp the components of uh 2 Xh and ph 2Mh in the considered bases, using, for example, the
implicit Euler time stepping for (2.6), we obtain:

1

Dt
MþK DT

D 0

2
4

3
5 U kþ1

P kþ1

" #
¼

1

Dt
MUk þ F kþ1

0

2
4

3
5; ð6:4Þ

where we have set

F k ¼
Z

X
/i � f ðtkÞ

� �
. ð6:5Þ

The main idea behind the inexact factorization is to replace the matrix in (6.4) by its incomplete block LU factorization.
One of the simplest possibilities is

1

Dt
MþK DT

D 0

2
4

3
5 � 1

Dt
MþK 0

D �DtDM�1DT

2
4

3
5 I DtM�1DT

0 I

" #
. ð6:6Þ

Then, (6.4) can be approximately solved as follows:

Step 1 :
1

Dt
MþK

� �
~U

kþ1 ¼ 1

Dt
MUk þ F kþ1;

Step 2 : DM�1DTUkþ1 ¼ 1
Dt D

~U
kþ1
;

Step 3 : Ukþ1 ¼ ~U
kþ1 � DtM�1DTUkþ1;

Step 4 : P kþ1 ¼ Ukþ1.

8>>>>>><
>>>>>>:

ð6:7Þ

It is easy to see that this scheme is the discrete version of the Chorin–Temam scheme (3.1) and (3.2).
Using the fact that we can also write (6.4) in the form

1

Dt
Mþ K DT

D 0

2
4

3
5 Ukþ1

P kþ1 � P k

" #
¼

1
Dt MU k þ F kþ1 �DTP k

0

" #
ð6:8Þ

and using again the incomplete block factorization (6.6), we obtain the incremental form the inexact factorization:

Step 1 :
1

Dt
MþK

� �
~U

kþ1 ¼ 1

Dt
MUk þ F kþ1 �DTP k;

Step 2 : DM�1DTUkþ1 ¼ 1

Dt
D ~U

kþ1
;

Step 3 : Ukþ1 ¼ ~U
kþ1 � DtM�1DTUkþ1;

Step 4 : P kþ1 ¼ Ukþ1 þ P k;

8>>>>>>><
>>>>>>>:

ð6:9Þ

which can be viewed as a discrete counterpart of the incremental pressure-correction scheme in the standard form.
These schemes and more elaborate ones have been introduced in [15,40]. This idea is also the basis for very similar works

in [42,43,36].
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A seemingly magical fact is that no artificial pressure boundary condition is involved in (6.7) and (6.9). Hence, one may
be led to think that this type of method is not plagued by the artificial-pressure-boundary-condition curse that afflicts the
PDE-based projection methods. However, we shall show below in a series of three arguments that this claim is not correct.

6.2. Inexact factorization enforces a Neumann B.C

The first argument is as follows. Note that Steps 2 and 3 in (6.7) and (6.9) are equivalent to the following statement: Seek
ukþ1

h 2 X h and /kþ1
h 2 Mh such that

1

Dt
ðukþ1

h � ~ukþ1
h ; vhÞ � ð/kþ1

h ;r � vhÞ ¼ 0; 8vh 2 X h;

ðqh;r � ukþ1
h Þ ¼ 0; 8qh 2 Mh.

8<
: ð6:10Þ

We assume for the sake of simplicity that Mh � H1(X) and the time step Dt is fixed.

Proposition 6.1. Assuming limh!0~ukþ1
h ! ~ukþ1 in [L2(X)]d, then, we have limh!0ukþ1

h ! ukþ1 in [L2(X)]d and

limh!0/
kþ1
h ! /kþ1 in H1(X), where uk+1 and /k+1 satisfy

1

Dt
ðukþ1 � ~ukþ1Þ þ r/kþ1 ¼ 0;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0.

8<
:

Proof. It is clear that kukþ1
h k½L2ðXÞ�d is bounded. Then, owing to Hypothesis 6.1, k/kþ1

h kL2ðXÞ is also bounded. Hence, we can
extract a subsequence, still denoted by fukþ1

h g for simplicity, such that limh!0ukþ1
h ! ukþ1 weakly in [L2(X)]d and

limh!0/
kþ1
h ! /kþ1 weakly in L2(X).

For any q 2 H1(X), let (qh)h>0 be a sequence converging to q in H1(X). Then, using the fact that ukþ1
h 2 X h, i.e.,

ukþ1
h jC ¼ 0, we infer 0 ¼ limh!0 � ðqh;r � ukþ1

h Þ ¼ limh!0ðrqh; u
kþ1
h Þ ! ðrq; ukþ1Þ, which implies ($q,uk+1) = 0. In other

words, $ Æ uk+1 = 0 and uk+1 Æ njC = 0. Now, let v 2 ½H 1
0ðXÞ�

d and let (vh)h>0 be a sequence converging to v in ½H 1
0ðXÞ�

d , by
passing to the limit in (6.10), we infer

1

Dt
ðukþ1 � ~ukþ1; vÞ � ð/kþ1;r � vÞ ¼ 0; 8v 2 ½H 1

0ðXÞ�
d .

Since ½H 1
0ðXÞ�

d is dense in [L2(X)]d, the above equation implies /k+1 2 H1(X). The rest of the proof is obvious. h

It is now clear that on/
k+1jC = 0. That is to say, contrary to what is sometimes claimed, (6.7) and (6.9) do enforce,

though weakly, an artificial Neumann boundary condition on the pressure.
6.3. Inexact factorization compared to other viewpoints

Another way of looking at this issue is to realize that (6.7) and (6.9) are just particular choices among many for writing
the projection step as shown in [17,18,23]. To better appreciate this point of view, let us recall the main argument from
[17,18,23].

Let us introduce the discrete divergence operator Bh : Xh!Mh and its adjoint BT
h : Mh ! X 0h such that for every pair

(vh,qh) in Xh · Mh we have ðBhvh; qhÞ ¼ �ðr � vh; qhÞ ¼ ðvh;BT
h qhÞ.

Now we introduce an auxiliary space, Yh, such that Xh � Yh � [L2(X)]d, and we denote by ih the continuous injection of
Xh into Yh. We equip Yh with the L2-norm.

Furthermore, we assume that we can construct an operator Ch : Yh!Mh such that

Hypothesis 6.3. The operator Ch is an extension of Bh and iT
h CT

h ¼ BT
h ; i.e., the following diagrams commute:

When Mh � H1(X), we also assume that CT
h satisfies the following stability property:
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Hypothesis 6.4. There exists c > 0 such that, for all qh in Mh,

kCT
h qhk0 6 ckqhk1.

If Mh 6� H1(X), Hypothesis 6.4 can be weakened appropriately, but we omit the details here to focus on the main argu-
ment, see [17,18] for more details.

Then, denoting by Ah : Xh! X0h the operator such that (Ahuh,vh) = m($uh,$vh) for every pair (uh,vh) in Xh · Xh, we con-
sider the following scheme:

Step 1 :
1

Dt
þ Ah

� �
~ukþ1 ¼ 1

Dt
uk þ f kþ1

h � BT
h pk

h;

Step 2 : ChCT
h /kþ1

h ¼ 1

Dt
Bh~u

kþ1
h ;

Step 3 : ukþ1
h � ukþ1

h � DtCT
h /kþ1

h ;

Step 4 : pkþ1
h ¼ /kþ1

h þ pk
h;

8>>>>>>><
>>>>>>>:

ð6:11Þ

where f kþ1
h is the L2 projection of f(tk+1) onto Xh.

Note that in the above algorithm, the choices of Yh and Ch can be quite arbitrary. This flexibility allows the users to
devise many alternative methods. The most trivial choice is to take Yh = Xh and Ch = Bh. This very particular choice cor-
responds to the one implicitly assumed by the inexact factorization techniques introduced above, since one can easily verify
that the matrix counterpart of (6.11) is exactly (6.9). Others choices for Yh can be made if we assume that Mh � H1(X). For
instance we can consider the following space Yh = Xh + $Mh � [L2(X)]d. Then, one easily verifies that Ch defined by

8ðvh; qhÞ 2 Y h �Mh; ðChvh; qhÞ ¼ ðvh;rqhÞ ð6:12Þ
is an extension of Bh, i.e., Hypothesis 6.3 holds. It is clear also that owing to this very particular definition of Yh, CT

h is the
restriction of $ to Mh. As a result, the projection step 2 in (6.11) is nothing more than

ðr/kþ1
h ;rqhÞ ¼ �

1

Dt
ðr � ~ukþ1

h ; qhÞ; 8qh 2 Mh.

One recognizes here the usual weak form of the Poisson problem supplemented with homogeneous Neumann boundary
conditions enforced weakly.

Note that if we assume Mh � H1(X), Hypothesis 6.4 is automatically satisfied for the two choices considered above for
Yh. Other choices for Yh are possible and we refer to [17,18] where a third one is documented.

In conclusion, the projection step 2 in (6.11) may assume various forms depending on computational efficiency or other
criteria set by the users. The inexact factorization is just one among several possibilities.

6.4. Inexact factorization is as accurate as PDE-projection

Let us finally emphasize that, provided that Hypotheses 6.3 and 6.4 are satisfied, the error estimates are independent of
the choice of Yh.

To better appreciate this point, let us summarize the error estimates proved in [17,18,23,19,2] with the abstract discrete
setting described above.

Hypothesis 6.5. There exist two spaces W � ½H1
0ðXÞ�

d , Z 2 L2
0ðXÞ and two continuous functions �1(h), �2(h) vanishing at 0

such that for all v 2W and q 2 Z, the solution to the following Stokes problem:

ðrvh;rwhÞ � ðqh;r � whÞ ¼ ðrv;rwhÞ � ðq;r � whÞ; 8wh 2 X h;

ðrh;r � vhÞ ¼ ðrh;r � vÞ; 8rh 2 Mh;

	
ð6:13Þ

satisfies the following error estimates:

kv� vhk0 6 �1ðhÞðkvkW þ kqkZÞ;
kv� vhk1 þ kq� qhk0 6 �2ðhÞðkvkW þ kqkZÞ.

ð6:14Þ

Theorem 6.1. Assuming Hypotheses 3.1, 6.3, 6.4, 6.1 and 6.5, and provided that the solution of (2.6) is regular enough in time

and space, the solution of (6.11), with the Euler time stepping replaced by BDF2, satisfies the following error estimates:

kuDt � uh;Dtk‘1ð½L2ðXÞ�d Þ þ kuDt � ~uh;Dtk‘1ð½L2ðXÞ�d ÞK Dt2 þ �1ðhÞ;
kuDt � ~uh;Dtk‘1ð½H1ðXÞ�d Þ þ kpDt � ph;Dtk‘1ðL2ðXÞÞK Dt þ �2ðhÞ.

ð6:15Þ
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Proof. See Guermond [19]. (The first estimate holds if X has the H2-elliptic regularity property and the second one holds if
X is Lipschitz.) h

Remark 6.1

(i) In the case of the Legendre–Galerkin spectral approximation, the above results must be slightly modified to account
for the dependence of the inf–sup constant on the mesh parameter h = 1/N, where N is the polynomial order, see [2].
Denoting by b(h) the inf–sup constant, the pressure estimate in the spectral case is

kpDt � ph;Dtk‘1ðL2ðXÞÞ 6 cðu; p; T ÞbðhÞ�1ðDt þ �2ðhÞÞ. ð6:16Þ

For instance, for PN=PN�2 approximation, we have bðhÞ ¼ N�
d�1

2 , W ¼ ½H 1
0ðXÞ�

d \ ½H sðXÞ�d , Z ¼ L2
0ðXÞ \ H s�1ðXÞ,

�1(h) = N�s, and �2(h) = N1�s, see e.g., [7,4].
(ii) Note finally that the above error estimates do not depend on any particular choice of basis for Xh and Mh. If the

algebraic point of view had been adopted, then the error analysis would have involved awkward basis-dependent
norms and matrix norms. Working with basis-independent norms is la raison d’être of functional analysis.
7. Interpretation of convergence tests

Quite often a numerical scheme is proposed but no rigorous error analysis is available so one resorts to some heuristic
arguments—such as normal mode analysis in 1D or with periodic boundary conditions, or other simplified techniques—
along with numerical tests. We show in this section that such a strategy may sometimes be misleading if the numerical tests
are not performed very carefully.

7.1. On the importance of norms

Let us first recall that a convergence rate is always associated with a norm. Hence, when claiming a convergence rate for
a scheme it should be mandatory to state the quantity to which it applies and the norm in which it is measured.

To illustrate the above elementary statement we now describe a quite confusing phenomenon which is due to the basic
fact that in finite dimensions all norms are equivalent. Assume that we are considering the convergence rate of some quan-
tity, say e, in two different norms: jej and kek, and assume also that the following (unproved) uniform estimates hold

jej 6 cðDtk1 þ ha1Þ; kek 6 c0ðDtk2 þ ha2Þ; ð7:1Þ
with k1 > k2 > 0, and Dt, h are the time step and the meshsize, respectively. The readers may think of jej and kek as the
velocity errors in L1(0,T;L2(X)) and L1(0, T;H1(X)), respectively. Since all norms are equivalent in finite-dimensional
spaces, there exists c(h) > 0 such that kek 6 c(h)jej. Assume c(h) 	 h�c and 0 < c < a1. Then, kek 6 cðhÞðDtk1 þ ha1Þ. By
denoting a = min(a2,a1 � c), we finally infer

kek 6 minðc1ðhÞDtk1 ; c2Dtk2Þ þ c3ha; with k1 > k2; ð7:2Þ

where all the exponents, k1, k2, a, are positive. The constants c2 and c3 do not depend on h, but c1(h) explodes like h�c when
h goes to zero. For a given mesh, though, c1(h) is fixed. The term c3ha is the consistency error in space; when the mesh is fine
enough, this error is negligible.

It is important to realize that numerical tests do not reveal the uniform estimates (7.1) but reveal instead the non-uni-
form estimates (7.2). Since k1 > k2, when Dt is sufficiently large the error behaves like c2Dtk2 , whereas when Dt is small
enough the error behaves like c1ðhÞDtk1 . Just by observing the numerical results obtained on a single mesh, fine enough
to make sure that the consistency error is much smaller than the splitting and the time discretization error, one may con-
clude that, in the k Æk-norm, the asymptotic order is k1 (i.e., the one that prevails when Dt! 0). This conclusion is mislead-
ing since the time step for which the error switches from the low convergence rate c2Dtk2 to the higher rate c1ðhÞDtk1 depends
on the meshsize h. Denoting by Dt(h) this typical time step, we have

DtðhÞ ¼ c1ðhÞ
1

k2�k1 .

Since k1 > k2 and c1(h)! +1, it is clear that Dt(h) converges to zero as the meshsize goes to zero. Hence, for very fine
meshes, the error in the kÆk-norm is completely dominated by the (uniform) low order Oðhk2Þ for Dt > Dt(h). Another aspect
of this phenomenon is revealed when convergence tests in space are made with the time step fixed. Let us fix Dt and assume
that we start the convergence analysis in space with a mesh h0, such that ha 
 c1ðh0ÞDtk1 < c2Dtk2 . Then, as we decrease h,
we observe that the error kek grows! It grows monotonically until



Fig. 7. Convergence rates on the pressure in a square cavity; the error is measured in the L1-norm: (left) standard form of the BDF2 pressure correction
algorithm; (right) rotational form.
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h 	 Dtðk1�k2Þ=c;

and it remains equal to c2Dtk2 for finer meshes.
In conclusion, claiming OðDtk1Þ accuracy in the kÆk-norm after having performed time accuracy tests on a single mesh

only is wrong.

7.2. A numerical illustration

To illustrate the above phenomenon, we show now numerical tests performed on the BDF2 pressure-correction scheme
in standard form and in rotational form using P2=P1 finite elements.

We consider the Stokes problem in the domain X = ]0, 1[2 and the source term is set so that exact solution is given in
(3.31).

We show in Fig. 7 the error on the pressure measured in the L1-norm versus the time step. The tests have been per-
formed on three meshes: h ¼ 1

80
; h ¼ 1

40
, and h ¼ 1

20
. The results in the left-hand side are from the BDF2 pressure-correction

scheme in standard form, whereas those on the right-hand side are from the rotational form of the algorithm.
When looking only at the tests with h ¼ 1

40
of the standard form of the algorithm, one may have the impression that the

scheme is asymptotically second-order on the pressure in the L1-norm, and be tempted to conclude that the error analysis
in [48,19] are suboptimal. This conclusion is wrong as one can observe that for a fixed time step (say for instance
Dt = 0.002), the error grows as the mesh is refined and converges to the first-order slope. These tests confirm that the
BDF2 pressure-correction scheme in standard form is uniformly OðDtÞ on the pressure in the ‘1(L1)-norm whereas the
rotational form of the algorithm is OðDt3=2Þ.

8. Effect of the inf–sup condition

The goal of this section is to investigate whether the inf–sup condition (6.1) really needs to be satisfied for the splitting
schemes described herein to work properly.

8.1. The naive point of view

There is an ongoing debate in the literature concerning the status of the inf–sup condition (6.1) when using splitting
methods for solving (2.6). Actually, when looking at the pressure-correction algorithms (3.17)–(3.19), the velocity-correc-
tion algorithms (4.8)–(4.10), or the consistent splitting algorithms (5.9)–(5.11), we observe that each step involves either a
Poisson equation or a Helmholtz-like equation. Hence, irrespective of the status of the inf–sup condition, the discrete coun-
terparts of all these algorithms yield invertible discrete linear systems at each time step. Then, one may be drawn to the
intuitive conclusion that, after all, the inf–sup condition is not needed for splitting methods. As it is shown below, however,
this conclusion is not correct.
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To understand whether the inf–sup condition is needed or not, one must think of the underlying steady-state Stokes
problem. The general rule is the following: the convergence properties of splitting methods with respect to the meshsize

are the same as those of the underlying steady-state Stokes problems. In other words, the issue of the inf–sup condition
is entirely controlled by the steady-state Stokes problem.

8.1.1. Chorin–Temam algorithm
To illustrate the above statement let us consider the Chorin–Temam algorithm (3.1), (3.2). The associated steady Stokes

problem is

�mr2~uþrp ¼ f ;

r � ~u� Dtr2p ¼ 0;

~ujC ¼ 0; onpjC ¼ 0.

8><
>:

The first equation in the above system is obtained by adding (3.1) to the first equation in (3.2) and by observing that at
steady state uk+1 = uk. The second equation in the above system is obtained by taking the divergence of the first equation
of (3.2) and using $ Æ uk+1 = 0. The boundary condition on p is obtained by taking the normal component at the boundary
of the first equation in (3.2).

It is clear that here Dt play the role of a pseudo-compressibility coefficient as observed in [44] and [46]. Then, using the
notation of Section 6.1, the discrete counterpart of the above problem is

mðr~uh;rvhÞ � ðph;r � vhÞ ¼ ðf ; vhÞ; 8vh 2 X h;

ðqh;r � ~uhÞ þ Dtðrph;rqhÞ ¼ 0 8qh 2 Mh.

	
ð8:1Þ

This problem is well-posed irrespective of the inf–sup condition (6.1); however, the stability constant, i.e., the inf–sup
constant for the system (8.1), is proportional to Dt. Hence, spurious pressure modes do not show up if Dt is not too small.
This is obviously in contradiction with the requirement that Dt should be small for the algorithm to be accurate. Of course,
if the inf–sup condition for the Stokes problem (6.1) is satisfied, the stability constant of the above problem becomes inde-
pendent of Dt.

Without invoking the inf–sup condition (6.1), the discrete counterpart of (3.2) yields krphk0 K kr � ~uhk0=Dt. Thus, even
if optimal convergence in time is achieved on kr � ~uhk0, namely kr � ~uhk0 K Dt

1
2 þ �2ðhÞ (see Theorem 3.1) the best achiev-

able stability bound is krphk0 K Dt�
1
2 þ �2ðhÞ

Dt . If Dt is larger than �2(h), the H1-norm of the approximate pressure grows at
most like Dt�1/2. This means that the spurious modes in the pressure solution may not be visible with the naked eye.

In conclusion, when using the Chorin–Temam algorithm in conjunction with a discrete setting that does not satisfy the
inf–sup condition, the spurious modes may not appear if Dt is not too small. But one must bear in mind that those modes
are still present and will eventually manifest themselves if Dt has to be reduced for any reason.

The above arguments are detailed in Guermond and Quartapelle [22].

8.1.2. The general case

Let us now consider the pressure-correction scheme (either the standard or the rotational form), the velocity-correction
scheme (either the standard or the rotational form), or the consistent splitting scheme (only the rotational form) with
q P 1. By inspecting (3.17)–(3.19), (4.8)–(4.10), or (5.9)–(5.11) it is clear that in all cases the discrete counterpart of the
associated steady-state Stokes problem is

mðr~uh;rvhÞ � ðph;r � vhÞ ¼ ðf ; vhÞ; 8vh 2 X h;

ðqh;r � ~uÞ ¼ 0 8qh 2 Mh.

	
ð8:2Þ

It is well-known that this problem is well-posed if and only if an inf–sup condition like (6.1) is satisfied with b possibly
depending on h.

The optimality of the error estimates depends on whether the inf–sup constant b is uniform with respect to the meshsize
or not. Thus, if (2.6) has a steady-state solution as t! +1 (assuming f is independent of t), and if the discrete steady-state
problem (8.2) has spurious pressure modes, then all the algorithms (3.17)–(3.19), (4.8)–(4.10), or (5.9)–(5.11) will give at
steady-state a pressure field that is defined up to an arbitrary spurious mode.

The above argument is developed in more details in Guermond and Quartapelle [22], Guermond and Shen [26], and
Minev [38].

8.2. The functional analysis point of view

From the theoretical point of view there are at least two reasons why the inf–sup condition (6.1) needs to be satisfied.
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The first reason is the following. In general, when analyzing the convergence rate of splitting methods, the usual strategy
is to derive estimates for the velocity first, then, the pressure estimates are recovered by working on the momentum equa-
tion; see e.g., (3.9) or (4.10). For instance, the discrete version of (3.9) yields

�ðpkþ1
h ;r � vhÞ ¼ f ðtkþ1Þ � D

Dt
ukþ1

h ; vh

� �
� mðr � ~ukþ1

h ;r� vhÞ; vh 2 X h;

which implies

ðpkþ1
h ;r � vhÞ
kvhk1

K kf ðtkþ1Þk0 þ
D
Dt

ukþ1
h












0

þ mj~ukþ1
h j1. ð8:3Þ

Thus, provided that stability estimates have been proved on the L2-norm of the approximate time derivative D
Dt ukþ1

h and on
the H1-seminorm of ~ukþ1

h , the inf–sup condition (6.1) yields immediately a bound on the pressure.
The second argument showing that the convergence properties of splitting methods are controlled by those of the steady

Stokes problem is as follows. To derive optimal L2-estimates on the velocity without using a very awkward duality argu-
ment involving a backward time-dependent Stokes problem, it is convenient to introduce the Stokes projector of the veloc-
ity and the pressure; see Wheeler [56]. In other words, one defines wh(t) 2 Xh and qh(t) 2Mh such that

ðrwhðtÞ;rvhÞ � ðqhðtÞ;r � vhÞ ¼ ðruðtÞ;rvhÞ � ðpðtÞ;r � vhÞ; 8vh 2 X h; 8t;
ðrh;r � whðtÞÞ ¼ 0; 8rh 2 Mh 8t.

	

Then, the error analysis consists of bounding from above the quantities whðtkþ1Þ � ~ukþ1
h , whðtkþ1Þ � ukþ1

h , and qhðtkþ1Þ � pkþ1
h ;

see e.g., [18,23,19] and Theorem 6.1. The actual errors are recovered by using the triangle inequality. As a result, the space
approximation properties of the splitting method are entirely controlled by the ability of wh(t) and qh(t) to properly approx-
imate uðtÞ and pðtÞ. In other words, the space approximation properties of the splitting methods hinge on (6.1).

8.3. Numerical illustrations

8.3.1. P1=P1 vs. iso-P2=P1 finite elements

To illustrate the fact that the inf–sup condition must be satisfied for the algorithms (3.17)–(3.19), (4.8)–(4.10) and (5.9)–
(5.11) to yield optimal convergence in space, we make convergence tests using P1=P1 (inf–sup unstable Stokes pair) and iso-
P2=P1 (inf–sup stable Stokes pair) finite elements. The algorithm used is the standard form of the pressure-correction
scheme with BDF1 time stepping. The reference solution is given by: u1 ¼ sin x sinðy þ tÞ, u2 ¼ cos x cosðy þ tÞ, p ¼
cos x sinðy þ tÞ.

We show in Fig. 8 the error on the pressure measured in the L2-norm as a function of the mesh size h at T = 1. Two
series of tests are performed using time steps Dt = 10�3 and Dt = 10�4. The error in the P1=P1 case depends strongly
on Dt and grows when Dt decreases. The figure suggests that the space error behaves like c(Dt)h2 where c(Dt)!1 as
Fig. 8. Error on pressure in the L2-norm with respect to the mesh size h at T = 1 using time steps Dt = 10�3, Dt = 10�4 and P1=P1 (left panel) and iso-
P2=P1 (right panel) finite elements.



Fig. 9. Effect of the inf–sup condition: error vs. N in log–log scale. Space discretization: PN=PN ; time discretization: BDF2 pressure-correction in standard
form.
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Dt! 0. Clearly, this behavior is not optimal. In contrast, the same scheme with the inf–sup stable iso-P2=P1 finite elements
clearly yields an optimal error for the pressure.

From the computational point of view, inf–sup stable Stokes pairs usually involve less degrees of freedom for the
pressure than their inf–sup unstable counterparts. For example, the P1=P1 elements with meshsize h = 0.05 contains
441 pressure nodes in the unit square while the iso-P2 � P1 elements contains only 121. As a consequence, the P1=P1

approximation leads to a significantly larger linear system for the pressure, without any improvement on the asymptotic
accuracy of the approximation. Finally, using an inf–sup unstable finite element pair together with an inexact factorization
scheme yields a linear system for the pressure that is singular. Indeed, upon inspecting Step 2 of (6.7) we observe that if the
inf–sup condition is violated then kerðDTÞ 6¼ 0 and therefore DM�1DT is singular. Thus, the linear system for the pressure
has infinitely many solutions (note that the right-hand-side is in the range of D).

8.3.2. Spectral approximation

An interesting situation arises when spectral approximation is used in a square or a cubic domain. Owing to a result by
Sacchi-Landriani and Vandeven [45], it can be shown that irrespective of the polynomial degree N of the approximation the
stability constant on the velocity for the steady Stokes problem is independent of N. In other words, equal-order polyno-
mial spectral approximations yield optimal velocity error estimates on the velocity. This result does not hold for the pres-
sure, i.e., it is well-known that the PN=PN setting admits spurious pressure modes.

In conclusion, the splitting schemes (3.17)–(3.19), (4.8)–(4.10) and (5.9)–(5.11) should yield optimal convergence in space
irrespective of the polynomial setting for the pressure. However the convergence on the pressure cannot be optimal in the
PN=PN setting.

To illustrate the above statement we show in Fig. 9 convergence tests on the pressure using PN=PN approximation and
the BDF2 incremental pressure-correction in standard form. The reference solution is (3.30) in the square domain ]0,1[2.
The error on the pressure is measured in the L2-, L1-, and H1-norm (in log scale) and is shown as a function of log(N) using
Dt = 10�4. It is clear that the convergence rate with respect to N is not spectral, thus confirming our claim.

9. Is the Neumann B.C. essential or natural?

In a finite element method, the Neumann boundary condition is usually enforced naturally. However, in a spectral
method (especially spectral-collocation) or a finite difference method, the Neumann boundary condition is enforced
strongly in general. The question we address in this section is whether implementing the Neumann pressure boundary con-
dition naturally or essentially (i.e., strongly enforced) matters in terms of accuracy.

We recall that Theorem 6.1 indicates that, although an incompatible Neumann pressure boundary condition limits the
time accuracy, it does not pollute the accuracy in space if implemented as a natural boundary condition. However, we will
show that enforcing strongly the Neumann boundary condition for the pressure may yield inconsistencies at the discrete
level for the standard forms of pressure-correction and velocity-corrections schemes.
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9.1. The Neumann B.C. is a priori natural

For all the methods considered in this paper, the pressure unknown /k+1 always comes into play in a projection step;
that is to say, /k+1 is always an auxiliary unknown involved by a statement like

ukþ1 ¼ P H ~ukþ1;

where ~ukþ1 is some intermediate non-solenoidal vector field and PH is the L2-projection onto the space H. In other words,
owing to (2.4), /k+1 and uk+1 are the unique quantities in H1(X) · H such that

~ukþ1 ¼ ukþ1 þr/kþ1;

i.e., Z
X

~ukþ1 � w ¼
Z

X
ukþ1 � wþ

Z
X
r/kþ1 � w; 8w 2 ½L2ðXÞ�d .

Then, selecting tests functions in $H1(X) only and using the fact that the decomposition (2.4) is orthogonal in [L2(X)]d, we
obtainZ

X
r/kþ1 � rq ¼

Z
X

~ukþ1 � rq; 8q 2 rH 1ðXÞ. ð9:1Þ

This equation shows that the pressure unknown /k+1 is subject to a Poisson problem supplemented with a natural bound-
ary condition. This is the first hint that the Neumann boundary condition on the pressure should be enforced weakly at the
discrete level.

9.2. Essential Neumann B.C. limits the convergence in standard forms

We show in this section that enforcing strongly the Neumann boundary condition on the pressure unknown yields sub-
optimal convergence results in space when the standard form of the splitting algorithms is used.

Let us restrict ourselves for the time being to the incremental pressure-correction scheme in standard form (6.11) with
BDF2 time stepping. Theorem (6.1) gives error estimate for the fully discretized algorithm with the discrete Poisson problem
solved weakly as in (9.1). Though the proof of this theorem is somewhat technical, it can be very easily reworked to account
for essential Neumann boundary conditions. Let us assume that all the hypotheses of Theorem 6.1 hold. Since we want to
enforce the Neumann B.C. essentially on /kþ1

h , and /kþ1
h is in the discrete space Mh, we have to assume that this condition is

enforced on all the elements of Mh. Then, the whole proof of Theorem 6.1 is unchanged, except for the estimates (6.14) in
Hypothesis 6.5 which are no longer optimal. For instance, for Pkþ1=Pk or Qkþ1=Qk finite elements, one would have
�1(h) = h5/2 instead of �1(j) = hk+2 and �2(h) = h3/2 instead of �1(j) = hk+1, which estimates are both clearly suboptimal since
k P 1. For the Legendre–Galerkin PN=PN�2 approximation, numerical experiments reported in Fig. 10 suggest that
Fig. 10. Effect of the Neumann B.C. enforced essentially with the BDF2 incremental pressure-correction in standard form. Galerkin–Legendre PN=PN�2

approximation. Error in various norms vs. N in log–log scale.
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�1ðhÞ ¼ N�11=2; �1ðhÞ ¼ N�9=2; bðhÞ ¼ N�3=2. ð9:2Þ
Then, the error estimates (6.15) for the velocity and (6.16) for the pressure still hold with the suboptimal error functions

�1(h), �2(h).
Although no spatial error analysis of the velocity-correction and consistent splitting methods in standard form are yet

available in the literature, we expect that the same conclusions as those for the pressure-correction methods in standard
form hold.

In Fig. 10 we show convergence results for the BDF2 incremental pressure-correction in standard form using Galerkin–
Legendre PN=PN�2 approximation. The reference solution is defined in (3.30). The Neumann boundary condition on
the pressure unknown is enforced strongly. The time step Dt = 10�4 is chosen small enough so that the error induced
by the time discretization is negligible with respect to that induced by the space discretization. The error on the velocity
and the pressure in log-scale at T = 1 is shown in various norms as a function of log(N). These results clearly show that
the convergence rates are algebraic. These results are consistent with the error estimates (6.15) and (6.16) using (9.2).

The phenomenon described above made some to believe that pressure-correction methods cannot be accurate for they
enforce an artificial Neumann boundary condition, see e.g., [29]. As we have shown, this is not the case if the Neumann
boundary condition is enforced weakly.

9.3. The treatment of the Neumann B.C. does not matter in rotational forms

Although no error analysis with respect to space of the rotational forms of pressure-correction, velocity-correction, and
consistent splitting algorithms have yet been published, we expect that the convergence properties of these schemes is inde-
pendent of the way the Neumann B.C. is treated.

When looking at the various projection steps and subsequence pressure corrections in rotational form: (3.7), (3.8), (4.8),
(4.9), or (5.10), (5.11) we realize that these two steps involve different functional settings. The solution to the projection
step, i.e., the pressure correction /k+1, is meant to live in H1(X) and to satisfy the Neumann boundary condition, whereas
the solution to the correction step, i.e., the pressure itself pk+1 is meant to be in L2(X) only. Hence, from the discretization
point of view two different discrete spaces are to be used to approximate the pressure correction /k+1 and the pressure pk+1.
Let Mh be the pressure approximation space with optimal interpolation properties in L2 introduced in Hypothesis 6.2. Let
Nh � H1(X) be another finite-dimensional space with optimal interpolation properties in H1(X). If the Neumann boundary
condition is chosen to be enforced naturally and if Mh � H1(X), then the simplest choice is Nh = Mh. On the other hand, if
the Neumann boundary condition is chosen to be enforced essentially in Nh, i.e., onqjC = 0 for all qh 2 Nh, then, /kþ1

h 2 Nh

is obtained by solving the Poisson equation in Nh, while the pressure approximation pkþ1
h is obtained by solving the follow-

ing mass equation in Mh

ðpkþ1
h ; qhÞ ¼ ð/kþ1

h þ pH;kþ1
h � mr � wh; qhÞ; 8qh 2 Mh;
Fig. 11. Effect of the Neumann B.C. enforced essentially and weakly with the BDF2 incremental pressure-correction in rotational form. Galerkin–
Legendre PN=PN�2 approximation. Error in various norms vs. Dt in log–log scale.
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where wh ¼ ~ukþ1
h for the pressure-correction scheme, wh ¼ ~uH;kþ1

h for the velocity-correction scheme, and wh ¼ ukþ1
h for the

consistent splitting scheme. Whether /kþ1
h satisfies essentially the Neumann boundary condition or not, the pressure

approximation pkþ1
h never satisfies it thanks to the presence of the correction term m$ Æ wh.

In Fig. 11 we show convergence tests on the BDF2 incremental pressure-correction in rotational form using Galerkin–
Legendre P80=P78 approximation. In one set of results the Neumann boundary condition on the pressure correction is
treated essentially and in the other set the boundary condition is treated naturally. The graphs from both sets are indistin-
guishable. We observe a second-order slope on the velocity in the L2-norm and a 3

2
slope on the pressure in the H1-norm.

These results are in agreement with Theorem 4.3.

10. Open boundary conditions

So far we have only considered Dirichlet boundary conditions, but in many applications such as free surface problems
and channel flows, one also has to deal with natural boundary conditions of the type

pn� mðruÞn½ �jC ¼ b. ð10:1Þ
The ability of projection methods to treat correctly natural boundary conditions is scarcely discussed in the literature. We
report in this section some recent progress made in this direction.

Henceforth we assume that the boundary is partitioned into two parts C1 and C2. The homogeneous Dirichlet boundary
condition is enforced on C1 and (10.1) is enforced on C2 with b = 0.

Remark 10.1. It is also possible to enforce

½pn� mðruþ ðruÞTÞn�jC ¼ b

by replacing r2u in the momentum equation of (2.6) by r � ðruþ ðruÞTÞ. Everything that is said hereafter applies to this
setting as well.
10.1. Pressure-correction methods

Let us restrict ourselves to pressure-correction schemes and use the same notation as in Section 3.4. We set

pH;kþ1 ¼
0 if r ¼ 0;

pk if r ¼ 1;

2pk � pk�1 if r ¼ 2.

8><
>: ð10:2Þ

After initializing adequately u0, . . . ,uq�1 and pw,q, the pressure-correction algorithm proceeds as follows:

1

Dt
bq~u

kþ1 �
Xq�1

j¼0

bju
k�j

 !
� mr2~ukþ1 þrpH;kþ1 ¼ f ðtkþ1Þ;

~ukþ1jC1
¼ 0; pH;kþ1n� mðr~ukþ1Þn

� �
jC2
¼ 0;

8>><
>>: ð10:3Þ

bq

Dt
ðukþ1 � ~ukþ1Þ þ r/kþ1 ¼ 0;

r � ukþ1 ¼ 0; ukþ1 � njC1
¼ 0; /kþ1jC2

¼ 0;

8><
>: ð10:4Þ

/kþ1 ¼ pkþ1 � pH;kþ1 þ vmr � ~ukþ1. ð10:5Þ

Note that a homogeneous boundary condition is enforced on the pressure correction on C2. The origin of this boundary
condition can be understood in light of the following Hodge decomposition

½L2ðXÞ�d ¼ H �rN ; ð10:6Þ
where

H ¼ fv 2 ½L2ðXÞ�d ; r � v ¼ 0; v � njC1
¼ 0g; ð10:7Þ

N ¼ fq 2 H 1ðXÞ; qjC2
¼ 0g. ð10:8Þ

Hence, (10.4) is no more than a realization of the identity ukþ1 ¼ P H ~ukþ1, i.e., uk+1 is the L2-projection of ~ukþ1 onto H. This
property is essential to ensure stability of the algorithm.
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For v 2 [L2(X)]d, let S(v) and R(v) be the solution to

�r2SðvÞ þ rRðvÞ ¼ v;

r � SðvÞ ¼ 0; SðvÞjC1
¼ 0; RðvÞn� ðrSðvÞÞnð ÞjC2

¼ 0.

(

Definition 10.1. We say that s is the regularity index of the Stokes operator if for all v 2 [L2(X)]d the solution to the above
problem is such that

kRðvÞkHsðXÞK kvkL2ðXÞ. ð10:9Þ

It is clear that 0 6 s 6 1. The case s = 0 is referred to as no regularity while the case s = 1 is referred to as full regularity.
When X is a convex polygon or polyhedron, it is known that s = 1 when C2 = ;, see [9,16,33].

The following result is proved in Guermond et al. [21].

Theorem 10.1. If the solution to (2.6) is smooth enough in space and time, the solution to (10.3)–(10.5) with q = r + 1 = 2

satisfies the following error estimates if v = 0

kuDt � uDtk‘2ð½L2ðXÞ�d Þ þ kuDt � ~uDtk‘2ð½L2ðXÞ�d ÞK Dt
sþ1

2 ; ð10:10Þ

kpDt � pDtk‘1ðL2ðXÞÞ þ kuDt � ~uDtk‘1ð½H1ðXÞ�d ÞK Dt
1
2; ð10:11Þ

where s is the regularity index of the Stokes operator. Moreover, if v = 1, the following error estimates hold

kuDt � uDtk‘2ð½L2ðXÞ�d Þ þ kuDt � ~uDtk‘2ð½L2ðXÞ�d ÞK Dt
5þs

4 ; ð10:12Þ

kpDt � pDtk‘2ðL2ðXÞÞ þ kuDt � ~uDtk‘2ð½H1ðXÞ�d ÞK Dt
3þs

4 . ð10:13Þ

Remark 10.2. With full Stokes regularity, i.e., s = 1, the L2-norm of the error on the velocity is OðDt
3
2Þ, and the H1-norm of

the error on the velocity and the L2-norm of the error on the pressure are OðDtÞ. There are some theoretical reasons to
believe that the H1 estimates can be improved up to OðDt

5
4Þ by a sophisticated argument using weighted seminorms in time

as in [44,49]. Numerical results reported in Section 10.3 seem to confirm this conjecture, at least in two dimensions.
10.2. Inexact factorization

It is clear that the artificial Dirichlet boundary condition in (10.4) is responsible for the poor convergence property of the
algorithm (10.3)–(10.5). For instance, for the standard version of the algorithm, this yields p0jC2

¼ � � � ¼ pkþ1jC2
, which is

obviously a spurious boundary condition. It is sometimes argued in the literature that inexact factorization can handle nat-
ural boundary conditions without suffering from spurious Neumann or Dirichlet boundary condition. We show below that
this claim is misleading.

Let Xh be a finite-dimensional subspace of fv 2 ½H 1ðXÞ�d ; vjC1
¼ 0g and Mh be a finite-dimensional subspace of L2(X).

Then all the arguments of Sections 6.1 and 6.3 hold. For instance, since in step 2 of the algorithm (6.9) there is no explicit
reference to Dirichlet or Neumann boundary conditions, one may be led to think that the algorithm should perform well.
However, using the notation of (6.11) with Yh = Xh and Ch = Bh, the critical step overlooked by the algebraic point of view
is the continuity of the operator BT

h in step 2 of (6.11) (i.e., the projection step). In other words Hypothesis 6.4 does not hold
uniformly with respect to the meshsize. To make this point clear while keeping the analysis simple, let us assume that
Mh � H1(X). This hypothesis can be appropriately weakened by introducing additional non-essential technical details.
The continuity of BT

h is clarified by the following lemma.

Lemma 10.1. For all qh in Mh we have

kBT
h qhk0 K ð1þ sðhÞÞkqhk1;

where s(h) is the constant such that

sðhÞ ¼ max
vh2X h

kvhkL2ðC2Þ

kvhk0

.

Remark 10.3. Note that in general s(h)! +1 when h! 0 if C2 5 ;. In particular for finite elements sðhÞgh�
1
2.

Thus, using arguments similar to those in [23,19], the following result can be proved.
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Theorem 10.2. Provided the solution to (2.6) is regular enough in time and space, the solution of (6.11) (including that of (6.9))

with BDF 2 time stepping and adequate initialization satisfies the following error estimates:

kuDt � uh;Dtk‘2ð½L2ðXÞ�d Þ þ kuDt � ~uh;Dtk‘2ð½L2ðXÞ�d ÞK sðhÞ2Dt2 þ �1ðhÞ;
kuDt � ~uh;Dtk‘1ð½H1ðXÞ�d Þ þ kpDt � ph;Dtk‘1ðL2ðXÞÞK sðhÞDt þ �2ðhÞ.

ð10:14Þ

Remark 10.4. Note that the error estimates are not uniform in space. For finite elements the error estimate on the velocity
in the L2-norm is OðDt2=hÞ, while the error estimate is OðDt=h1=2Þ for the velocity in H1-norm and for the pressure in L2-
norm.

Let us finish this section by stating a convergence result for the fully discretized case where the Dirichlet condition on the
pressure correction in (10.4) is enforced essentially and the standard form of the pressure-correction algorithm is used. We
assume that Mh � N, where N is defined in (10.8). Accordingly, we modify the interpolation Hypothesis 6.2 as follows.

Hypothesis 10.1. There exist two spaces W � fv 2 ½H1ðXÞ�d ; vjC2
¼ 0g, Z � L2(X) and a continuous function �02ðhÞ

vanishing at 0 such that for all v 2W and q 2 Z

inf
vh2X h

kv� vhk1 6 �02ðhÞkvkW ;

inf
qh2Mh

kq� qhk0 6 �02ðhÞkqkZ .
ð10:15Þ

Remark 10.5. For finite elements we have �02ðhÞgh1=2.

In this case, the operator BT
h is clearly continuous, but since the interpolation properties are no longer optimal the fol-

lowing result holds.

Theorem 10.3. Under the Hypothesis 10.1 and provided the solution to (2.6) is sufficiently smooth and Mh � N, the solution of

(6.11) satisfies the following error estimates:

kuDt � ~uh;Dtk‘1ð½H1ðXÞ�d Þ þ kpDt � ph;Dtk‘1ðL2ðXÞÞK Dt
1
2 þ �02ðhÞ. ð10:16Þ

Remark 10.6

(i) The estimate (10.14) is in agreement with (10.11).
(ii) Note that contrary to (10.14) the error estimate (10.16) is now uniform with respect to time and space, but the con-

vergence rate is too poor to be recommendable in practice. Of course, this limitation does not hold for the rotational
version of the algorithm as illustrated by (10.12) and (10.13) and in Section 10.3.

In conclusion, whether the Dirichlet boundary condition on the pressure correction is enforced weakly as done in the so-
called inexact factorization approach (the user being possibly unaware of it) or essentially, there is a price to pay for this
‘‘variational crime’’ when the standard form of the pressure-correction algorithm is used. In the first case, the price is non-
uniformity of the error estimates, and in the second case it is non-optimality of the interpolation properties. Restated in
other words, the inexact factorization uses an optimal pressure interpolation but involves an unbounded operator, whereas
the differential formulation involves bounded operators but the pressure interpolation is suboptimal.

10.3. Numerical results

Let us consider a square domain X = ]0, 1[2. We take the exact solution ðu1; u2; pÞ of (2.6) to be

u1ðx; y; tÞ ¼ sin x sinðy þ tÞ; u2ðx; y; tÞ ¼ cos x cosðy þ tÞ; pðx; y; tÞ ¼ cos x sinðy þ tÞ. ð10:17Þ
The source term f is set accordingly. We set C2 = {(x,y) 2 C,x = 0} and C1 = CnC2. This solution satisfies the following
open boundary conditions:

�oxu2jC2
¼ 0; p� oxu1jC2

¼ 0. ð10:18Þ

We use P2=P1 finite elements with the meshsize h = 1/80 to guarantee that the error in space is significantly smaller than
the splitting error. We use the BDF2 pressure-correction algorithm in rotational form with r = 1. The convergence tests
with respect to Dt are reported in Fig. 12. The convergence rate of the error on the velocity in the L2-norm is close to
OðDt3=2Þ and that in the H1-norm behaves like OðDt5=4Þ, which is higher than the OðDtÞ rate predicted by Theorem 10.1
(see Remark 10.2). The convergence rate of the error on the pressure in the L1-norm is OðDtÞ and that in the L2-norm



Fig. 12. Rotational pressure-correction scheme: finite elements; errors at t = 1 vs. Dt (using h = 1/80). Velocity: (m) L2-norm; (+) H1-norm. Pressure: (,)
L2-norm; (j) L1-norm.
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is between OðDtÞ and OðDt
3
2Þ. These rates are consistent with the error estimates in Theorem 10.1. The accuracy saturation

observed for small time steps comes from the spatial discretization error. The Legendre–Galerkin technique give similar
results; see [21].

11. Open questions and concluding remarks

11.1. Stability of third- and higher-order schemes: Dirichlet boundary conditions

A number of authors have claimed that the pressure-correction scheme (3.14)–(3.16) with (q, r) = (3, 2) is third-order
accurate (for the velocity) and unconditionally stable. However, although third-order accuracy for the velocity is observed
for the scheme with (q, r) = (3, 2) when Dt is not too small, there are ample numerical evidences indicating that it becomes
unstable when Dt is smaller than a critical time step Dtc 	 h2 for finite-element discretizations and Dt 	 N�3 for spectral
discretizations when applied to the linear problem (2.6) supplemented with Dirichlet boundary conditions (see Table 1).
Thus, when the scheme is applied to nonlinear Navier–Stokes equations with nonlinear terms treated explicitly, it some-
times becomes unconditionally unstable due to the two contradictory requirements: (i) Dt should be larger than Dtc,
and (ii) Dt should be sufficiently small to satisfy the usual CFL condition.

On the other hand, numerical tests performed on the linear problem (2.6) supplemented with Dirichlet boundary con-
ditions using finite elements showed that the velocity-correction scheme and the consistent splitting scheme (all of them in
Table 1
Stability and convergence rates of rotational schemesa

B.C. q r Order Pressure-correction Velocity-correction Consistent splitting

Dirichlet B.C. 1 1 (1,1) Proved Proved Proved

2 1 2;
3

2

� �
Proved Proved Not applicable

2 2 (2,2)w FE: stable if ch2
6 Dtw FE: stablew FE: stablew

LG: stable if cN�3
6 Dtw LG: stablew LG: stablew

3 2 3;
5

2

� �H

FE: stable if ch2
6 Dtw FE: stable if ch2

6 Dtw Not applicable
LG: stable if cN�3

6 Dtw LG: stablew

Open B.C. 1 1
3þ s

4
;
3þ s

4

� �
Proved Numerical evidences only Numerical evidences only

2 1
5þ s

4
;
3þ s

4

� �
Proved Numerical evidences only Not applicable

2 2 Unusable FE: stable if c1h2
6 Dt 6 c2h2w FE: stable if c1h2

6 Dt 6 c2h2w FE: stable if c1h2
6 Dt 6 c2h2w

Inf–sup Needed Needed for (4.8) Needed for (5.10)
Can be avoidedw for (4.6) Can be avoidedw for (5.8)

a The first (resp. second) number in the parenthesis is the convergence rate for the velocity in the L2-norm (resp. the velocity in the H1-norm and the
pressure in the L2-norm); s is the regularity index of the Stokes operator; the symbol w means numerical evidences only.
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rotational form) are all stable with (q, r) = (2,2). Conclusions for the rotational pressure-correction scheme with
(q, r) = (2,2) are not so clear. We carried out tests with two different finite element codes. One code gave stable and con-
vergent results for all time steps, whereas the other code yielded stable and convergent results under the condition ch2

6 Dt.
Finally, the rotational velocity-correction scheme (4.6), (4.7) with q = r or q = r + 1 for r = 2, 3 has been reported to

have been used in many challenging simulations and is frequently claimed to be unconditionally stable for solving (2.6)
(cf. [31,32]). However, how to prove (or disprove) rigorously the stability for any case with r P 2 is still an open problem.

11.2. Second-order schemes for problems with open boundary conditions

Numerical tests performed on the open boundary problem (10.18), (10.17) using finite elements show that the pressure-
correction scheme, the velocity-correction scheme, and the consistent splitting scheme (all of them in rotational form) with
q 2 {1, 2} and r = 2 is stable only if the time step satisfies: c1h2

6 Dt 6 c2h2 (see Table 1).

11.3. Stability analysis of an equivalent Stokes problem

As already discussed in Sections 4 and 5, there are two different ways of implementing the velocity-correction and the
consistent splitting algorithms.

To construct finite element approximation, it is preferable to use (4.8), (4.9) instead of (4.6) and (5.10), (5.11) instead of
(5.8). Then, as explained in Section 8.1.2, the associated discrete steady Stokes problem is (8.2) and it is the inf–sup con-
dition associated with this problem that controls the convergence properties of the discrete counterparts of the above men-
tioned splitting schemes.

On the other hand, there are two ways of implementing (4.6) and (5.8). If Xh � H2(X) and Mh � H1(X), the discrete
steady Stokes problem associated with (4.6) and (5.8) can be written as follows:

mðrukþ1
h ;rvhÞ � ðpkþ1

h ;r � vhÞ ¼ ðf ðtkþ1Þ; vhÞ; 8vh 2 X h;

ðrpkþ1
h ;rqhÞ ¼ ðf ðtkþ1Þ � mr�r� ukþ1

h ;rqhÞ; 8qh 2 Mh.

(
ð11:1Þ

But if Xh is only in H1(X), as in the case of usual finite elements, and Mh � H1(X), one can integrate the second-order term
by parts to give (see also [30]):

mðrukþ1
h ;rvhÞ � ðpkþ1

h ;r � vhÞ ¼ ðf ðtkþ1Þ; vhÞ; 8vh 2 X h;

ðrpkþ1
h ;rqhÞ ¼ ðf ðtkþ1Þ;rqhÞ � m

R
Cðn�r� ukþ1

h Þ � rqh; 8qh 2 Mh.

(
ð11:2Þ

Note that although (8.2), (11.1) and (11.2) converge to the same Stokes problem as h! 0, for any fixed h the discrete prob-
lems are essentially different.

Numerical experiments with Legendre–Galerkin approximation suggest that, as opposed to (8.2), (11.1) is well-posed for
both the PN=PN and PN=PN�2 approximations. In other words, this problem seems to be well-posed for any consistent (but
not necessarily inf–sup stable) approximation spaces for velocity and pressure. However, the theoretical justification of this
statement is still an open question.

11.4. Concluding remarks

We have reviewed in this paper available stability and convergence results for a broad range of projection schemes which
we classified into three classes, namely the pressure-correction methods, the velocity-correction methods, and the consistent
splitting methods. We have also clarified some controversial theoretical and implementation issues such as the role of inf–
sup conditions, open boundary conditions, and implementations of Neumann boundary conditions.

In short, for all three classes of projection schemes, their rotational versions should always be preferred over the stan-
dard versions. We now summarize in Table 1 the main results related to the rotational forms of the pressure-correction
methods, velocity-correction methods, and consistent splitting methods.

References

[1] Y. Achdou, J.-L. Guermond, Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes
equations, SIAM J. Numer. Anal. 37 (3) (2000) 799–826.

[2] F. Auteri, J.-L. Guermond, N. Parolini, Role of the LBB condition in weak spectral projection methods, J. Comput. Phys. 174 (2001) 405–420.
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