Introduction to Delay-Differential Equations

John Mallet-Paret Division of Applied Mathematics Brown University

(ロ)、<</p>

Chengdu, Sichuan, June, 2019

$$\dot{x} = f(x), \qquad x(t_0) = x_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$\dot{x} = f(x), \qquad x(t_0) = x_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Here $f : \mathbf{R}^n \to \mathbf{R}^n$ is smooth and can be thought of as a vector field in \mathbf{R}^n .

$$\dot{x}=f(x), \qquad x(t_0)=x_0$$

Here $f : \mathbf{R}^n \to \mathbf{R}^n$ is smooth and can be thought of as a vector field in \mathbf{R}^n . There is a unique solution x(t) through the initial point x_0 at the initial time t_0 .

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

$$\dot{x}=f(x), \qquad x(t_0)=x_0$$

Here $f : \mathbf{R}^n \to \mathbf{R}^n$ is smooth and can be thought of as a vector field in \mathbf{R}^n . There is a unique solution x(t) through the initial point x_0 at the initial time t_0 .

$$\dot{x} = ax, \qquad x(t_0) = x_0 \implies x(t) = e^{a(t-t_0)}x_0$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

$$\dot{x}=f(x), \qquad x(t_0)=x_0$$

Here $f : \mathbf{R}^n \to \mathbf{R}^n$ is smooth and can be thought of as a vector field in \mathbf{R}^n . There is a unique solution x(t) through the initial point x_0 at the initial time t_0 .

$$\dot{x} = ax, \qquad x(t_0) = x_0 \implies x(t) = e^{a(t-t_0)}x_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

but in general there is no explicit formula for the solution.

Delay-differential equations:

$$\dot{x}(t) = f(x(t), x(t-r)),$$

 $f: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^n, \quad r > 0 \text{ is given.}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○○○

Delay-differential equations:

$$\dot{x}(t)=f(x(t),x(t-r)),$$

$$f: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^n, \quad r > 0$$
 is given.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Delay-differential equations (delay equations) arise as mathematical models in many areas of science and engineering.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

• Control theory $\dot{x} = f(x, u),$

• Control theory $\dot{x} = f(x, u), \quad u = g(x(t - r))$

• Control theory $\dot{x} = f(x, u), \quad u = g(x(t - r))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Biology and Physiology

- Control theory $\dot{x} = f(x, u), \quad u = g(x(t - r))$
- Biology and Physiology (maturation or reproduction time in biological and physiological models)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\dot{x} = f(x, u), \quad u = g(x(t-r))$$

 Biology and Physiology (maturation or reproduction time in biological and physiological models)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Economics

$$\dot{x} = f(x, u), \quad u = g(x(t-r))$$

- Biology and Physiology (maturation or reproduction time in biological and physiological models)
- Economics

(production or manufacturing time in economic models)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\dot{x} = f(x, u), \quad u = g(x(t-r))$$

- Biology and Physiology (maturation or reproduction time in biological and physiological models)
- Economics

(production or manufacturing time in economic models)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Optics and Communications

$$\dot{x} = f(x, u), \quad u = g(x(t-r))$$

- Biology and Physiology (maturation or reproduction time in biological and physiological models)
- Economics

(production or manufacturing time in economic models)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Optics and Communications (finite speed of signal transmission) Multiple delays:

$$\dot{x}(t)=f(x(t),x(t-r_1),\ldots,x(t-r_m)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Multiple delays:

$$\dot{x}(t) = f(x(t), x(t-r_1), \dots, x(t-r_m)).$$

Distributed delay:

$$\dot{x}(t) = f(\int_{t-r}^{t} x(s) \, ds).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Multiple delays:

$$\dot{x}(t)=f(x(t),x(t-r_1),\ldots,x(t-r_m)).$$

Distributed delay:

$$\dot{x}(t) = f(\int_{t-r}^t x(s) \, ds).$$

Nonautonomous systems, variable delays (r = r(t) or r = r(x(t))), infinite delays,...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Compare a linear ordinary differential equation

$$\dot{x} = Ax$$

with a linear delay equation

$$\dot{x}(t) = Ax(t) + Bx(t-r).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Compare a linear ordinary differential equation

$$\dot{x} = Ax$$

with a linear delay equation

$$\dot{x}(t) = Ax(t) + Bx(t-r)$$

One can find solutions of the form $x(t) = e^{\lambda t} v$ where

$$(\lambda I - A - Be^{-\lambda r})v = 0$$
, and

$$\Delta(\lambda) = \det(\lambda I - A - Be^{-\lambda r}) = 0.$$

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶

In general, the characteristic equation

$$\Delta(\lambda) = \det(\lambda I - A - Be^{-\lambda r}) = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

has infinitely many roots.

In general, the characteristic equation

$$\Delta(\lambda) = \det(\lambda I - A - Be^{-\lambda r}) = 0$$

has infinitely many roots. In many (but not all) cases one can write any solution as a superposition of such eigensolutions

$$x(t) = \sum_{j=1}^{\infty} c_j e^{\lambda_j t} v_j$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

In general, the characteristic equation

$$\Delta(\lambda) = \det(\lambda I - A - Be^{-\lambda r}) = 0$$

has infinitely many roots. In many (but not all) cases one can write any solution as a superposition of such eigensolutions

$$x(t) = \sum_{j=1}^{\infty} c_j e^{\lambda_j t} v_j$$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

In this sense, a delay equation is infinite-dimensional.

$$\dot{x}(t) = -ax(t) + g(x(t-r)), \quad g(x) = \frac{bx}{1+x^k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

where a, b, r > 0 and k > 1.

$$\dot{x}(t) = -ax(t) + g(x(t-r)), \quad g(x) = \frac{bx}{1+x^k}$$

where a, b, r > 0 and k > 1. This incorporates an attrition term -ax(t), and a production term g(x(t-r)) with maturation time r.

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

$$\dot{x}(t) = -ax(t) + g(x(t-r)), \quad g(x) = \frac{bx}{1+x^k}$$

where a, b, r > 0 and k > 1. This incorporates an attrition term -ax(t), and a production term g(x(t-r)) with maturation time r. The rate of production of new cells depends on the population of cells r time units in the past.

$$\dot{x}(t) = -ax(t) + g(x(t-r)), \quad g(x) = \frac{bx}{1+x^k}$$

where a, b, r > 0 and k > 1. This incorporates an attrition term -ax(t), and a production term g(x(t-r)) with maturation time r. The rate of production of new cells depends on the population of cells r time units in the past.

Note: The same equation, with a different g, arises in nonlinear optics.

・ロト・日本・日本・日本・日本・今日・

Modified Mackey-Glass

$$\beta \dot{x}(t) = -ax(t) + g(x(t-r)), \quad r = r(x(t))$$

7a

Modified Mackey-Glass

$$eta \dot{x}(t) = -ax(t) + g(x(t-r)), \quad r = r(x(t))$$

Two Delays

$$\dot{x}(t) = -ax(t) + g_1(x(t-r_1)) + g_2(x(t-r_2))$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

$$eta\dot{x}(t) = -ax(t) + g(x(t-r)), \quad r = r(x(t))$$

Two Delays

$$\dot{x}(t) = -ax(t) + g_1(x(t-r_1)) + g_2(x(t-r_2))$$

Cyclic Feedback System

$$\dot{x}_i(t) = f_i(x_i(t), x_{i-1}(t-r_i)), \quad i \mod n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$\beta \dot{x}(t) = -ax(t) + g(x(t-r)), \quad r = r(x(t))$$

Two Delays

$$\dot{x}(t) = -ax(t) + g_1(x(t-r_1)) + g_2(x(t-r_2))$$

Cyclic Feedback System

$$\dot{x}_i(t) = f_i(x_i(t), x_{i-1}(t-r_i)), \quad i \mod n$$

Wright's Equation

$$\dot{x}(t) = -\alpha x(t-1)[1+x(t)]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

In the 1960s Jack Hale and his collaborators placed the subject of delay equations within the framework of infinite-dimensional dynamical systems.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

In the 1960s Jack Hale and his collaborators placed the subject of delay equations within the framework of infinite-dimensional dynamical systems. For an equation such as

$$\dot{x}(t) = f(x(t), x(t-r))$$

one specifies an initial condition as

$$x_{t_0} = \varphi \in C$$

where

$$C=C([-r,0],\mathbf{R}^n),$$

 $x_t \in C$ is given by $x_t(\theta) = x(t + \theta)$ for $\theta \in [-r, 0]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In the 1960s Jack Hale and his collaborators placed the subject of delay equations within the framework of infinite-dimensional dynamical systems. For an equation such as

$$\dot{x}(t) = f(x(t), x(t-r))$$

one specifies an initial condition as

$$x_{t_0} = \varphi \in C$$

where

$$C = C([-r, 0], \mathbf{R}^n),$$

 $x_t \in C$ is given by $x_t(\theta) = x(t + \theta)$ for $\theta \in [-r, 0]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then for every $t \ge t_0$ one has $x_t \in C$ for the solution.
In the 1960s Jack Hale and his collaborators placed the subject of delay equations within the framework of infinite-dimensional dynamical systems. For an equation such as

$$\dot{x}(t) = f(x(t), x(t-r))$$

one specifies an initial condition as

$$x_{t_0} = \varphi \in C$$

where

$$C = C([-r, 0], \mathbf{R}^n),$$

 $x_t \in C$ is given by $x_t(\theta) = x(t + \theta)$ for $\theta \in [-r, 0]$.

Then for every $t \ge t_0$ one has $x_t \in C$ for the solution. Existence is for forward time only, and uniqueness is problematic for variable delays.

9

With Hale's formulation, many of the well-studied phenomena and structures of (finite-dimensional) dynamical systems can be found in delay equations. Among these are

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

equilibrium points and their stability

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

- equilibrium points and their stability
- periodic orbits

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

- equilibrium points and their stability
- periodic orbits
- invariant manifolds (e.g., separatrices)

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

- equilibrium points and their stability
- periodic orbits
- invariant manifolds (e.g., separatrices)
- bifurcations

- equilibrium points and their stability
- periodic orbits
- invariant manifolds (e.g., separatrices)
- bifurcations
- omega limit sets

- equilibrium points and their stability
- periodic orbits
- invariant manifolds (e.g., separatrices)
- bifurcations
- omega limit sets
- attractors (finite dimensional)

- equilibrium points and their stability
- periodic orbits
- invariant manifolds (e.g., separatrices)
- bifurcations
- omega limit sets
- attractors (finite dimensional)
- chaotic dynamics

Many of the techniques and tools of classical dynamical systems can be extended to delay equations, although sometimes this entails significant complications.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

Many of the techniques and tools of classical dynamical systems can be extended to delay equations, although sometimes this entails significant complications.

The flow (solution) map $T(t) : C \to C$ is compact when $t \ge r$. This gives a finite-dimensional feel to this infinite-dimensional problems.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Many of the techniques and tools of classical dynamical systems can be extended to delay equations, although sometimes this entails significant complications.

The flow (solution) map $T(t) : C \to C$ is compact when $t \ge r$. This gives a finite-dimensional feel to this infinite-dimensional problems.

This program has been carried out quite successfully for problems with constant delay, but is still (actively!) underway for problems with variable delays.

$$\beta \dot{x}(t) = -x(t) + g(x(t-1)),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○○○

$$\beta \dot{x}(t) = -x(t) + g(x(t-1)),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

Negative Feedback Tends to Produce Oscillations

$$\beta \dot{x}(t) = -x(t) + g(x(t-1)),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Negative Feedback Tends to Produce Oscillations

$$\beta \dot{x}(t) = -x(t) + g(x(t-1)),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Negative Feedback Tends to Produce Oscillations

•
$$xg(x) < 0$$
 for all $x \neq 0$;

$$\beta \dot{x}(t) = -x(t) + g(x(t-1)),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Negative Feedback Tends to Produce Oscillations

•
$$xg(x) < 0$$
 for all $x \neq 0$;

•
$$g'(0) < -1;$$

$$\beta \dot{x}(t) = -x(t) + g(x(t-1)),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Negative Feedback Tends to Produce Oscillations

- xg(x) < 0 for all $x \neq 0$;
- ▶ g'(0) < −1;</p>
- g(x) has sublinear growth as $|x| \to \infty$.

$$\beta \dot{x}(t) = -x(t) + g(x(t-1)),$$

Negative Feedback Tends to Produce Oscillations

For each small β there exists a **slowly oscillating periodic** solution x(t) if $g : \mathbb{R} \to \mathbb{R}$ satisfies

- xg(x) < 0 for all $x \neq 0$;
- ▶ g'(0) < −1;</p>
- g(x) has sublinear growth as $|x| \to \infty$.

Tool: Degree theory (fixed-point theorem) in cones.

$$\beta \dot{x}(t) = -x(t) + g(x(t-1)),$$

Negative Feedback Tends to Produce Oscillations

For each small β there exists a **slowly oscillating periodic** solution x(t) if $g : \mathbb{R} \to \mathbb{R}$ satisfies

•
$$xg(x) < 0$$
 for all $x \neq 0$;

• g(x) has sublinear growth as $|x| \to \infty$.

Tool: Degree theory (fixed-point theorem) in cones.

Similar result for the case of a variable delay r = r(x(t)), but little is known for multiple delays.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Detailed information is available about the limiting behavior of these solutions as $\beta \rightarrow 0$ (the **singular perturbation** case).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Detailed information is available about the limiting behavior of these solutions as $\beta \rightarrow 0$ (the **singular perturbation** case).

$$\|x\| = \sup_{t \in \mathbf{R}} |x(t)| \ge \mathcal{K} > 0$$
 as $eta o 0$ provided that either

- $r \equiv 1$ (constant delay);
- ▶ $r'(0) \neq 0;$
- r'(0) = 0 and r''(0) > 0; or
- r'(0) = 0 and r''(0) < 0.

Detailed information is available about the limiting behavior of these solutions as $\beta \rightarrow 0$ (the **singular perturbation** case).

$$\|x\| = \sup_{t \in \mathbf{R}} |x(t)| \ge K > 0$$
 as $eta o 0$ provided that either

- $r \equiv 1$ (constant delay);
- ► $r'(0) \neq 0;$
- r'(0) = 0 and r''(0) > 0; or
- r'(0) = 0 and r''(0) < 0.

Each case requires a different argument, and the asymptotic shapes of the solutions as $\beta \rightarrow 0$ in the four cases are radically different.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

If $r \equiv 1$ is constant, and there is a stable period 2 orbit $\{a_1, a_2\}$ of the map $x \to f(x)$, one obtains a square wave of period $2 + O(\beta)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

If $r \equiv 1$ is constant, and there is a stable period 2 orbit $\{a_1, a_2\}$ of the map $x \to f(x)$, one obtains a square wave of period $2 + O(\beta)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The solution need not be unique, and need not be stable.

If $r \equiv 1$ is constant, and there is a stable period 2 orbit $\{a_1, a_2\}$ of the map $x \to f(x)$, one obtains a square wave of period $2 + O(\beta)$.

The solution need not be unique, and need not be stable. The vertical parts of the wave have thickness $O(\beta)$ and are described by transition layer equations.

・ロト ・ 『 ・ ・ ミ ・ ・ ヨ ・ うらう

For non-constant *r*, determining the asymptotic shape of solutions involves **max-plus operators**.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

For non-constant *r*, determining the asymptotic shape of solutions involves **max-plus operators**.

The **Sawtooth Equation** is the simplest model case.

$$\beta \dot{x}(t) = -x(t) - kx(t-r), \qquad k > 1, \qquad r = 1 + x(t).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

For non-constant *r*, determining the asymptotic shape of solutions involves **max-plus operators**.

The **Sawtooth Equation** is the simplest model case.

$$eta\dot{x}(t)=-x(t)-kx(t-r),\qquad k>1,\qquad r=1+x(t).$$

In contrast to the constant delay case, for small β the periodic solution is **unique** and **superstable** with asymptotic period

$$p = k + 1 + \frac{\beta |\log \beta|}{k - 1} + O(\beta).$$

・ロト・日本・日本・日本・日本・今日・

Very detailed asymptotics are known for this solution as $\beta \rightarrow 0$.

TENSOR PRODUCTS, POSITIVE OPERATORS, AND DELAY-DIFFERENTIAL EQUATIONS

John Mallet-Paret Division of Applied Mathematics Brown University

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Ordinary Differential Equations

A linear ODE

 $\dot{x} = A(t)x$

generates a linear process (solution map) in \mathbf{R}^n

 $T(t, t_0) : \mathbf{R}^n \to \mathbf{R}^n$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Ordinary Differential Equations

A linear ODE

 $\dot{x} = A(t)x$

generates a linear process (solution map) in \mathbf{R}^n

 $T(t, t_0) : \mathbf{R}^n \to \mathbf{R}^n$

namely a family of linear maps satisfying

 $T(t_0, t_0) = I,$ $T(t, t_1)T(t_1, t_0) = T(t, t_0)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all t, t_0 , t_1 .

Letting \land denote the **exterior product**, define

$$T(t, t_0)^{\wedge m} = T(t, t_0) \wedge T(t, t_0) \wedge \cdots \wedge T(t, t_0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○○○

for $m \leq n$.

Letting \wedge denote the **exterior product**, define

$$T(t, t_0)^{\wedge m} = T(t, t_0) \wedge T(t, t_0) \wedge \cdots \wedge T(t, t_0)$$

for $m \leq n$. Then

$$T(t, t_0)^{\wedge m} : (\mathbf{R}^n)^{\wedge m} \to (\mathbf{R}^n)^{\wedge m}$$

is a linear process in $(\mathbb{R}^n)^{\wedge m}$ and satisfies a so-called **compound differential equation**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Letting \land denote the **exterior product**, define

$$T(t, t_0)^{\wedge m} = T(t, t_0) \wedge T(t, t_0) \wedge \cdots \wedge T(t, t_0)$$

for $m \leq n$. Then

$$T(t, t_0)^{\wedge m} : (\mathbf{R}^n)^{\wedge m} \to (\mathbf{R}^n)^{\wedge m}$$

is a linear process in $(\mathbb{R}^n)^{\wedge m}$ and satisfies a so-called **compound differential equation**.

This was studied by J. Muldowney and Q. Wang in the case $\dot{x} = A(t)x$ is the linearization around a solution

$$y = p(t)$$
 satisfying $\dot{y} = f(y),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

namely A(t) = f'(p(t)).
Letting \land denote the **exterior product**, define

$$T(t, t_0)^{\wedge m} = T(t, t_0) \wedge T(t, t_0) \wedge \cdots \wedge T(t, t_0)$$

for $m \leq n$. Then

$$T(t, t_0)^{\wedge m} : (\mathbf{R}^n)^{\wedge m} \to (\mathbf{R}^n)^{\wedge m}$$

is a linear process in $(\mathbb{R}^n)^{\wedge m}$ and satisfies a so-called **compound differential equation**.

This was studied by J. Muldowney and Q. Wang in the case $\dot{x} = A(t)x$ is the linearization around a solution

$$y = p(t)$$
 satisfying $\dot{y} = f(y)$,

namely A(t) = f'(p(t)).

They obtained information about the nonlinear equation $\dot{y} = f(y)$.

Tensor Products

Let V and W be vector spaces. Then $V \otimes W$ is the vector space generated by all elements $v \otimes w$ (with $v \in V$ and $w \in W$) under the relations

$$\lambda(v \otimes w) = (\lambda v) \otimes w = v \otimes (\lambda w),$$
$$(v + v') \otimes w = v \otimes w + v' \otimes w,$$
$$v \otimes (w + w') = v \otimes w + v \otimes w'$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and no others.

Tensor Products

Let V and W be vector spaces. Then $V \otimes W$ is the vector space generated by all elements $v \otimes w$ (with $v \in V$ and $w \in W$) under the relations

$$\lambda(v \otimes w) = (\lambda v) \otimes w = v \otimes (\lambda w),$$
$$(v + v') \otimes w = v \otimes w + v' \otimes w,$$
$$v \otimes (w + w') = v \otimes w + v \otimes w'$$

and no others.

$$\dim(V \otimes W) = \dim V imes \dim W$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tensor Products

Let V and W be vector spaces. Then $V \otimes W$ is the vector space generated by all elements $v \otimes w$ (with $v \in V$ and $w \in W$) under the relations

$$\lambda(v \otimes w) = (\lambda v) \otimes w = v \otimes (\lambda w),$$
$$(v + v') \otimes w = v \otimes w + v' \otimes w,$$
$$v \otimes (w + w') = v \otimes w + v \otimes w'$$

and no others.

$$\dim(V\otimes W) = \dim V \times \dim W$$

Tensor product $A \otimes B$ of linear maps $A : V \to V$ and $B : W \to W$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Exterior Product

Take the m-fold tensor product of a vector space V with itself

$$V^{\otimes m}=V\otimes V\otimes\cdots\otimes V.$$

Exterior Product

Take the m-fold tensor product of a vector space V with itself

$$V^{\otimes m} = V \otimes V \otimes \cdots \otimes V.$$

The exterior product

$$V^{\wedge m} \subseteq V^{\otimes m}$$

is the subspace generated by all elements

$$v_1 \wedge v_2 \wedge \cdots \wedge v_m = \frac{1}{m!} \sum_{\sigma \in \mathcal{S}_m} (-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(m)},$$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

for $v_i \in V$ where S_m is the symmetric group on m elements.

Exterior Product

Take the m-fold tensor product of a vector space V with itself

$$V^{\otimes m} = V \otimes V \otimes \cdots \otimes V.$$

The exterior product

$$V^{\wedge m} \subseteq V^{\otimes m}$$

is the subspace generated by all elements

$$v_1 \wedge v_2 \wedge \cdots \wedge v_m = \frac{1}{m!} \sum_{\sigma \in \mathcal{S}_m} (-1)^{\sigma} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(m)},$$

for $v_i \in V$ where S_m is the symmetric group on m elements.

$$\dim V^{\wedge m} = \begin{pmatrix} \dim V \\ m \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

4

Linear map $A: V \to V$ with eigenvalues $\{\lambda_i\}_{i=1}^n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Linear map $A: V \to V$ with eigenvalues $\{\lambda_i\}_{i=1}^n$.

•The spectrum of $A^{\otimes m}: V^{\otimes m} \to V^{\otimes m}$ consists of all products

 $\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_m},$ with indices $1\leq i_j\leq n.$

・ロト・4回ト・4回ト・4回ト・目・9000

Linear map $A: V \to V$ with eigenvalues $\{\lambda_i\}_{i=1}^n$.

•The spectrum of $A^{\otimes m}: V^{\otimes m} \to V^{\otimes m}$ consists of all products

 $\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_m},$ with indices $1\leq i_j\leq n.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(There are n^m such products.)

Linear map $A: V \to V$ with eigenvalues $\{\lambda_i\}_{i=1}^n$.

•The spectrum of $A^{\otimes m}: V^{\otimes m} \to V^{\otimes m}$ consists of all products

 $\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_m},$ with indices $1\leq i_j\leq n.$

(There are n^m such products.)

•The spectrum of $A^{\wedge m}: V^{\wedge m} \to V^{\wedge m}$ consists of all products

 $\lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_m}, \qquad \text{with indices } 1 \leq i_1 < i_2 < \cdots < i_m \leq n.$

Linear map $A: V \to V$ with eigenvalues $\{\lambda_i\}_{i=1}^n$.

•The spectrum of $A^{\otimes m}: V^{\otimes m} \to V^{\otimes m}$ consists of all products

 $\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_m},$ with indices $1\leq i_j\leq n.$

(There are n^m such products.)

•The spectrum of $A^{\wedge m}: V^{\wedge m} \to V^{\wedge m}$ consists of all products

 $\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_m},$ with indices $1 \le i_1 < i_2 < \cdots < i_m \le n.$ (There are $\binom{n}{m}$ such products.)

(日)(1)

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be Banach spaces and form their algebraic tensor product $X \otimes Y$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be Banach spaces and form their algebraic tensor product $X \otimes Y$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

What norm shall we put on $X \otimes Y$?

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be Banach spaces and form their algebraic tensor product $X \otimes Y$.

What norm shall we put on $X \otimes Y$? In general, there are many **inequivalent** "natural" norms we can take.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be Banach spaces and form their algebraic tensor product $X \otimes Y$.

What norm shall we put on $X \otimes Y$? In general, there are many **inequivalent** "natural" norms we can take.

Given a "natural" norm for $X \otimes Y$, is the resulting space complete (i.e., a Banach space)?

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be Banach spaces and form their algebraic tensor product $X \otimes Y$.

What norm shall we put on $X \otimes Y$? In general, there are many **inequivalent** "natural" norms we can take.

Given a "natural" norm for $X \otimes Y$, is the resulting space complete (i.e., a Banach space)? If it's not complete, we may take its completion.

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be Banach spaces and form their algebraic tensor product $X \otimes Y$.

What norm shall we put on $X \otimes Y$? In general, there are many **inequivalent** "natural" norms we can take.

Given a "natural" norm for $X \otimes Y$, is the resulting space complete (i.e., a Banach space)? If it's not complete, we may take its completion.

If $A: X \to X$ and $B: Y \to Y$ are bounded linear operators, can we form a bounded linear operator $A \otimes B: X \otimes Y \to X \otimes Y$?

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ be Banach spaces and form their algebraic tensor product $X \otimes Y$.

What norm shall we put on $X \otimes Y$? In general, there are many **inequivalent** "natural" norms we can take.

Given a "natural" norm for $X \otimes Y$, is the resulting space complete (i.e., a Banach space)? If it's not complete, we may take its completion.

If $A : X \to X$ and $B : Y \to Y$ are bounded linear operators, can we form a bounded linear operator $A \otimes B : X \otimes Y \to X \otimes Y$? What are its spectral properties?

The Injective Tensor Product

The **injective norm** $\|\cdot\|_{\varepsilon}$ on $X\otimes Y$ is defined to be

$$\left\|\sum_{j=1}^m x_i \otimes y_i\right\|_{\varepsilon} = \sup_{\|\xi\|=\|\eta\|=1} \sum_{j=1}^m \xi(x_i)\eta(y_i),$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

The Injective Tensor Product

The **injective norm** $\|\cdot\|_{\varepsilon}$ on $X \otimes Y$ is defined to be

$$\left\|\sum_{j=1}^m x_i \otimes y_i\right\|_{\varepsilon} = \sup_{\|\xi\|=\|\eta\|=1} \sum_{j=1}^m \xi(x_i)\eta(y_i),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Here $\xi \in X^*$ and $\eta \in Y^*$ are elements of the dual space.

The Injective Tensor Product

The **injective norm** $\|\cdot\|_{\varepsilon}$ on $X \otimes Y$ is defined to be

$$\left\|\sum_{j=1}^m x_i \otimes y_i\right\|_{\varepsilon} = \sup_{\|\xi\|=\|\eta\|=1} \sum_{j=1}^m \xi(x_i)\eta(y_i),$$

Here $\xi \in X^*$ and $\eta \in Y^*$ are elements of the dual space.

The resulting space is not in general complete, so we takes its completion and obtain a new Banach space denoted $X \otimes_{\varepsilon} Y$.

・ロト・日本・日本・日本・日本・今日・

$$X_1 = C(H_1), \qquad X_2 = C(H_2).$$

$$X_1 = C(H_1), \qquad X_2 = C(H_2).$$

Then we have an isometric isomorphism

$$X_1 \otimes_{\varepsilon} X_2 = C(H_1 \times H_2).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

$$X_1 = C(H_1), \qquad X_2 = C(H_2).$$

Then we have an isometric isomorphism

$$X_1 \otimes_{\varepsilon} X_2 = C(H_1 \times H_2).$$

In our delay equation setting this will arise for $H_1 = H_2 = [-1, 0]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$X_1 = C(H_1), \qquad X_2 = C(H_2).$$

Then we have an isometric isomorphism

$$X_1 \otimes_{\varepsilon} X_2 = C(H_1 \times H_2).$$

In our delay equation setting this will arise for $H_1 = H_2 = [-1, 0]$.

This extends to any (finite) number of factors, so

$$(C[-1,0])^{\otimes m} = C([-1,0]^m).$$

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶

The exterior product

$$(C[-1,0])^{\wedge m} \subseteq (C[-1,0])^{\otimes m} = C([-1,0]^m)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

The exterior product

$$(C[-1,0])^{\wedge m} \subseteq (C[-1,0])^{\otimes m} = C([-1,0]^m)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

consists of all anti-symmetric functions $\varphi \in C([-1, 0]^m)$,

The exterior product

$$(C[-1,0])^{\wedge m} \subseteq (C[-1,0])^{\otimes m} = C([-1,0]^m)$$

consists of all anti-symmetric functions $\varphi \in C([-1, 0]^m)$, namely functions for which

$$\varphi(\theta_{\sigma(1)}, \theta_{\sigma(2)}, \ldots, \theta_{\sigma(m)}) \equiv (-1)^{\sigma} \varphi(\theta_1, \theta_2, \ldots, \theta_m)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

holds identically for every $\sigma \in S_m$.

(ロ)、<</p>

Consider the equation

$$\dot{x}(t) = -b(t)x(t-1), \qquad x(heta) = arphi(heta) ext{ for } heta \in [-1,0].$$

Consider the equation

$$\dot{x}(t)=-b(t)x(t-1),\qquad x(heta)=arphi(heta)$$
 for $heta\in [-1,0].$

The solution operator $T(t) = T(t, 0) : C[-1, 0] \rightarrow C[-1, 0]$ maps φ to the function x_t given by

$$x_t(\theta) = x(t+\theta).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Consider the equation

$$\dot{x}(t)=-b(t)x(t-1), \qquad x(heta)=arphi(heta) ext{ for } heta\in [-1,0].$$

The solution operator $T(t) = T(t, 0) : C[-1, 0] \rightarrow C[-1, 0]$ maps φ to the function x_t given by

$$x_t(\theta) = x(t+\theta).$$

$$[\mathcal{T}(1)arphi](heta) = arphi(0) - \int_{-1}^{ heta} b(s+1)arphi(s) \, ds$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

How to calculate $T(1)^{\otimes 2}$: $C([-1, 0]^2) \to C([-1, 0]^2)$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

How to calculate $T(1)^{\otimes 2}$: $C([-1,0]^2) \rightarrow C([-1,0]^2)$? Begin with $\varphi \in C([-1,0]^2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●
Begin with $\varphi \in C([-1, 0]^2)$. Apply previous formula for T(1) separately to each argument, holding the other one fixed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Begin with $\varphi \in C([-1, 0]^2)$. Apply previous formula for T(1) separately to each argument, holding the other one fixed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How to calculate $T(1)^{\wedge 2} : (C[-1,0])^{\wedge 2} \to (C[-1,0])^{\wedge 2}$?

Begin with $\varphi \in C([-1, 0]^2)$. Apply previous formula for T(1) separately to each argument, holding the other one fixed.

・ロト・日本・日本・日本・日本・今日・

How to calculate $T(1)^{\wedge 2} : (C[-1,0])^{\wedge 2} \to (C[-1,0])^{\wedge 2}$?

Begin with $\varphi \in (C[-1,0])^{\wedge 2}$ and do the same.

Begin with $\varphi \in C([-1, 0]^2)$. Apply previous formula for T(1) separately to each argument, holding the other one fixed.

How to calculate
$$T(1)^{\wedge 2}: (C[-1,0])^{\wedge 2}
ightarrow (C[-1,0])^{\wedge 2}?$$

Begin with $\varphi \in (C[-1,0])^{\wedge 2}$ and do the same. In this case there will be cancellations in the final formula.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

$$\begin{split} [\mathcal{T}(1)^{\otimes 2}\varphi](\theta_{1},\theta_{2}) \\ &= \varphi(0,0) - \int_{-1}^{\theta_{2}} b(s+1)\varphi(0,s) \, ds \\ &- \int_{-1}^{\theta_{1}} b(s+1)\varphi(s,0) \, ds \\ &+ \int_{-1}^{\theta_{1}} \int_{-1}^{\theta_{2}} b(s+1)b(r+1)\varphi(s,r) \, dr \, ds. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタの

12

$$egin{aligned} &[\mathcal{T}(1)^{\otimes 2} arphi](heta_1, heta_2) \ &= arphi(0,0) - \int_{-1}^{ heta_2} b(s+1) arphi(0,s) \, ds \ &- \int_{-1}^{ heta_1} b(s+1) arphi(s,0) \, ds \ &+ \int_{-1}^{ heta_1} \int_{-1}^{ heta_2} b(s+1) b(r+1) arphi(s,r) \, dr \, ds. \end{aligned}$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

The formula for $T(1)^{\otimes m} \varphi$ has 2^m terms.

$$\begin{split} [T(1)^{\otimes 2}\varphi](\theta_1,\theta_2) \\ &= \varphi(0,0) - \int_{-1}^{\theta_2} b(s+1)\varphi(0,s) \, ds \\ &\quad - \int_{-1}^{\theta_1} b(s+1)\varphi(s,0) \, ds \\ &\quad + \int_{-1}^{\theta_1} \int_{-1}^{\theta_2} b(s+1)b(r+1)\varphi(s,r) \, dr \, ds. \end{split}$$

The formula for $T(1)^{\otimes m}\varphi$ has 2^m terms.

If φ is anti-symmetric, there are many cancellations and the formula simplifies tremendously.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

$$\begin{split} [T(1)^{\otimes 2}\varphi](\theta_1,\theta_2) \\ &= \varphi(0,0) - \int_{-1}^{\theta_2} b(s+1)\varphi(0,s) \, ds \\ &- \int_{-1}^{\theta_1} b(s+1)\varphi(s,0) \, ds \\ &+ \int_{-1}^{\theta_1} \int_{-1}^{\theta_2} b(s+1)b(r+1)\varphi(s,r) \, dr \, ds. \end{split}$$

The formula for $T(1)^{\otimes m}\varphi$ has 2^m terms.

If φ is anti-symmetric, there are many cancellations and the formula simplifies tremendously.

・ロト・日本・日本・日本・日本・日本・日本

If *m* is **even** the minus signs disappear.

$$[T(1)^{\wedge 2}\varphi](\theta_1,\theta_2) = \int_{\theta_1}^{\theta_2} b(s+1)\varphi(s,0) ds$$
$$+ \int_{-1}^{\theta_1} \int_{\theta_1}^{\theta_2} b(s+1)b(r+1)\varphi(s,r) dr ds.$$

・ロト・日本・モート キャー・ロー うんの

$$\begin{split} [T(1)^{\wedge 2}\varphi](\theta_1,\theta_2) &= \int_{\theta_1}^{\theta_2} b(s+1)\varphi(s,0)\,ds \\ &+ \int_{-1}^{\theta_1} \int_{\theta_1}^{\theta_2} b(s+1)b(r+1)\varphi(s,r)\,dr\,ds. \end{split}$$

If $b(t) \ge 0$ then the operator $T(1)^{\wedge 2}$ (and more generally $T(t, t_0)^{\wedge m}$ if *m* is **even**) is a positive operator with respect to a certain cone.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

$$\dot{x}(t) = -a(t)x(t) - b(t)x(t-1)$$

where

 $b(t) \geq 0.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ■ - のへで

$$\dot{x}(t) = -a(t)x(t) - b(t)x(t-1)$$

where

 $b(t) \geq 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $T(t, t_0) : C[-1, 0] \rightarrow C[-1, 0]$ denote the solution operator.

$$\dot{x}(t) = -a(t)x(t) - b(t)x(t-1)$$

where

$$b(t)\geq 0.$$

Let $T(t, t_0) : C[-1, 0] \to C[-1, 0]$ denote the solution operator. Then if *m* is even, the operator $T(t, t_0)^{\wedge m}$ on $(C[-1, 0])^{\wedge m}$ is positive with respect to the cone

$$\mathcal{K}_* = \{\varphi \in (\mathcal{C}[-1,0])^{\wedge m} \mid \varphi(\theta_1,\theta_2,\ldots,\theta_m) \ge 0$$

whenever $-1 \le \theta_1 \le \theta_2 \le \cdots \le \theta_m \le 0$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

14

$$\dot{x}(t) = -a(t)x(t) - b(t)x(t-1)$$

where

$$b(t)\geq 0.$$

Let $T(t, t_0) : C[-1, 0] \to C[-1, 0]$ denote the solution operator. Then if *m* is even, the operator $T(t, t_0)^{\wedge m}$ on $(C[-1, 0])^{\wedge m}$ is positive with respect to the cone

$$\mathcal{K}_* = \{\varphi \in (\mathcal{C}[-1,0])^{\wedge m} \mid \varphi(\theta_1,\theta_2,\ldots,\theta_m) \ge 0$$

whenever
$$-1 \le \theta_1 \le \theta_2 \le \cdots \le \theta_m \le 0$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The same conclusion holds if $b(t) \leq 0$ and m is odd.

$$\begin{split} &[\mathcal{T}(1)^{\wedge m}\varphi](\theta_1,\ldots,\theta_m)\\ &=\int_{\theta_1}^{\theta_2}\cdots\int_{\theta_{m-1}}^{\theta_m}b^1(s_1)\cdots b^1(s_{m-1})\varphi(s_1,\cdots,s_{m-1},0)\ ds_{m-1}\cdots ds_1\\ &+(-1)^m\int_{-1}^{\theta_1}\cdots\int_{\theta_{m-1}}^{\theta_m}b^1(s_0)\cdots b^1(s_{m-1})\varphi(s_0,\cdots,s_{m-1})\ ds_{m-1}\cdots ds_0, \end{split}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

where $b^{1}(s) = b(s + 1)$.

We are taking $a(t) \equiv 0$ for convenience.

•A cone $K \subseteq X$ in a Banach space $(X, \|\cdot\|)$ is a set satisfying

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

A cone K ⊆ X in a Banach space (X, || · ||) is a set satisfying
K is closed and convex,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

•A cone $K \subseteq X$ in a Banach space $(X, \|\cdot\|)$ is a set satisfying

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- K is closed and convex,
- $\lambda x \in K$ whenever $x \in K$ and $\lambda \ge 0$, and

•A cone $K \subseteq X$ in a Banach space $(X, \|\cdot\|)$ is a set satisfying

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- K is closed and convex,
- $\lambda x \in K$ whenever $x \in K$ and $\lambda \ge 0$, and
- ▶ $x, -x \in K$ if and only if x = 0.

•A cone is called **reproducing** if

$$X = \{x_1 - x_2 \mid x_1, x_2 \in K\}.$$

•A cone is called **reproducing** if

$$X = \{x_1 - x_2 \mid x_1, x_2 \in K\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

•A cone is called **normal** if there is a constant *C* such that $||x_1|| \le C ||x_2||$ whenever $0 \le x_1 \le x_2$.

•A cone is called **reproducing** if

$$X = \{x_1 - x_2 \mid x_1, x_2 \in K\}.$$

•A cone is called **normal** if there is a constant *C* such that $||x_1|| \le C ||x_2||$ whenever $0 \le x_1 \le x_2$.

•A linear operator $L: X \rightarrow X$ is called **positive** if

$$x \in K \implies Lx \in K.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The nonnegative orthant in \mathbf{R}^n .

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

- The nonnegative orthant in \mathbf{R}^n .
- ► The set of nonnegative functions in various function spaces $L^{p}(\Omega)$, C(H), $C^{k}(\overline{\Omega})$, $W^{k,p}(\Omega)$...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- The nonnegative orthant in \mathbf{R}^n .
- ► The set of nonnegative functions in various function spaces $L^{p}(\Omega), C(H), C^{k}(\overline{\Omega}), W^{k,p}(\Omega) \dots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The nondecreasing functions in $C_0[0, 1]$.

- ▶ The nonnegative orthant in **R**^{*n*}.
- The set of nonnegative functions in various function spaces L^p(Ω), C(H), C^k(Ω), W^{k,p}(Ω)...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The nondecreasing functions in $C_0[0, 1]$.
- ▶ The "triangle-nonnegative" functions in $(C[-1,0])^{\land m}$,

- ▶ The nonnegative orthant in **R**^{*n*}.
- The set of nonnegative functions in various function spaces L^p(Ω), C(H), C^k(Ω), W^{k,p}(Ω)...
- The nondecreasing functions in $C_0[0, 1]$.
- The "triangle-nonnegative" functions in $(C[-1,0])^{\wedge m}$,

namely

$$\mathcal{K}_* = \{ arphi \in (\mathcal{C}[-1,0])^{\wedge m} \, | \, arphi(heta_1, heta_2,\ldots, heta_m) \geq 0$$

whenever
$$-1 \leq \theta_1 \leq \theta_2 \leq \cdots \leq \theta_m \leq 0$$
.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

$$\dot{x}(t) = -a(t)x(t) - b(t)x(t-1)$$

where

$$a(t+\gamma)=a(t), \qquad b(t+\gamma)=b(t), \qquad b(t)\geq b_0>0.$$

$$\dot{x}(t) = -a(t)x(t) - b(t)x(t-1)$$

where

$$a(t+\gamma) = a(t), \qquad b(t+\gamma) = b(t), \qquad b(t) \ge b_0 > 0.$$

Then the Floquet multipliers μ_j (spectrum of $T(\gamma, 0)$) are infinite in number and satisfy

$$|\mu_1| \ge |\mu_2| > |\mu_3| \ge |\mu_4| > |\mu_5| \ge |\mu_6| > \dots$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

where algebraic multiplicity is counted.

$$\dot{x}(t) = -a(t)x(t) - b(t)x(t-1)$$

where

$$a(t+\gamma) = a(t), \qquad b(t+\gamma) = b(t), \qquad b(t) \ge b_0 > 0.$$

Then the Floquet multipliers μ_j (spectrum of $T(\gamma, 0)$) are infinite in number and satisfy

$$|\mu_1| \ge |\mu_2| > |\mu_3| \ge |\mu_4| > |\mu_5| \ge |\mu_6| > \dots$$

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶

where algebraic multiplicity is counted. (Note the gaps.)

$$\dot{x}(t) = -a(t)x(t) - b(t)x(t-1)$$

where

$$a(t+\gamma) = a(t), \qquad b(t+\gamma) = b(t), \qquad b(t) \ge b_0 > 0.$$

Then the Floquet multipliers μ_j (spectrum of $T(\gamma, 0)$) are infinite in number and satisfy

$$|\mu_1| \ge |\mu_2| > |\mu_3| \ge |\mu_4| > |\mu_5| \ge |\mu_6| > \dots$$

where algebraic multiplicity is counted. (Note the gaps.)

Further, the Floquet solutions corresponding to μ_{2k-1} and μ_{2k} have **lap number**

$$V(x_t)\equiv 2k-1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall that the Floquet multipliers are the nonzero spectral points of the **monodromy** operator $M = T(\gamma, 0)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

Recall that the Floquet multipliers are the nonzero spectral points of the **monodromy** operator $M = T(\gamma, 0)$.

We know that for *m*-fold exterior product, $M^{\wedge m}$, the spectral radius equals

$$r(M^{\wedge m}) = |\mu_1 \mu_2 \cdots \mu_m|.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Recall that the Floquet multipliers are the nonzero spectral points of the **monodromy** operator $M = T(\gamma, 0)$.

We know that for *m*-fold exterior product, $M^{\wedge m}$, the spectral radius equals

$$r(M^{\wedge m}) = |\mu_1 \mu_2 \cdots \mu_m|.$$

We wish to obtain a **computable lower bound** for this quantity, and hence for the individual multipliers $|\mu_k|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma. Let L_1 and L_2 be linear operators for which

 $0 \leq L_1 \leq L_2$

with respect to a cone K, where K is both reproducing and normal. Then

 $r(L_1) \leq r(L_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

for the spectral radii of these operators.
Lemma. Let L_1 and L_2 be linear operators for which

 $0 \leq L_1 \leq L_2$

with respect to a cone K, where K is both reproducing and normal. Then

 $r(L_1) \leq r(L_2)$

for the spectral radii of these operators.

Applying this lemma to $M^{\wedge m}$, in the case that $b(t) \ge b_0 > 0$ and m is even, gives a computable lower bound

$$|\mu_k| \geq C_k$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

for the magnitude of each characteristic multiplier.

Lemma. Let L_1 and L_2 be linear operators for which

 $0 \leq L_1 \leq L_2$

with respect to a cone K, where K is both reproducing and normal. Then

 $r(L_1) \leq r(L_2)$

for the spectral radii of these operators.

Applying this lemma to $M^{\wedge m}$, in the case that $b(t) \ge b_0 > 0$ and m is even, gives a computable lower bound

$$|\mu_k| \ge C_k$$

・ロト ・ 『 ・ ・ ミ ・ ・ ヨ ・ うらう

for the magnitude of each characteristic multiplier. In fact we conclude that there are infinitely many characteristic multipliers.

$$\dot{x}(t)=-\kappa a(t)x(t)-[\kappa b(t)+(1-\kappa)b_0]x(t-1), \qquad 0\leq\kappa\leq 1.$$

$$\dot{x}(t) = -\kappa a(t)x(t) - [\kappa b(t) + (1-\kappa)b_0]x(t-1), \qquad 0 \le \kappa \le 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The lower bounds $|\mu_k| \ge C_k$ remain valid throughout the homotopy.

$$\dot{x}(t) = -\kappa a(t)x(t) - [\kappa b(t) + (1-\kappa)b_0]x(t-1), \qquad 0 \le \kappa \le 1.$$

The lower bounds $|\mu_k| \ge C_k$ remain valid throughout the homotopy.

At the beginning of the homotopy $(\kappa = 0)$ we have a constant coefficient problem, and so the gap structure

$$|\mu_1| \ge |\mu_2| > |\mu_3| \ge |\mu_4| > |\mu_5| \ge |\mu_6| > \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

and properties of the lap number hold.

$$\dot{x}(t) = -\kappa a(t)x(t) - [\kappa b(t) + (1-\kappa)b_0]x(t-1), \qquad 0 \le \kappa \le 1.$$

The lower bounds $|\mu_k| \ge C_k$ remain valid throughout the homotopy.

At the beginning of the homotopy $(\kappa = 0)$ we have a constant coefficient problem, and so the gap structure

$$|\mu_1| \ge |\mu_2| > |\mu_3| \ge |\mu_4| > |\mu_5| \ge |\mu_6| > \dots$$

and properties of the lap number hold.

These features are continued throughout the homotopy to $\kappa = 1$, using "pseudo-continuity" properties of the lap-number $V(\cdot)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $L : X \to X$ be a bounded linear operator which is positive with respect to some cone $K \subseteq X$. Also assume that

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

L is compact,

Let $L : X \to X$ be a bounded linear operator which is positive with respect to some cone $K \subseteq X$. Also assume that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- L is compact,
- K is a total cone,

Let $L : X \to X$ be a bounded linear operator which is positive with respect to some cone $K \subseteq X$. Also assume that

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- L is compact,
- K is a total cone, and
- ▶ the spectral radius *r* of *L* is positive.

Let $L : X \to X$ be a bounded linear operator which is positive with respect to some cone $K \subseteq X$. Also assume that

- L is compact,
- K is a total cone, and
- ▶ the spectral radius *r* of *L* is positive.

Then
$$Lv = rv$$
 for some $v \in K \setminus \{0\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Let $L : X \to X$ be a bounded linear operator which is positive with respect to some cone $K \subseteq X$. Also assume that

- L is compact,
- K is a total cone, and
- the spectral radius r of L is positive.

Then
$$Lv = rv$$
 for some $v \in K \setminus \{0\}$.

The eigenvalue \u03c0 = r need not be simple nor the eigenvector v unique.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $L : X \to X$ be a bounded linear operator which is positive with respect to some cone $K \subseteq X$. Also assume that

- L is compact,
- K is a total cone, and
- the spectral radius r of L is positive.

Then Lv = rv for some $v \in K \setminus \{0\}$.

The eigenvalue \u03c0 = r need not be simple nor the eigenvector v unique.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Simplicity/uniqueness is related to "irreducibility" of the operator L.

$$\dot{x}(t) = -b(t)x(t-1), \qquad b(t) \ge b_0 > 0,$$

We take m even, say m = 2 for convenience. Recall and define

$$[T(1)^{\wedge 2} \varphi](heta_1, heta_2) = \int_{ heta_1}^{ heta_2} b(s+1) arphi(s,0) \, ds$$

$$+\int_{-1}^{\theta_1}\int_{\theta_1}^{\theta_2}b(s+1)b(r+1)\varphi(s,r)\,dr\,ds,$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

$$\dot{x}(t)=-b(t)x(t-1), \qquad b(t)\geq b_0>0,$$

We take m even, say m = 2 for convenience. Recall and define

$$[\mathcal{T}(1)^{\wedge 2} arphi](heta_1, heta_2) = \int_{ heta_1}^{ heta_2} b(s+1) arphi(s,0) \, ds$$

$$+\int_{-1}^{\theta_1}\int_{\theta_1}^{\theta_2}b(s+1)b(r+1)\varphi(s,r)\,dr\,ds,$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

$$[T_0^{\wedge 2}\varphi](\theta_1,\theta_2) = \int_{\theta_1}^{\theta_2} \varphi(s,0) \, ds + \int_{-1}^{\theta_1} \int_{\theta_1}^{\theta_2} \varphi(s,r) \, dr \, ds.$$

$$\dot{x}(t)=-b(t)x(t-1), \qquad b(t)\geq b_0>0,$$

We take m even, say m = 2 for convenience. Recall and define

$$[\mathcal{T}(1)^{\wedge 2} \varphi](heta_1, heta_2) = \int_{ heta_1}^{ heta_2} b(s+1) arphi(s,0) \, ds$$

$$+\int_{-1}^{\theta_1}\int_{\theta_1}^{\theta_2}b(s+1)b(r+1)\varphi(s,r)\,dr\,ds,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

$$[T_0^{\wedge 2}\varphi](\theta_1,\theta_2) = \int_{\theta_1}^{\theta_2} \varphi(s,0) \, ds + \int_{-1}^{\theta_1} \int_{\theta_1}^{\theta_2} \varphi(s,r) \, dr \, ds.$$

Then $T(1)^{\wedge 2} \geq c T_0^{\wedge 2}$ for some c > 0, and so

$$r(T(1)^{\wedge 2}) \geq cr(T_0^{\wedge 2})$$

for the spectral radii of these operators.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

We say *L* is u_0 -positive if for some $n \ge 1$ and $u_0 \in K$, it is the case that

 $L^n x \sim u_0$

for every nonzero $x \in K$.

We say *L* is u_0 -positive if for some $n \ge 1$ and $u_0 \in K$, it is the case that

 $L^n x \sim u_0$

for every nonzero $x \in K$. Here $x_1 \sim x_2$ means $\alpha x_1 \leq x_2 \leq \beta x_1$ for some $\alpha, \beta > 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We say L is u_0 -positive if for some $n \ge 1$ and $u_0 \in K$, it is the case that

 $L^n x \sim u_0$

for every nonzero $x \in K$. Here $x_1 \sim x_2$ means $\alpha x_1 \leq x_2 \leq \beta x_1$ for some $\alpha, \beta > 0$.

Theorem. In the setting of the Kreĭn-Rutman Theorem, if additionally L is u_0 -positive, then the eigenvalue r (the spectral radius) is algebraically simple.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Regularity of Solutions of Delay-Differential Equations: Analyticity versus C^{∞}

John Mallet-Paret Division of Applied Mathematics Brown University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Chengdu, Sichuan, June, 2019

$$\dot{x}(t) = f(t, x(t), x(t-r_1), \ldots, x(t-r_N))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suppose x(t) is a bounded solution defined for all $t \in \mathbf{R}$ (e.g., a periodic solution or more generally a solution on the attractor).

$$\dot{x}(t) = f(t, x(t), x(t-r_1), \ldots, x(t-r_N))$$

Suppose x(t) is a bounded solution defined for all $t \in \mathbf{R}$ (e.g., a periodic solution or more generally a solution on the attractor). If f and r_k are C^{∞} smooth, then so is x(t).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\dot{x}(t) = f(t, x(t), x(t-r_1), \ldots, x(t-r_N))$$

Suppose x(t) is a bounded solution defined for all $t \in \mathbf{R}$ (e.g., a periodic solution or more generally a solution on the attractor). If f and r_k are C^{∞} smooth, then so is x(t). What if f and r_k are analytic?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

$$\dot{x}(t) = f(t, x(t), x(t-r_1), \ldots, x(t-r_N))$$

Suppose x(t) is a bounded solution defined for all $t \in \mathbf{R}$ (e.g., a periodic solution or more generally a solution on the attractor). If f and r_k are C^{∞} smooth, then so is x(t). What if f and r_k are analytic?

Theorem (Nussbaum). If each $r_k > 0$ is a constant, and f is analytic and independent of t, then x(t) is analytic in t.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

$$\dot{x}(t) = f(t, x(t), x(t-r_1), \ldots, x(t-r_N))$$

Suppose x(t) is a bounded solution defined for all $t \in \mathbf{R}$ (e.g., a periodic solution or more generally a solution on the attractor). If f and r_k are C^{∞} smooth, then so is x(t). What if f and r_k are analytic?

Theorem (Nussbaum). If each $r_k > 0$ is a constant, and f is analytic and independent of t, then x(t) is analytic in t.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

But in general the answer is not so clear.

$$\dot{x}(t)=e^{it^2}x(t-1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

$$\dot{x}(t)=e^{it^2}x(t-1)$$

There exists a solution for $t \in \mathbf{R}$ with $x(-\infty) = 1$. It is C^{∞} , but we don't know whether or not it is analytic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\dot{x}(t)=e^{it^2}x(t-1)$$

There exists a solution for $t \in \mathbf{R}$ with $x(-\infty) = 1$. It is C^{∞} , but we don't know whether or not it is analytic.

The problem is that e^{it^2} is not bounded in the strip

Re
$$t \leq 0$$
, $|\operatorname{Im} t| \leq \varepsilon$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

for any ε .

$$\dot{x}(t) = e^{it^2}x(t-1)$$

There exists a solution for $t \in \mathbf{R}$ with $x(-\infty) = 1$. It is C^{∞} , but we don't know whether or not it is analytic.

The problem is that e^{it^2} is not bounded in the strip

Re
$$t \leq 0$$
, $|\operatorname{Im} t| \leq \varepsilon$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

for any ε .

It is known that x(t) has an analytic extension to the lower half-plane Im t < 0.

$$\dot{x}(t)=e^{it^2}x(t-1)$$

There exists a solution for $t \in \mathbf{R}$ with $x(-\infty) = 1$. It is C^{∞} , but we don't know whether or not it is analytic.

The problem is that e^{it^2} is not bounded in the strip

Re
$$t \leq 0$$
, $|\operatorname{Im} t| \leq \varepsilon$

for any ε .

It is known that x(t) has an analytic extension to the lower half-plane Im t < 0.

We believe the real axis Im t = 0 is the boundary of the region where x(t) is analytic (holomorphic).

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

$$\dot{x}(t) = f(x(t), x(t-r)), \qquad r = r(x(t)),$$

If f(u, v) and r(u) are analytic in u and v, then x(t) is C^{∞} in t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

$$\dot{x}(t) = f(x(t), x(t-r)), \qquad r = r(x(t)),$$

If f(u, v) and r(u) are analytic in u and v, then x(t) is C^{∞} in t.

Analyticity is **unknown** in general, and there is reason to believe x(t) is analytic for some t but not in general for all t.

イロト 不得 とう アイロト

э

A simpler problem occurs if r = r(t) is a given function of t, rather than r = r(x(t)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

A simpler problem occurs if r = r(t) is a given function of t, rather than r = r(x(t)). Consider, for simplicity, the linear equation

$$\dot{x}(t) = \alpha(t)x(t) + \beta(t)x(t-r(t))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\alpha(t)$, $\beta(t)$, and r(t) are analytic for $t \in \mathbf{R}$.

A simpler problem occurs if r = r(t) is a given function of t, rather than r = r(x(t)). Consider, for simplicity, the linear equation

$$\dot{x}(t) = \alpha(t)x(t) + \beta(t)x(t-r(t))$$

where $\alpha(t)$, $\beta(t)$, and r(t) are analytic for $t \in \mathbf{R}$.

(Much of what we say also holds for many nonlinear equations.)

・ロト・日本・日本・日本・日本・今日・

A simpler problem occurs if r = r(t) is a given function of t, rather than r = r(x(t)). Consider, for simplicity, the linear equation

$$\dot{x}(t) = \alpha(t)x(t) + \beta(t)x(t-r(t))$$

where $\alpha(t)$, $\beta(t)$, and r(t) are analytic for $t \in \mathbf{R}$.

(Much of what we say also holds for many nonlinear equations.)

The dynamics of the "history" map

$$t \to \eta(t) = t - r(t)$$

plays a role in determining for which t the solution x(t) is analytic.

・ロト・日本・日本・日本・日本・今日・
For a given C^{∞} solution x(t) we distinguish two sets:

 $\mathcal{A} = \{t_0 \mid x(t) \text{ is analytic for } t \text{ in some neighborhood of } t_0\},\$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

 $\mathcal{N}=\textbf{R}\setminus\mathcal{A}.$

For a given C^{∞} solution x(t) we distinguish two sets:

 $\mathcal{A} = \{t_0 \mid x(t) \text{ is analytic for } t \text{ in some neighborhood of } t_0\},\$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

 $\mathcal{N} = \mathbf{R} \setminus \mathcal{A}.$

Note that $\mathcal{A} \subseteq \mathbf{R}$ is open and $\mathcal{N} \subseteq \mathbf{R}$ is closed.

$$\dot{x}(t) = \alpha(t)x(t) + \beta(t)x(\eta(t))$$

where $\alpha(t)$, $\beta(t)$, and $\eta(t)$ are analytic for all $t \in \mathbf{R}$. Assume that x(t) is a solution for all $t \in \mathbf{R}$.

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うらぐ

$$\dot{x}(t) = \alpha(t)x(t) + \beta(t)x(\eta(t))$$

where $\alpha(t)$, $\beta(t)$, and $\eta(t)$ are analytic for all $t \in \mathbf{R}$. Assume that x(t) is a solution for all $t \in \mathbf{R}$. Then

$$\eta(\mathcal{N}) \subseteq \mathcal{N}, \qquad \eta(\mathcal{A} \setminus \mathcal{M}) \subseteq \mathcal{A},$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

where $\mathcal{M} \subseteq \mathbf{R}$ is the set of local minima and maxima of $\eta(t)$.

$$\dot{x}(t) = \alpha(t)x(t) + \beta(t)x(\eta(t))$$

where $\alpha(t)$, $\beta(t)$, and $\eta(t)$ are analytic for all $t \in \mathbf{R}$. Assume that x(t) is a solution for all $t \in \mathbf{R}$. Then

$$\eta(\mathcal{N}) \subseteq \mathcal{N}, \qquad \eta(\mathcal{A} \setminus \mathcal{M}) \subseteq \mathcal{A},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\mathcal{M} \subseteq \mathbf{R}$ is the set of local minima and maxima of $\eta(t)$.

Proof. First observe that x(t) is C^{∞} everywhere.

$$\dot{x}(t) = \alpha(t)x(t) + \beta(t)x(\eta(t))$$

where $\alpha(t)$, $\beta(t)$, and $\eta(t)$ are analytic for all $t \in \mathbf{R}$. Assume that x(t) is a solution for all $t \in \mathbf{R}$. Then

$$\eta(\mathcal{N}) \subseteq \mathcal{N}, \qquad \eta(\mathcal{A} \setminus \mathcal{M}) \subseteq \mathcal{A},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\mathcal{M} \subseteq \mathbf{R}$ is the set of local minima and maxima of $\eta(t)$.

Proof. First observe that x(t) is C^{∞} everywhere.

Take any $t_0 \in \mathbf{R}$ and let $t_1 = \eta(t_0)$.

$$\dot{x}(t) = \alpha(t)x(t) + \beta(t)x(\eta(t))$$

where $\alpha(t)$, $\beta(t)$, and $\eta(t)$ are analytic for all $t \in \mathbf{R}$. Assume that x(t) is a solution for all $t \in \mathbf{R}$. Then

$$\eta(\mathcal{N}) \subseteq \mathcal{N}, \qquad \eta(\mathcal{A} \setminus \mathcal{M}) \subseteq \mathcal{A},$$

where $\mathcal{M} \subseteq \mathbf{R}$ is the set of local minima and maxima of $\eta(t)$.

Proof. First observe that x(t) is C^{∞} everywhere.

Take any $t_0 \in \mathbf{R}$ and let $t_1 = \eta(t_0)$.

Suppose x(t) is analytic in a neighborhood of $t = t_1$. Then $x(\eta(t))$ is analytic near $t = t_0$. Regarding $\beta(t)x(\eta(t))$ as a known forcing term in the differential equation, we conclude that x(t) is analytic near $t = t_0$.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

7

Write $\eta(t) = t_1 + ((t - t_0)\theta(t))^m$ for t near t_0 , and some $m \ge 1$, where $\theta(t_0) \ne 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Write $\eta(t) = t_1 + ((t - t_0)\theta(t))^m$ for t near t_0 , and some $m \ge 1$, where $\theta(t_0) \ne 0$. Introducing the new variable $s = (t - t_0)\theta(t)$, we see that $x(t_1 + s^m)$ is analytic in s near s = 0, and thus

$$x(t) = \sum_{j=0}^{\infty} x_j s^j = \sum_{j=0}^{\infty} x_j (t - t_1)^{j/m}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

as a convergent series.

Write $\eta(t) = t_1 + ((t - t_0)\theta(t))^m$ for t near t_0 , and some $m \ge 1$, where $\theta(t_0) \ne 0$. Introducing the new variable $s = (t - t_0)\theta(t)$, we see that $x(t_1 + s^m)$ is analytic in s near s = 0, and thus

$$x(t) = \sum_{j=0}^{\infty} x_j s^j = \sum_{j=0}^{\infty} x_j (t - t_1)^{j/m}$$

as a convergent series. However, because x(t) is C^{∞} , it follows that $x_i = 0$ if j is not divisible by m.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Write $\eta(t) = t_1 + ((t - t_0)\theta(t))^m$ for t near t_0 , and some $m \ge 1$, where $\theta(t_0) \ne 0$. Introducing the new variable $s = (t - t_0)\theta(t)$, we see that $x(t_1 + s^m)$ is analytic in s near s = 0, and thus

$$x(t) = \sum_{j=0}^{\infty} x_j s^j = \sum_{j=0}^{\infty} x_j (t - t_1)^{j/m}$$

as a convergent series. However, because x(t) is C^{∞} , it follows that $x_i = 0$ if j is not divisible by m. Therefore,

$$x(t)=\sum_{k=0}^{\infty}x_{mk}(t-t_1)^k,$$

and so x(t) is analytic near t_1 . ///

Theorem. Suppose for some t_0 that $\eta(t_0) = t_0$ and $|\dot{\eta}(t_0)| < 1$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

The same conclusion holds for a periodic point $\eta^m(t_0) = t_0$ with $|\dot{\eta}^m(t_0)| < 1$.

The same conclusion holds for a periodic point $\eta^m(t_0) = t_0$ with $|\dot{\eta}^m(t_0)| < 1$.

If the solution x(t) is periodic, then it is enough to assume that $\eta^m(t_0) = t_0$ modulo the period.

The same conclusion holds for a periodic point $\eta^m(t_0) = t_0$ with $|\dot{\eta}^m(t_0)| < 1$.

If the solution x(t) is periodic, then it is enough to assume that $\eta^m(t_0) = t_0$ modulo the period.

Idea of Proof. Write the equation in integrated form and apply a standard contraction mapping argument in the space of functions analytic in a disc about t_0 .

・ロト・日本・日本・日本・日本・今日・

What happens if $\eta(t_0) = t_0$ but $|\dot{\eta}(t_0)| > 1$?

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

9

Consider the equation

$$\lambda x(t) = \int_{\eta(t)}^{t} x(s) \, ds, \qquad \eta(t) = t - r(t)$$

・ロト・日本・日本・日本・日本・今日・

where r(t) > 0 is a given 2π -periodic analytic function.

Consider the equation

$$\lambda x(t) = \int_{\eta(t)}^t x(s) \, ds, \qquad \eta(t) = t - r(t)$$

where r(t) > 0 is a given 2π -periodic analytic function.

It is known there exists a unique $\lambda > 0$ and solution x(t) > 0, with $x(t + 2\pi) = x(t)$.

Consider the equation

$$\lambda x(t) = \int_{\eta(t)}^t x(s) \, ds, \qquad \eta(t) = t - r(t)$$

where r(t) > 0 is a given 2π -periodic analytic function.

It is known there exists a unique $\lambda > 0$ and solution x(t) > 0, with $x(t + 2\pi) = x(t)$. (The strictness r(t) > 0 is crucial here.)

・ロト・日本・日本・日本・日本・今日・

Consider the equation

$$\lambda x(t) = \int_{\eta(t)}^t x(s) \, ds, \qquad \eta(t) = t - r(t)$$

where r(t) > 0 is a given 2π -periodic analytic function.

It is known there exists a unique $\lambda > 0$ and solution x(t) > 0, with $x(t + 2\pi) = x(t)$. (The strictness r(t) > 0 is crucial here.)

This solution also satisfies the differential equation

$$\lambda \dot{x}(t) = x(t) - x(\eta(t))\dot{\eta}(t).$$

・ロト・日本・日本・日本・日本・今日・

$$\lambda \dot{x}(t) = x(t) - x(\eta(t))\dot{\eta}(t).$$

Suppose that $\eta(0) = 0 \pmod{2\pi}$ and $\dot{\eta}(0) = \mu > 1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタの

$$\lambda \dot{x}(t) = x(t) - x(\eta(t))\dot{\eta}(t).$$
 Suppose that $\eta(0) = 0 \pmod{2\pi}$ and $\dot{\eta}(0) = \mu > 1.$

Analytic Hartman-Grobman Theorem: By means of an analytic change of variables $t = \sigma(\tau)$, we replace $\eta(t)$ by $\mu\tau$ near t = 0.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

$$\lambda \dot{x}(t) = x(t) - x(\eta(t))\dot{\eta}(t).$$
 Suppose that $\eta(0) = 0 \pmod{2\pi}$ and $\dot{\eta}(0) = \mu > 1.$

Analytic Hartman-Grobman Theorem: By means of an analytic change of variables $t = \sigma(\tau)$, we replace $\eta(t)$ by $\mu\tau$ near t = 0.

$$\sigma^{-1}(\eta(\sigma(\tau))) \equiv \mu \tau, \quad y(\tau) = x(\sigma(\tau)).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

$$\lambda \dot{x}(t) = x(t) - x(\eta(t)) \dot{\eta}(t).$$
 Suppose that $\eta(0) = 0 \pmod{2\pi}$ and $\dot{\eta}(0) = \mu > 1.$

Analytic Hartman-Grobman Theorem: By means of an analytic change of variables $t = \sigma(\tau)$, we replace $\eta(t)$ by $\mu\tau$ near t = 0.

$$\sigma^{-1}(\eta(\sigma(\tau))) \equiv \mu \tau, \quad y(\tau) = x(\sigma(\tau)).$$

This leads to the equation

$$\begin{aligned} \lambda \dot{y}(\tau) &= \alpha(\tau) y(\tau) - \mu \alpha(\mu \tau) y(\mu \tau), \\ \alpha(\tau) &= \dot{\sigma}(\tau). \end{aligned}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

 $\lambda \dot{y}(\tau) = \alpha(\tau) y(\tau) - \mu \alpha(\mu \tau) y(\mu \tau)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへで

$$\lambda \dot{\mathbf{y}}(au) = lpha(au) \mathbf{y}(au) - \mu lpha(\mu au) \mathbf{y}(\mu au)$$

Consider the power series

$$y(\tau) = 1 + \sum_{n=1}^{\infty} y_n \tau^n, \qquad \alpha(\tau) = \sum_{n=0}^{\infty} \alpha_n \tau^n,$$

where the series for $\alpha(\tau)$ converges, but the series for $y(\tau)$ need not.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

$$\lambda \dot{ extbf{y}}(au) = lpha(au) extbf{y}(au) - \mu lpha(\mu au) extbf{y}(\mu au)$$

Consider the power series

$$y(\tau) = 1 + \sum_{n=1}^{\infty} y_n \tau^n, \qquad \alpha(\tau) = \sum_{n=0}^{\infty} \alpha_n \tau^n,$$

where the series for $\alpha(\tau)$ converges, but the series for $y(\tau)$ need not. The coefficients y_n are uniquely determined by the recursion

$$\lambda(n+1)y_{n+1} = (1-\mu^{n+1})\sum_{k=0}^{n} \alpha_{n-k}y_k.$$

Define quantities w_n by

$$y_n = \left(\frac{(-1)^n \alpha_0^n M_n}{\lambda^n n!}\right) w_n, \qquad M_n = \prod_{k=1}^n (\mu^k - 1) \sim \mu^{n(n+1)/2}.$$

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Then

$$w_{n+1} = w_n + \sum_{k=0}^{n-1} (-1)^{n-k} \left(\frac{\lambda^n n!}{\alpha_0^n M_n}\right) \left(\frac{\alpha_0^k M_k}{\lambda^k k!}\right) \left(\frac{\alpha_{n-k}}{\alpha_0}\right) w_k$$

Then

$$w_{n+1} = w_n + \sum_{k=0}^{n-1} (-1)^{n-k} \left(\frac{\lambda^n n!}{\alpha_0^n M_n}\right) \left(\frac{\alpha_0^k M_k}{\lambda^k k!}\right) \left(\frac{\alpha_{n-k}}{\alpha_0}\right) w_k$$

Theorem. The limit

$$w_{\infty} = \lim_{n \to \infty} w_n$$

exists. If $w_{\infty} \neq 0$ then there is no analytic solution through $\tau = 0$.

Then

$$w_{n+1} = w_n + \sum_{k=0}^{n-1} (-1)^{n-k} \left(\frac{\lambda^n n!}{\alpha_0^n M_n}\right) \left(\frac{\alpha_0^k M_k}{\lambda^k k!}\right) \left(\frac{\alpha_{n-k}}{\alpha_0}\right) w_k$$

Theorem. The limit

$$w_{\infty} = \lim_{n \to \infty} w_n$$

exists. If $w_{\infty} \neq 0$ then there is no analytic solution through $\tau = 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

If $w_{\infty} = 0$ then there exists a unique analytic solution through $\tau = 0$ (although there may exist other non-analytic solutions).

Examples with $w_{\infty} \neq 0$

Consider

$$\lambda x(t) = \int_{t+(\mu-1)\sin t-2\pi m}^{t} x(s) \, ds$$

where $1 < \mu < 2\pi m + 1$.

Examples with $w_{\infty} \neq 0$

Consider

$$\lambda x(t) = \int_{t+(\mu-1)\sin t - 2\pi m}^{t} x(s) \, ds$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $1 < \mu < 2\pi m + 1$.

Then $w_{\infty} \neq 0$ if μ is sufficiently large, and *m* is chosen proportional to μ (with the right range of propotionality).

Examples with $w_{\infty} \neq 0$

Consider

$$\lambda x(t) = \int_{t+(\mu-1)\sin t - 2\pi m}^{t} x(s) \, ds$$

where $1 < \mu < 2\pi m + 1$.

Then $w_{\infty} \neq 0$ if μ is sufficiently large, and m is chosen proportional to μ (with the right range of propotionality).

Verifying this involves making estimates of the eigenvalue λ , which turns out to be proportional to μ .

・ロト ・ 『 ・ ・ ミ ・ ・ ヨ ・ うらう
Examples with $w_{\infty} \neq 0$

Consider

$$\lambda x(t) = \int_{t+(\mu-1)\sin t - 2\pi m}^{t} x(s) \, ds$$

where $1 < \mu < 2\pi m + 1$.

Then $w_{\infty} \neq 0$ if μ is sufficiently large, and m is chosen proportional to μ (with the right range of propotionality).

Verifying this involves making estimates of the eigenvalue λ , which turns out to be proportional to μ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One also must show that the Hartman-Grobman conjugacy $\sigma(\tau) = \sigma(\tau, \mu)$ is well-behaved for large μ .

Coexistence of analyticity and non-analyticity

For the previous example with $\eta(t) = t + (\mu - 1) \sin t - 2\pi m$, for certain μ there are points t_* at which

$$\eta(t_*) = t_* (\text{mod } 2\pi), \qquad 0 < \dot{\eta}(t_*) < 1.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

Coexistence of analyticity and non-analyticity

For the previous example with $\eta(t) = t + (\mu - 1) \sin t - 2\pi m$, for certain μ there are points t_* at which

$$\eta(t_*) = t_* \pmod{2\pi}, \qquad 0 < \dot{\eta}(t_*) < 1.$$

Thus the periodic solution x(t) is analytic for some open set of t (the basin of attraction of t_*) but is not analytic at least at one point $t_0 = 0$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Coexistence of analyticity and non-analyticity

For the previous example with $\eta(t) = t + (\mu - 1) \sin t - 2\pi m$, for certain μ there are points t_* at which

$$\eta(t_*) = t_* \pmod{2\pi}, \qquad 0 < \dot{\eta}(t_*) < 1.$$

Thus the periodic solution x(t) is analytic for some open set of t (the basin of attraction of t_*) but is not analytic at least at one point $t_0 = 0$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

More on the Integral Equation

$$\lambda x(t) = \int_{\eta(t)}^t x(s) \, ds, \quad \eta(t) = t - r(t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

More on the Integral Equation

$$\lambda x(t) = \int_{\eta(t)}^{t} x(s) ds, \quad \eta(t) = t - r(t)$$

Here we assume that

 $r: \mathbf{R} \to \mathbf{R}$ is continuous (not necessarily analytic),

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$r(t)\geq 0, \quad r(t+2\pi)=r(t),$$

for all $t \in \mathbf{R}$.

Integral Operator

$$(Lx)(t) = \int_{\eta(t)}^t x(s) ds, \quad x \in X,$$

 $X = \{x : \mathbf{R} \to \mathbf{R} \mid \text{continuous and } 2\pi \text{ periodic}\}$

Integral Operator

$$(Lx)(t) = \int_{\eta(t)}^t x(s) ds, \quad x \in X,$$

 $X = \{x : \mathbf{R} \to \mathbf{R} \mid \text{continuous and } 2\pi \text{ periodic}\}$

Then $L: X \to X$ is a positive operator (with respect to the cone of nonnegative functions).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Integral Operator

$$(Lx)(t) = \int_{\eta(t)}^t x(s) ds, \quad x \in X,$$

 $X = \{x : \mathbf{R} \to \mathbf{R} \mid \text{continuous and } 2\pi \text{ periodic}\}$

Then $L: X \to X$ is a positive operator (with respect to the cone of nonnegative functions).

The Krein-Rutman Theorem implies there exists $\lambda > 0$ and $x \in X \setminus \{0\}$, with $x \ge 0$, such that

$$Lx = \lambda x$$

if and only if the spectral radius rad(L) is positive. And if so, one can take $\lambda = rad(L)$.

・ロト・日本・日本・日本・日本・今日・

Theorem. The spectral radius is positive, $\operatorname{rad}(L) > 0$, if and only if $\inf_{s \ge t} \eta(s) < t \qquad (*)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

for every $t \in \mathbf{R}$.

Theorem. The spectral radius is positive, rad(L) > 0, if and only if

$$\inf_{s \ge t} \eta(s) < t \tag{*}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for every $t \in \mathbf{R}$.

Remark. If $\eta(t) < t$ (that is, r(t) > 0) for every t, then (*) holds and rad(L) > 0. In this case the eigenfunction is unique.

$$t_0 < t_1 < t_2 < \cdots < t_m \equiv t_0 \pmod{2\pi}$$

such that

 $t_k \in (\eta(t_{k+1}), t_{k+1}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$t_0 < t_1 < t_2 < \cdots < t_m \equiv t_0 \pmod{2\pi}$$

such that

$$t_k \in (\eta(t_{k+1}), t_{k+1}).$$

イロト イポト イヨト イヨト 二日

It follows that if $x \ge 0$ and $x(t_k) > 0$, then $(Lx)(t_{k+1}) > 0$.

$$t_0 < t_1 < t_2 < \cdots < t_m \equiv t_0 \pmod{2\pi}$$

such that

$$t_k \in (\eta(t_{k+1}), t_{k+1}).$$

It follows that if $x \ge 0$ and $x(t_k) > 0$, then $(Lx)(t_{k+1}) > 0$.

Taking $x \ge 0$ to be a function with small bumps at the points t_k , it follows that

$$Lx \ge cx$$
 for some $c > 0$.

$$t_0 < t_1 < t_2 < \cdots < t_m \equiv t_0 \pmod{2\pi}$$

such that

$$t_k \in (\eta(t_{k+1}), t_{k+1}).$$

It follows that if $x \ge 0$ and $x(t_k) > 0$, then $(Lx)(t_{k+1}) > 0$.

Taking $x \ge 0$ to be a function with small bumps at the points t_k , it follows that

$$Lx \ge cx$$
 for some $c > 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This implies (upon iterating) that $||L^n|| \ge c^n$, and thus $rad(L) \ge c > 0$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

By Krein-Rutman there exists a nontrivial $x \in X$, with $x \ge 0$, such that $Lx = \lambda x$ for some $\lambda > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

By Krein-Rutman there exists a nontrivial $x \in X$, with $x \ge 0$, such that $Lx = \lambda x$ for some $\lambda > 0$.

Then for any $\tau \geq t$ we have $t \leq \eta(\tau) \leq \tau$, and so

$$|\lambda|x(au)|\leq \int_{\eta(au)}^{ au}|x(s)|\ ds\leq \int_t^{ au}|x(s)|\ ds.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

By Krein-Rutman there exists a nontrivial $x \in X$, with $x \ge 0$, such that $Lx = \lambda x$ for some $\lambda > 0$.

Then for any $au \geq t$ we have $t \leq \eta(au) \leq au$, and so

$$|\lambda|x(au)| \leq \int_{\eta(au)}^{ au} |x(s)| \ ds \leq \int_t^{ au} |x(s)| \ ds.$$

・ロト・4回ト・4回ト・4回ト・目・9000

Gronwall implies $x(\tau) \equiv 0$ identically, a contradiction.///

If $\eta(t) < t$ for all t then the eigensolution x for $\lambda = r(L)$ is unique up to scalar multiple.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

If $\eta(t) < t$ for all t then the eigensolution x for $\lambda = r(L)$ is unique up to scalar multiple.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

What if $\eta(t_0) = t_0$ for some t_0 ?

If $\eta(t) < t$ for all t then the eigensolution x for $\lambda = r(L)$ is unique up to scalar multiple.

What if $\eta(t_0) = t_0$ for some t_0 ?

More generally, is it possible for L to have more than one positive eigenvalue?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

If $\eta(t) < t$ for all t then the eigensolution x for $\lambda = r(L)$ is unique up to scalar multiple.

What if $\eta(t_0) = t_0$ for some t_0 ?

More generally, is it possible for L to have more than one positive eigenvalue?

Consider the case that r(t) has integer period m and

$$\eta(t) = k - c_k, \quad k < t < k + 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $c_k = c_{k+m} > 0$ is an integer.

This leads to a problem for $m \times m$ matrices Γ of the form

with 1's on the diagonal, and 1's to the left (cyclically), followed by 0's.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

This leads to a problem for $m \times m$ matrices Γ of the form

with 1's on the diagonal, and 1's to the left (cyclically), followed by 0's.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Is it possible for such Γ to have more than one eigenvalue in $(1,\infty)?$

21

This leads to a problem for $m \times m$ matrices Γ of the form

with 1's on the diagonal, and 1's to the left (cyclically), followed by 0's.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Is it possible for such Γ to have more than one eigenvalue in $(1,\infty)?$

Some numerical calculations suggest not.

We now come to a main result on the analyticity set \mathcal{A} .

Theorem. In addition to the standing assumptions (periodicity and nonnegativity) on r(t), assume that

- r(t) is analytic in t,
- $r(t_0) = 0$ for some t_0 , and
- rad(L) > 0.

We now come to a main result on the analyticity set \mathcal{A} .

Theorem. In addition to the standing assumptions (periodicity and nonnegativity) on r(t), assume that

r(t) is analytic in t,

•
$$r(t_0) = 0$$
 for some t_0 , and

Then \mathcal{A} is a nonempty open set with infinitely many connected components (mod 2π), and the set \mathcal{N} is uncountable.

We now come to a main result on the analyticity set \mathcal{A} .

Theorem. In addition to the standing assumptions (periodicity and nonnegativity) on r(t), assume that

r(t) is analytic in t,

•
$$r(t_0) = 0$$
 for some t_0 , and

Then \mathcal{A} is a nonempty open set with infinitely many connected components (mod 2π), and the set \mathcal{N} is uncountable.

An example of a system satisfying the above conditions is given by

$$r(t) =
ho(1 - \cos t), \quad
ho >
ho_0.$$

Steps in the Proof

Study invariant intervals I = [a, b], namely $\eta(I) \subseteq I = \text{compact}$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Steps in the Proof

Study **invariant intervals** I = [a, b], namely $\eta(I) \subseteq I = \text{compact}$ $I \text{ invariant} \implies x(t) = 0 \text{ for all } t \in I$, thus $\text{int}(I) \subseteq A$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Study **invariant intervals** I = [a, b], namely $\eta(I) \subseteq I = \text{compact}$ $I \text{ invariant} \implies x(t) = 0 \text{ for all } t \in I$, thus $\text{int}(I) \subseteq \mathcal{A}$ $I \text{ invariant} \implies \text{len}(I) = b - a < 2\pi$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Study **invariant intervals** I = [a, b], namely $\eta(I) \subseteq I = \text{compact}$ $I \text{ invariant} \implies x(t) = 0 \text{ for all } t \in I$, thus $\text{int}(I) \subseteq \mathcal{A}$ $I \text{ invariant} \implies \text{len}(I) = b - a < 2\pi$ Possible to have $I \subseteq J$ both invariant, with $I \neq J$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

Study **invariant intervals** I = [a, b], namely $\eta(I) \subseteq I = \text{compact}$ $I \text{ invariant} \implies x(t) = 0 \text{ for all } t \in I$, thus $\text{int}(I) \subseteq \mathcal{A}$ $I \text{ invariant} \implies \text{len}(I) = b - a < 2\pi$ Possible to have $I \subseteq J$ both invariant, with $I \neq J$ Each invariant I is contained in a **maximal** invariant J

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

Study **invariant intervals** I = [a, b], namely $\eta(I) \subseteq I = \text{compact}$ $I \text{ invariant} \implies x(t) = 0 \text{ for all } t \in I$, thus $\text{int}(I) \subseteq \mathcal{A}$ $I \text{ invariant} \implies \text{len}(I) = b - a < 2\pi$ Possible to have $I \subseteq J$ both invariant, with $I \neq J$ Each invariant I is contained in a **maximal** invariant JThe maximal intervals are pairwise disjoint

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

Study **invariant intervals** I = [a, b], namely $\eta(I) \subseteq I = \text{compact}$ $I \text{ invariant} \implies x(t) = 0 \text{ for all } t \in I$, thus $\text{int}(I) \subseteq \mathcal{A}$ $I \text{ invariant} \implies \text{len}(I) = b - a < 2\pi$ Possible to have $I \subseteq J$ both invariant, with $I \neq J$ Each invariant I is contained in a **maximal** invariant JThe maximal intervals are pairwise disjoint $I = [a, b] \text{ maximal } \implies \eta(a) = \eta(b) = a$
Steps in the Proof

Study **invariant intervals** I = [a, b], namely $\eta(I) \subseteq I = \text{compact}$ $I \text{ invariant} \implies x(t) = 0 \text{ for all } t \in I$, thus $\text{int}(I) \subseteq \mathcal{A}$ $I \text{ invariant} \implies \text{len}(I) = b - a < 2\pi$ Possible to have $I \subseteq J$ both invariant, with $I \neq J$ Each invariant I is contained in a **maximal** invariant JThe maximal intervals are pairwise disjoint $I = [a, b] \text{ maximal} \implies \eta(a) = \eta(b) = a$ There are finitely many maximal intervals, and at least one

I = [a, b] maximal implies that $\blacktriangleright x(t) \equiv 0$ in [a, b],

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

I = [a, b] maximal implies that $\blacktriangleright x(t) \equiv 0$ in [a, b], and that for any ε :

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- I = [a, b] maximal implies that
 - ► $x(t) \equiv 0$ in [a, b],

and that for any ε :

▶
$$x(t) \neq 0$$
 in $[a - \varepsilon, a]$ and in $[b, b + \varepsilon]$, thus $a, b \in \mathcal{N}$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- I = [a, b] maximal implies that
 - $\blacktriangleright x(t) \equiv 0 \text{ in } [a, b],$

and that for any ε :

- ▶ $x(t) \neq 0$ in $[a \varepsilon, a]$ and in $[b, b + \varepsilon]$, thus $a, b \in \mathcal{N}$,
- ▶ $[a \varepsilon, a] \cap \mathcal{N}$ and $[b, b + \varepsilon] \cap \mathcal{N}$ are uncountable, and

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- I = [a, b] maximal implies that
 - $\blacktriangleright x(t) \equiv 0 \text{ in } [a, b],$

and that for any ε :

- ▶ $x(t) \neq 0$ in $[a \varepsilon, a]$ and in $[b, b + \varepsilon]$, thus $a, b \in \mathcal{N}$,
- ▶ $[a \varepsilon, a] \cap \mathcal{N}$ and $[b, b + \varepsilon] \cap \mathcal{N}$ are uncountable, and
- [a − ε, a] ∩ A and [b, b + ε] ∩ A have infinitely many connected components.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

```
Uncountability of \boldsymbol{\mathcal{N}}
```

Suppose I = [a, b] is the only maximal interval of η .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○○○

Uncountability of $\boldsymbol{\mathcal{N}}$

Suppose I = [a, b] is the only maximal interval of η .

Denote $I_k = [a + 2\pi k, a + 2\pi (k + 1)]$. Then for large *m* we have $\eta^m(I_k) \supseteq I_k$ and $\eta^m(I_k) \supseteq I_{k-1}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Uncountability of $\boldsymbol{\mathcal{N}}$

Suppose I = [a, b] is the only maximal interval of η .

Denote $I_k = [a + 2\pi k, a + 2\pi (k + 1)]$. Then for large *m* we have $\eta^m(I_k) \supseteq I_k$ and $\eta^m(I_k) \supseteq I_{k-1}$.

For any $t_0 \in \mathbf{R}$ let

 $S(t_0) = \{t \in \mathbf{R} \mid \eta^{\mu}(t) = t_0 \pmod{2\pi} \text{ for some } \mu \geq 1\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Uncountability of $\boldsymbol{\mathcal{N}}$

Suppose I = [a, b] is the only maximal interval of η .

Denote $I_k = [a + 2\pi k, a + 2\pi (k + 1)]$. Then for large *m* we have $\eta^m(I_k) \supseteq I_k$ and $\eta^m(I_k) \supseteq I_{k-1}$.

For any $t_0 \in \mathbf{R}$ let

 $S(t_0) = \{t \in \mathbf{R} \mid \eta^{\mu}(t) = t_0 \pmod{2\pi} \text{ for some } \mu \ge 1\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then the closure $\overline{S(t_0)}$ is uncountable.

Uncountability of $\mathcal N$

Suppose I = [a, b] is the only maximal interval of η .

Denote $I_k = [a + 2\pi k, a + 2\pi (k + 1)]$. Then for large *m* we have $\eta^m(I_k) \supseteq I_k$ and $\eta^m(I_k) \supseteq I_{k-1}$.

For any $t_0 \in \mathbf{R}$ let

 $S(t_0) = \{t \in \mathbf{R} \mid \eta^{\mu}(t) = t_0 \pmod{2\pi} \text{ for some } \mu \geq 1\}.$

Then the closure $\overline{S(t_0)}$ is uncountable.

Do this with $t_0 = a \in \mathcal{N}$. Then $\overline{S(a)} \subseteq \mathcal{N}$ is uncountable.

Uncountability of $\mathcal N$

Suppose I = [a, b] is the only maximal interval of η .

Denote $I_k = [a + 2\pi k, a + 2\pi (k + 1)]$. Then for large *m* we have $\eta^m(I_k) \supseteq I_k$ and $\eta^m(I_k) \supseteq I_{k-1}$.

For any $t_0 \in \mathbf{R}$ let

 $S(t_0) = \{t \in \mathbf{R} \mid \eta^{\mu}(t) = t_0 \pmod{2\pi} \text{ for some } \mu \geq 1\}.$

Then the closure $\overline{S(t_0)}$ is uncountable.

Do this with $t_0 = a \in \mathcal{N}$. Then $\overline{S(a)} \subseteq \mathcal{N}$ is uncountable.

Iterate the points in S(a) backwards to get them in a neighborhood of $a \pmod{2\pi}$, and of b.

Components of
$$\mathcal{A}$$

Again suppose I = [a, b] is the only maximal interval.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Components of
$${\mathcal A}$$

Again suppose I = [a, b] is the only maximal interval.

There exists some point $c \in A$ with $c \in (b - 2\pi, a)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Components of \mathcal{A}

Again suppose I = [a, b] is the only maximal interval.

There exists some point $c \in A$ with $c \in (b - 2\pi, a)$.

Iterate *c* backward to get arbitrarily close to *a*. Then *a* is a limit point (to the left) of points in A, and of points in N.

Components of \mathcal{A}

Again suppose I = [a, b] is the only maximal interval.

There exists some point $c \in A$ with $c \in (b - 2\pi, a)$.

Iterate c backward to get arbitrarily close to a. Then a is a limit point (to the left) of points in A, and of points in N.

Thus \mathcal{A} has infinitely many components near a (and near b).

Can ${\mathcal N}$ have nonempty interior?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○○○

Can \mathcal{N} have nonempty interior?

Answer unknown, but if so it would be very interesting: An interval where the solution is everywhere C^{∞} but nowhere analytic.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

 $\mathcal N$ Can Be a Cantor Set

$$\eta(t) = t - n\pi(1 - \cos t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Then there is a maximal interval $I = [0, \tau]$ for some $\tau \in (0, \frac{\pi}{2})$

${\cal N}$ Can Be a Cantor Set

$$\eta(t) = t - n\pi(1 - \cos t)$$

Then there is a maximal interval $I = [0, \tau]$ for some $\tau \in (0, \frac{\pi}{2})$

There is also its symmetric "twin" $I' = [\pi - \tau, \pi]$ which is invariant mod 2π .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

\mathcal{N} Can Be a Cantor Set

$$\eta(t)=t-n\pi(1-\cos t)$$

Then there is a maximal interval $I = [0, \tau]$ for some $\tau \in (0, \frac{\pi}{2})$

There is also its symmetric "twin" $I' = [\pi - \tau, \pi]$ which is invariant mod 2π .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

Although x(t) is nonzero in I', it is nonetheless analytic in the interior.

\mathcal{N} Can Be a Cantor Set

$$\eta(t) = t - n\pi(1 - \cos t)$$

Then there is a maximal interval $I = [0, \tau]$ for some $\tau \in (0, \frac{\pi}{2})$

There is also its symmetric "twin" $I' = [\pi - \tau, \pi]$ which is invariant mod 2π .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Although x(t) is nonzero in I', it is nonetheless analytic in the interior.

But the endpoints of I' are not points of analyticity.

\mathcal{N} Can Be a Cantor Set

$$\eta(t) = t - n\pi(1 - \cos t)$$

Then there is a maximal interval $I = [0, \tau]$ for some $\tau \in (0, \frac{\pi}{2})$

There is also its symmetric "twin" $I' = [\pi - \tau, \pi]$ which is invariant mod 2π .

Although x(t) is nonzero in I', it is nonetheless analytic in the interior.

But the endpoints of I' are not points of analyticity. Thus

$$(0, au),(\pi- au,\pi)\subseteq\mathcal{A},\qquad 0, au,\pi- au,\pi\in\mathcal{N}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Take any other interval (connected component) of \mathcal{A} , say

$$J = (a, b) \subseteq \mathcal{A}, \qquad a, b \in \mathcal{N}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Take any other interval (connected component) of \mathcal{A} , say

$$J = (a, b) \subseteq \mathcal{A}, \qquad a, b \in \mathcal{N}$$

Consider the iterates $\eta^k(J)$. Either

$$\eta^k(J) = \operatorname{int}(I) \quad \text{or} \quad \eta^k(J) = \operatorname{int}(I')$$

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶

for some k,

Take any other interval (connected component) of \mathcal{A} , say

$$J = (a, b) \subseteq \mathcal{A}, \qquad a, b \in \mathcal{N}$$

Consider the iterates $\eta^k(J)$. Either

$$\eta^k(J) = \operatorname{int}(I)$$
 or $\eta^k(J) = \operatorname{int}(I')$

for some *k*, or else

$$\eta^k(J) \cap I = \eta^k(J) \cap I' = \emptyset$$
 for all k (**)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

29

Take any other interval (connected component) of A, say

$$J = (a, b) \subseteq \mathcal{A}, \qquad a, b \in \mathcal{N}$$

Consider the iterates $\eta^k(J)$. Either

$$\eta^k(J) = \operatorname{int}(I) \quad \text{or} \quad \eta^k(J) = \operatorname{int}(I')$$

for some *k*, or else

$$\eta^k(J) \cap I = \eta^k(J) \cap I' = \emptyset$$
 for all k (**)

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶

But (**) is impossible due to a stretching condition.

In the complement (mod 2π) S of $I\cup I'$, the map η satisfies: If $\eta^k(t)\in S$ for every $k\geq 1$ then

 $\liminf_{k\to\infty}|\dot{\eta}^k(t)|>1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

In the complement (mod 2π) S of $I \cup I'$, the map η satisfies: If $\eta^k(t) \in S$ for every $k \ge 1$ then $\liminf_{k \to \infty} |\dot{\eta}^k(t)| > 1.$

Thus if (**) holds there exist $k_1 < k_2 < k_3 < \ldots$ such that ${\sf len}(\eta^{k_{i+1}}(J)) > 2{\sf len}(\eta^{k_i}(J)),$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

which is impossible.

In the complement (mod 2π) S of $I \cup I'$, the map η satisfies: If $\eta^k(t) \in S$ for every $k \ge 1$ then $\liminf_{k \to \infty} |\dot{\eta}^k(t)| > 1.$

Thus if (**) holds there exist $k_1 < k_2 < k_3 < \ldots$ such that $len(\eta^{k_{i+1}}(J)) > 2len(\eta^{k_i}(J)),$

・ロト・日本・日本・日本・日本・今日・

which is impossible.

One similarly shows that ${\cal N}$ has empty interior.

In the complement (mod 2π) S of $I \cup I'$, the map η satisfies: If $\eta^k(t) \in S$ for every $k \ge 1$ then $\liminf_{k \to \infty} |\dot{\eta}^k(t)| > 1.$

Thus if (**) holds there exist $k_1 < k_2 < k_3 < \ldots$ such that $\operatorname{len}(\eta^{k_{i+1}}(J)) > 2\operatorname{len}(\eta^{k_i}(J)),$

which is impossible.

One similarly shows that $\mathcal N$ has empty interior.

A final argument shows that ${\cal N}$ has no isolated points, and so ${\cal N}$ is a generalized Cantor set.