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ẋ = ax , x(t0) = x0 =⇒ x(t) = ea(t−t0)x0



1

Ordinary differential equations:

ẋ = f (x), x(t0) = x0

Here f : Rn → Rn is smooth and can be thought of as a vector

field in Rn. There is a unique solution x(t) through the initial point
x0 at the initial time t0.

ẋ = ax , x(t0) = x0 =⇒ x(t) = ea(t−t0)x0

but in general there is no explicit formula for the solution.
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Delay-differential equations:

ẋ(t) = f (x(t), x(t − r )),

f : Rn × Rn → Rn, r > 0 is given.

Delay-differential equations (delay equations) arise as
mathematical models in many areas of science and engineering.
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ẋ = f (x , u), u = g(x(t − r ))

I Biology and Physiology



3

I Control theory
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I Control theory
ẋ = f (x , u), u = g(x(t − r ))

I Biology and Physiology
(maturation or reproduction time in biological and

physiological models)

I Economics
(production or manufacturing time in economic models)

I Optics and Communications

(finite speed of signal transmission)
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Multiple delays:

ẋ(t) = f (x(t), x(t − r1), . . . , x(t − rm)).

Distributed delay:

ẋ(t) = f (

∫ t

t−r

x(s) ds).

Nonautonomous systems, variable delays (r = r (t) or r = r (x(t))),

infinite delays,. . .
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Compare a linear ordinary differential equation

ẋ = Ax

with a linear delay equation

ẋ(t) = Ax(t) + Bx(t − r ).

One can find solutions of the form x(t) = eλtv where

(λI − A − Be−λr )v = 0, and

∆(λ) = det(λI − A − Be−λr ) = 0.
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In general, the characteristic equation

∆(λ) = det(λI − A − Be−λr ) = 0

has infinitely many roots. In many (but not all) cases one can

write any solution as a superposition of such eigensolutions

x(t) =

∞∑
j=1

cje
λj tvj

In this sense, a delay equation is infinite-dimensional.
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The nonlinear Mackey-Glass equation arises as a model of blood
cell population:

ẋ(t) = −ax(t) + g(x(t − r )), g(x) =
bx

1 + xk

where a, b, r > 0 and k > 1. This incorporates an attrition term
−ax(t), and a production term g(x(t − r )) with maturation time r .

The rate of production of new cells depends on the population of
cells r time units in the past.

Note: The same equation, with a different g , arises in nonlinear

optics.
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Modified Mackey-Glass

βẋ(t) = −ax(t) + g(x(t − r )), r = r (x(t))

Two Delays

ẋ(t) = −ax(t) + g1(x(t − r1)) + g2(x(t − r2))

Cyclic Feedback System

ẋi (t) = fi (xi(t), xi−1(t − ri )), i mod n

Wright’s Equation

ẋ(t) = −αx(t − 1)[1 + x(t)]
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In the 1960s Jack Hale and his collaborators placed the subject of

delay equations within the framework of infinite-dimensional
dynamical systems. For an equation such as

ẋ(t) = f (x(t), x(t − r ))

one specifies an initial condition as

xt0 = ϕ ∈ C

where

C = C([−r , 0], Rn),

xt ∈ C is given by xt(θ) = x(t + θ) for θ ∈ [−r , 0].

Then for every t ≥ t0 one has xt ∈ C for the solution. Existence is

for forward time only, and uniqueness is problematic for variable
delays.
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With Hale’s formulation, many of the well-studied phenomena and

structures of (finite-dimensional) dynamical systems can be found
in delay equations. Among these are

I equilibrium points and their stability

I periodic orbits

I invariant manifolds (e.g., separatrices)

I bifurcations

I omega limit sets

I attractors (finite dimensional)

I chaotic dynamics
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Many of the techniques and tools of classical dynamical systems
can be extended to delay equations, although sometimes this

entails significant complications.

The flow (solution) map T (t) : C → C is compact when t ≥ r .
This gives a finite-dimensional feel to this infinite-dimensional

problems.

This program has been carried out quite successfully for problems

with constant delay, but is still (actively!) underway for problems
with variable delays.
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βẋ(t) = −x(t) + g(x(t − 1)),

Negative Feedback Tends to Produce Oscillations



11

Periodic Solutions for Negative Feedback Equations
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βẋ(t) = −x(t) + g(x(t − 1)),

Negative Feedback Tends to Produce Oscillations

For each small β there exists a slowly oscillating periodic
solution x(t) if g : R → R satisfies

I xg(x) < 0 for all x 6= 0;

I g ′(0) < −1;

I g(x) has sublinear growth as |x | → ∞.

Tool: Degree theory (fixed-point theorem) in cones.



11

Periodic Solutions for Negative Feedback Equations

βẋ(t) = −x(t) + g(x(t − 1)),

Negative Feedback Tends to Produce Oscillations

For each small β there exists a slowly oscillating periodic
solution x(t) if g : R → R satisfies

I xg(x) < 0 for all x 6= 0;

I g ′(0) < −1;

I g(x) has sublinear growth as |x | → ∞.

Tool: Degree theory (fixed-point theorem) in cones.

Similar result for the case of a variable delay r = r (x(t)), but little
is known for multiple delays.
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Detailed information is available about the limiting behavior of
these solutions as β → 0 (the singular perturbation case).

‖x‖ = supt∈R |x(t)| ≥ K > 0 as β → 0 provided that either

I r ≡ 1 (constant delay);

I r ′(0) 6= 0;

I r ′(0) = 0 and r ′′(0) > 0; or

I r ′(0) = 0 and r ′′(0) < 0.

Each case requires a different argument, and the asymptotic shapes
of the solutions as β → 0 in the four cases are radically different.
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The asymptotic shape of the graph of x(t) as β → 0 can be
explicitly determined, and is generally unique.

If r ≡ 1 is constant, and there is a stable period 2 orbit {a1, a2} of
the map x → f (x), one obtains a square wave of period 2 + O(β).

The solution need not be unique, and need not be stable. The

vertical parts of the wave have thickness O(β) and are described
by transition layer equations.
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For non-constant r , determining the asymptotic shape of solutions
involves max-plus operators.

The Sawtooth Equation is the simplest model case.

βẋ(t) = −x(t) − kx(t − r ), k > 1, r = 1 + x(t).

In contrast to the constant delay case, for small β the periodic
solution is unique and superstable with asymptotic period

p = k + 1 +
β| logβ|

k − 1
+ O(β).

Very detailed asymptotics are known for this solution as β → 0.
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Ordinary Differential Equations

A linear ODE

ẋ = A(t)x

generates a linear process (solution map) in Rn

T (t, t0) : Rn → Rn

namely a family of linear maps satisfying

T (t0, t0) = I , T (t, t1)T (t1, t0) = T (t, t0)

for all t, t0, t1.
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Letting ∧ denote the exterior product, define

T (t, t0)
∧m = T (t, t0) ∧ T (t, t0) ∧ · · · ∧ T (t, t0)

for m ≤ n. Then

T (t, t0)
∧m : (Rn)∧m → (Rn)∧m

is a linear process in (Rn)∧m and satisfies a so-called compound

differential equation.

This was studied by J. Muldowney and Q. Wang in the case

ẋ = A(t)x is the linearization around a solution

y = p(t) satisfying ẏ = f (y),

namely A(t) = f ′(p(t)).

They obtained information about the nonlinear equation ẏ = f (y).
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Tensor Products

Let V and W be vector spaces. Then V ⊗ W is the vector space

generated by all elements v ⊗ w (with v ∈ V and w ∈ W ) under
the relations

λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw),

(v + v ′)⊗ w = v ⊗ w + v ′ ⊗ w ,

v ⊗ (w + w ′) = v ⊗ w + v ⊗ w ′

and no others.

dim(V ⊗ W ) = dim V × dim W

Tensor product A⊗B of linear maps A : V → V and B : W → W .
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Exterior Product

Take the m-fold tensor product of a vector space V with itself

V⊗m = V ⊗ V ⊗ · · · ⊗ V .

The exterior product
V∧m ⊆ V⊗m

is the subspace generated by all elements

v1 ∧ v2 ∧ · · · ∧ vm =
1

m!

∑

σ∈Sm

(−1)σvσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(m),

for vi ∈ V where Sm is the symmetric group on m elements.

dim V∧m =

(

dim V

m

)
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Spectral Properties

Linear map A : V → V with eigenvalues {λi}
n
i=1.

•The spectrum of A⊗m : V⊗m → V⊗m consists of all products

λi1λi2 · · ·λim , with indices 1 ≤ ij ≤ n.

(There are nm such products.)

•The spectrum of A∧m : V∧m → V∧m consists of all products

λi1λi2 · · ·λim , with indices 1 ≤ i1 < i2 < · · · < im ≤ n.

(There are
(

n
m

)

such products.)
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Infinite-Dimensional Tensor Products

Let (X , ‖ · ‖) and (Y , ‖ · ‖) be Banach spaces and form their
algebraic tensor product X ⊗ Y .

What norm shall we put on X ⊗ Y ? In general, there are many
inequivalent “natural” norms we can take.

Given a “natural” norm for X ⊗ Y , is the resulting space complete

(i.e., a Banach space)? If it’s not complete, we may take its
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Let (X , ‖ · ‖) and (Y , ‖ · ‖) be Banach spaces and form their
algebraic tensor product X ⊗ Y .

What norm shall we put on X ⊗ Y ? In general, there are many
inequivalent “natural” norms we can take.

Given a “natural” norm for X ⊗ Y , is the resulting space complete

(i.e., a Banach space)? If it’s not complete, we may take its
completion.

If A : X → X and B : Y → Y are bounded linear operators, can
we form a bounded linear operator A ⊗ B : X ⊗ Y → X ⊗ Y ?
What are its spectral properties?
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The injective norm ‖ · ‖ε on X ⊗ Y is defined to be

∥

∥

∥

∥

m
∑

j=1

xi ⊗ yi

∥

∥

∥

∥

ε

= sup
‖ξ‖=‖η‖=1

m
∑

j=1

ξ(xi)η(yi),

Here ξ ∈ X ∗ and η ∈ Y ∗ are elements of the dual space.

The resulting space is not in general complete, so we takes its

completion and obtain a new Banach space denoted X ⊗ε Y .
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Example. Let H1 and H2 be compact Hausdorff spaces, and let

X1 = C(H1), X2 = C(H2).

Then we have an isometric isomorphism

X1 ⊗ε X2 = C(H1 × H2).

In our delay equation setting this will arise for H1 = H2 = [−1, 0].

This extends to any (finite) number of factors, so

(C [−1, 0])⊗m = C([−1, 0]m).
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The exterior product

(C [−1, 0])∧m ⊆ (C [−1, 0])⊗m = C([−1, 0]m)

consists of all anti-symmetric functions ϕ ∈ C([−1, 0]m), namely

functions for which

ϕ(θσ(1), θσ(2), . . . , θσ(m)) ≡ (−1)σϕ(θ1, θ2, . . .θm)

holds identically for every σ ∈ Sm.
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Delay Equations + Tensor Products

Consider the equation

ẋ(t) = −b(t)x(t − 1), x(θ) = ϕ(θ) for θ ∈ [−1, 0].

The solution operator T (t) = T (t, 0) : C [−1, 0] → C [−1, 0] maps
ϕ to the function xt given by

xt(θ) = x(t + θ).

[T (1)ϕ](θ) = ϕ(0)−

∫ θ

−1
b(s + 1)ϕ(s) ds
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How to calculate T (1)⊗2 : C([−1, 0]2) → C([−1, 0]2)?

Begin with ϕ ∈ C([−1, 0]2). Apply previous formula for T (1)

separately to each argument, holding the other one fixed.

How to calculate T (1)∧2 : (C [−1, 0])∧2 → (C [−1, 0])∧2?

Begin with ϕ ∈ (C [−1, 0])∧2 and do the same. In this case

there will be cancellations in the final formula.
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[T (1)⊗2ϕ](θ1, θ2)

= ϕ(0, 0)−

∫ θ2

−1
b(s + 1)ϕ(0, s) ds

−

∫ θ1

−1
b(s + 1)ϕ(s, 0) ds

+

∫ θ1

−1

∫ θ2

−1
b(s + 1)b(r + 1)ϕ(s, r ) dr ds.

The formula for T (1)⊗mϕ has 2m terms.

If ϕ is anti-symmetric, there are many cancellations and the
formula simplifies tremendously.

If m is even the minus signs disappear.
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[T (1)∧2ϕ](θ1, θ2) =

∫ θ2

θ1

b(s + 1)ϕ(s, 0) ds

+

∫ θ1

−1

∫ θ2

θ1

b(s + 1)b(r + 1)ϕ(s, r ) dr ds.
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[T (1)∧2ϕ](θ1, θ2) =

∫ θ2

θ1

b(s + 1)ϕ(s, 0) ds

+

∫ θ1

−1

∫ θ2

θ1

b(s + 1)b(r + 1)ϕ(s, r ) dr ds.

If b(t) ≥ 0 then the operator T (1)∧2 (and more generally
T (t, t0)

∧m if m is even) is a positive operator with respect to a

certain cone.
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Theorem. Consider the scalar equation

ẋ(t) = −a(t)x(t) − b(t)x(t − 1)

where
b(t) ≥ 0.

Let T (t, t0) : C [−1, 0] → C [−1, 0] denote the solution operator.
Then if m is even, the operator T (t, t0)

∧m on (C [−1, 0])∧m is

positive with respect to the cone

K∗ = {ϕ ∈ (C [−1, 0])∧m | ϕ(θ1, θ2, . . . , θm) ≥ 0

whenever − 1 ≤ θ1 ≤ θ2 ≤ · · · ≤ θm ≤ 0}.

The same conclusion holds if b(t) ≤ 0 and m is odd.
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[T (1)∧mϕ](θ1, . . . , θm)

=

∫ θ2

θ1

· · ·

∫ θm

θm−1

b1(s1) · · ·b
1(sm−1)ϕ(s1, · · · , sm−1, 0) dsm−1 · · ·ds1

+(−1)m
∫ θ1

−1
· · ·

∫ θm

θm−1

b1(s0) · · ·b
1(sm−1)ϕ(s0, · · · , sm−1) dsm−1 · · ·ds0,

where b1(s) = b(s + 1).

We are taking a(t) ≡ 0 for convenience.
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Cones and Positive Operators

•A cone K ⊆ X in a Banach space (X , ‖ · ‖) is a set satisfying

I K is closed and convex,

I λx ∈ K whenever x ∈ K and λ ≥ 0, and

I x ,−x ∈ K if and only if x = 0.
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•A cone is called reproducing if

X = {x1 − x2 | x1, x2 ∈ K}.

•A cone is called normal if there is a constant C such that

‖x1‖ ≤ C‖x2‖ whenever 0 ≤ x1 ≤ x2.

•A linear operator L : X → X is called positive if

x ∈ K =⇒ Lx ∈ K .
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Examples of Cones

I The nonnegative orthant in Rn.

I The set of nonnegative functions in various function spaces

Lp(Ω), C(H), Ck(Ω), W k,p(Ω) . . .

I The nondecreasing functions in C0[0, 1].

I The “triangle-nonnegative” functions in (C [−1, 0])∧m,

namely

K∗ = {ϕ ∈ (C [−1, 0])∧m | ϕ(θ1, θ2, . . . , θm) ≥ 0

whenever − 1 ≤ θ1 ≤ θ2 ≤ · · · ≤ θm ≤ 0}.



19

Theorem. Consider the scalar equation
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Theorem. Consider the scalar equation

ẋ(t) = −a(t)x(t) − b(t)x(t − 1)

where

a(t + γ) = a(t), b(t + γ) = b(t), b(t) ≥ b0 > 0.

Then the Floquet multipliers µj (spectrum of T (γ, 0)) are infinite
in number and satisfy

|µ1| ≥ |µ2| > |µ3| ≥ |µ4| > |µ5| ≥ |µ6| > . . .

where algebraic multiplicity is counted. (Note the gaps.)

Further, the Floquet solutions corresponding to µ2k−1 and µ2k

have lap number
V (xt) ≡ 2k − 1.
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Recall that the Floquet multipliers are the nonzero spectral points

of the monodromy operator M = T (γ, 0).

We know that for m-fold exterior product, M∧m, the spectral

radius equals
r (M∧m) = |µ1µ2 · · ·µm|.

We wish to obtain a computable lower bound for this quantity,
and hence for the individual multipliers |µk |.
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Lemma. Let L1 and L2 be linear operators for which
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normal. Then
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Lemma. Let L1 and L2 be linear operators for which

0 ≤ L1 ≤ L2

with respect to a cone K , where K is both reproducing and
normal. Then

r (L1) ≤ r (L2)

for the spectral radii of these operators.

Applying this lemma to M∧m, in the case that b(t) ≥ b0 > 0 and

m is even, gives a computable lower bound

|µk | ≥ Ck

for the magnitude of each characteristic multiplier. In fact we

conclude that there are infinitely many characteristic multipliers.
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Now consider the homotopy

ẋ(t) = −κa(t)x(t) − [κb(t) + (1 − κ)b0]x(t − 1), 0 ≤ κ ≤ 1.

The lower bounds |µk | ≥ Ck remain valid throughout the

homotopy.

At the beginning of the homotopy (κ = 0) we have a constant
coefficient problem, and so the gap structure

|µ1| ≥ |µ2| > |µ3| ≥ |µ4| > |µ5| ≥ |µ6| > . . .

and properties of the lap number hold.

These features are continued throughout the homotopy to κ = 1,
using “pseudo-continuity” properties of the lap-number V (·).
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The Krĕın-Rutman Theorem

Let L : X → X be a bounded linear operator which is positive with

respect to some cone K ⊆ X . Also assume that

I L is compact,

I K is a total cone, and

I the spectral radius r of L is positive.

Then Lv = rv for some v ∈ K \ {0}.



23
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The Krĕın-Rutman Theorem

Let L : X → X be a bounded linear operator which is positive with

respect to some cone K ⊆ X . Also assume that

I L is compact,

I K is a total cone, and

I the spectral radius r of L is positive.

Then Lv = rv for some v ∈ K \ {0}.

I The eigenvalue λ = r need not be simple nor the eigenvector

v unique.

I Simplicity/uniqueness is related to “irreducibility” of the

operator L.
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ẋ(t) = −b(t)x(t − 1), b(t) ≥ b0 > 0,

We take m even, say m = 2 for convenience. Recall and define

[T (1)∧2ϕ](θ1, θ2) =

∫ θ2

θ1

b(s + 1)ϕ(s, 0) ds

+

∫ θ1

−1

∫ θ2

θ1

b(s + 1)b(r + 1)ϕ(s, r ) dr ds,

[T∧2
0 ϕ](θ1, θ2) =

∫ θ2

θ1

ϕ(s, 0) ds +

∫ θ1

−1

∫ θ2

θ1

ϕ(s, r ) dr ds.

Then T (1)∧2 ≥ cT∧2
0 for some c > 0, and so

r (T (1)∧2) ≥ cr (T∧2
0 )

for the spectral radii of these operators.
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Krĕın-Rutman Setting: Total cone K ⊆ X , operator L : K → K .

We say L is u0-positive if for some n ≥ 1 and u0 ∈ K , it is the

case that
Lnx ∼ u0

for every nonzero x ∈ K . Here x1 ∼ x2 means αx1 ≤ x2 ≤ βx1 for
some α, β > 0.

Theorem. In the setting of the Krĕın-Rutman Theorem, if

additionally L is u0-positive, then the eigenvalue r (the spectral
radius) is algebraically simple.



Regularity of Solutions of Delay-Differential Equations:

Analyticity versus C∞

John Mallet-Paret
Division of Applied Mathematics

Brown University

Chengdu, Sichuan, June, 2019



1

Regularity of Solutions
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Regularity of Solutions

ẋ(t) = f (t, x(t), x(t − r1), . . . , x(t − rN))

Suppose x(t) is a bounded solution defined for all t ∈ R (e.g., a

periodic solution or more generally a solution on the attractor).
If f and rk are C∞ smooth, then so is x(t).

What if f and rk are analytic?

Theorem (Nussbaum). If each rk > 0 is a constant, and f is
analytic and independent of t, then x(t) is analytic in t.

But in general the answer is not so clear.
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Asymptotic Homogenization

ẋ(t) = e it2
x(t − 1)

There exists a solution for t ∈ R with x(−∞) = 1. It is C∞, but
we don’t know whether or not it is analytic.

The problem is that e it2
is not bounded in the strip

Re t ≤ 0, |Im t| ≤ ε

for any ε.

It is known that x(t) has an analytic extension to the lower
half-plane Im t < 0.

We believe the real axis Im t = 0 is the boundary of the region
where x(t) is analytic (holomorphic).
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ẋ(t) = f (x(t), x(t − r )), r = r (x(t)),

If f (u, v) and r (u) are analytic in u and v , then x(t) is C∞ in t.

Analyticity is unknown in general, and there is reason to believe

x(t) is analytic for some t but not in general for all t.
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A simpler problem occurs if r = r (t) is a given function of t, rather

than r = r (x(t)). Consider, for simplicity, the linear equation

ẋ(t) = α(t)x(t) + β(t)x(t − r (t))

where α(t), β(t), and r (t) are analytic for t ∈ R.

(Much of what we say also holds for many nonlinear equations.)

The dynamics of the “history” map

t → η(t) = t − r (t)

plays a role in determining for which t the solution x(t) is analytic.
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For a given C∞ solution x(t) we distinguish two sets:

A = {t0 | x(t) is analytic for t in some neighborhood of t0},

N = R \ A.

Note that A ⊆ R is open and N ⊆ R is closed.
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Theorem. Consider the equation

ẋ(t) = α(t)x(t) + β(t)x(η(t))

where α(t), β(t), and η(t) are analytic for all t ∈ R. Assume that

x(t) is a solution for all t ∈ R. Then

η(N ) ⊆ N , η(A\M) ⊆ A,

where M ⊆ R is the set of local minima and maxima of η(t).

Proof. First observe that x(t) is C∞ everywhere.

Take any t0 ∈ R and let t1 = η(t0).

Suppose x(t) is analytic in a neighborhood of t = t1. Then
x(η(t)) is analytic near t = t0. Regarding β(t)x(η(t)) as a known

forcing term in the differential equation, we conclude that x(t) is
analytic near t = t0.
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Now suppose x(t) is analytic in a neighborhood of t = t0. From

the differential equation it follows that x(η(t)) is also analytic near
t = t0.

Write η(t) = t1 + ((t − t0)θ(t))
m for t near t0, and some m ≥ 1,

where θ(t0) 6= 0. Introducing the new variable s = (t − t0)θ(t), we

see that x(t1 + sm) is analytic in s near s = 0, and thus

x(t) =

∞
∑

j=0

xj s
j =

∞
∑

j=0

xj(t − t1)
j/m

as a convergent series. However, because x(t) is C∞, it follows

that xj = 0 if j is not divisible by m. Therefore,

x(t) =

∞
∑

k=0

xmk(t − t1)
k ,

and so x(t) is analytic near t1. ///
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Theorem. Suppose for some t0 that η(t0) = t0 and |η̇(t0)| < 1.
Then x(t) is analytic at every t in the domain of attraction of t0
under the map η (and thus, in particular, it is analytic in a
neighborhood of t0).

The same conclusion holds for a periodic point ηm(t0) = t0 with

|η̇m(t0)| < 1.

If the solution x(t) is periodic, then it is enough to assume that
ηm(t0) = t0 modulo the period.

Idea of Proof. Write the equation in integrated form and apply a
standard contraction mapping argument in the space of functions

analytic in a disc about t0.
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What happens if η(t0) = t0 but |η̇(t0)| > 1? Then generically (but

not always), no solution through this point can be analytic.

Consider the equation

λx(t) =

∫ t

η(t)
x(s) ds, η(t) = t − r (t)

where r (t) > 0 is a given 2π-periodic analytic function.

It is known there exists a unique λ > 0 and solution x(t) > 0, with

x(t + 2π) = x(t). (The strictness r (t) > 0 is crucial here.)

This solution also satisfies the differential equation

λẋ(t) = x(t) − x(η(t))η̇(t).
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λẋ(t) = x(t) − x(η(t))η̇(t).

Suppose that η(0) = 0 (mod 2π) and η̇(0) = µ > 1.

Analytic Hartman-Grobman Theorem: By means of an analytic
change of variables t = σ(τ), we replace η(t) by µτ near t = 0.

σ−1(η(σ(τ)))≡ µτ, y(τ) = x(σ(τ)).

This leads to the equation

λẏ(τ) = α(τ)y(τ)− µα(µτ)y(µτ),

α(τ) = σ̇(τ).
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not.



11

λẏ(τ) = α(τ)y(τ)− µα(µτ)y(µτ)

Consider the power series

y(τ) = 1 +

∞
∑

n=1

ynτ
n, α(τ) =

∞
∑

n=0

αnτ
n,

where the series for α(τ) converges, but the series for y(τ) need

not. The coefficients yn are uniquely determined by the recursion

λ(n + 1)yn+1 = (1 − µn+1)

n
∑

k=0

αn−kyk .

Define quantities wn by

yn =

(

(−1)nαn
0Mn

λnn!

)

wn, Mn =

n
∏

k=1

(µk − 1) ∼ µn(n+1)/2.
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Then
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(−1)n−k
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)(

αk
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)(

αn−k

α0

)

wk
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Theorem. The limit

w∞ = lim
n→∞

wn

exists. If w∞ 6= 0 then there is no analytic solution through τ = 0.
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Then

wn+1 = wn +

n−1
∑

k=0

(−1)n−k

(

λnn!

αn
0Mn

)(

αk
0Mk

λkk!

)(

αn−k

α0

)

wk

Theorem. The limit

w∞ = lim
n→∞

wn

exists. If w∞ 6= 0 then there is no analytic solution through τ = 0.

If w∞ = 0 then there exists a unique analytic solution through
τ = 0 (although there may exist other non-analytic solutions).
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Examples with w∞ 6= 0

Consider

λx(t) =

∫ t

t+(µ−1) sin t−2πm

x(s) ds

where 1 < µ < 2πm + 1.

Then w∞ 6= 0 if µ is sufficiently large, and m is chosen

proportional to µ (with the right range of propotionality).

Verifying this involves making estimates of the eigenvalue λ, which

turns out to be proportional to µ.

One also must show that the Hartman-Grobman conjugacy
σ(τ) = σ(τ, µ) is well-behaved for large µ.
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More on the Integral Equation

λx(t) =

∫ t

η(t)
x(s) ds, η(t) = t − r (t)

Here we assume that

r : R → R is continuous (not necessarily analytic),

r (t) ≥ 0, r (t + 2π) = r (t),

for all t ∈ R.
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Integral Operator

(Lx)(t) =

∫ t

η(t)
x(s) ds, x ∈ X ,

X = {x : R → R | continuous and 2π periodic}

Then L : X → X is a positive operator (with respect to the cone of
nonnegative functions).

The Krein-Rutman Theorem implies there exists λ > 0 and
x ∈ X \ {0}, with x ≥ 0, such that

Lx = λx

if and only if the spectral radius rad(L) is positive. And if so, one

can take λ = rad(L).
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inf
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η(s) < t (∗)

for every t ∈ R.
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Theorem. The spectral radius is positive, rad(L) > 0, if and only if

inf
s≥t

η(s) < t (∗)

for every t ∈ R.

Remark. If η(t) < t (that is, r (t) > 0) for every t, then (∗) holds

and rad(L) > 0. In this case the eigenfunction is unique.
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obtain points

t0 < t1 < t2 < · · · < tm ≡ t0(mod 2π)

such that
tk ∈ (η(tk+1), tk+1).
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Sketch of Proof. Suppose (∗) holds for every t. Using (∗) we

obtain points

t0 < t1 < t2 < · · · < tm ≡ t0(mod 2π)

such that
tk ∈ (η(tk+1), tk+1).

It follows that if x ≥ 0 and x(tk) > 0, then (Lx)(tk+1) > 0.

Taking x ≥ 0 to be a function with small bumps at the points tk ,

it follows that
Lx ≥ cx for some c > 0.

This implies (upon iterating) that ‖Ln‖ ≥ cn, and thus
rad(L) ≥ c > 0.
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Now suppose (∗) is false for some t but that rad(L) > 0.

By Krein-Rutman there exists a nontrivial x ∈ X , with x ≥ 0, such
that Lx = λx for some λ > 0.

Then for any τ ≥ t we have t ≤ η(τ) ≤ τ , and so

λ|x(τ)| ≤

∫ τ

η(τ )
|x(s)| ds ≤

∫ τ

t

|x(s)| ds.

Gronwall implies x(τ) ≡ 0 identically, a contradiction.///
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A Discretized Problem
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A Discretized Problem

If η(t) < t for all t then the eigensolution x for λ = r (L) is unique
up to scalar multiple.

What if η(t0) = t0 for some t0?

More generally, is it possible for L to have more than one positive
eigenvalue?

Consider the case that r (t) has integer period m and

η(t) = k − ck , k < t < k + 1

where ck = ck+m > 0 is an integer.
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This leads to a problem for m × m matrices Γ of the form

Γ =


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with 1’s on the diagonal, and 1’s to the left (cyclically), followed
by 0’s.
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This leads to a problem for m × m matrices Γ of the form

Γ =

















1 0 0 0 1 1
1 1 0 0 0 1

1 1 1 0 0 1
0 1 1 1 0 0

0 0 1 1 1 0
0 1 1 1 1 1

















,

with 1’s on the diagonal, and 1’s to the left (cyclically), followed
by 0’s.

Is it possible for such Γ to have more than one eigenvalue in
(1,∞)?

Some numerical calculations suggest not.
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We now come to a main result on the analyticity set A.

Theorem. In addition to the standing assumptions (periodicity
and nonnegativity) on r (t), assume that

I r (t) is analytic in t,

I r (t0) = 0 for some t0, and

I rad(L) > 0.
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We now come to a main result on the analyticity set A.

Theorem. In addition to the standing assumptions (periodicity
and nonnegativity) on r (t), assume that

I r (t) is analytic in t,

I r (t0) = 0 for some t0, and

I rad(L) > 0.

Then A is a nonempty open set with infinitely many connected
components (mod 2π), and the set N is uncountable.

An example of a system satisfying the above conditions is given by

r (t) = ρ(1− cos t), ρ > ρ0.



23

Steps in the Proof

Study invariant intervals I = [a, b], namely η(I ) ⊆ I = compact



23

Steps in the Proof

Study invariant intervals I = [a, b], namely η(I ) ⊆ I = compact
I invariant =⇒ x(t) = 0 for all t ∈ I , thus int(I ) ⊆ A



23

Steps in the Proof

Study invariant intervals I = [a, b], namely η(I ) ⊆ I = compact
I invariant =⇒ x(t) = 0 for all t ∈ I , thus int(I ) ⊆ A
I invariant =⇒ len(I ) = b − a < 2π



23

Steps in the Proof

Study invariant intervals I = [a, b], namely η(I ) ⊆ I = compact
I invariant =⇒ x(t) = 0 for all t ∈ I , thus int(I ) ⊆ A
I invariant =⇒ len(I ) = b − a < 2π
Possible to have I ⊆ J both invariant, with I 6= J



23

Steps in the Proof

Study invariant intervals I = [a, b], namely η(I ) ⊆ I = compact
I invariant =⇒ x(t) = 0 for all t ∈ I , thus int(I ) ⊆ A
I invariant =⇒ len(I ) = b − a < 2π
Possible to have I ⊆ J both invariant, with I 6= J

Each invariant I is contained in a maximal invariant J



23

Steps in the Proof

Study invariant intervals I = [a, b], namely η(I ) ⊆ I = compact
I invariant =⇒ x(t) = 0 for all t ∈ I , thus int(I ) ⊆ A
I invariant =⇒ len(I ) = b − a < 2π
Possible to have I ⊆ J both invariant, with I 6= J

Each invariant I is contained in a maximal invariant J

The maximal intervals are pairwise disjoint



23

Steps in the Proof

Study invariant intervals I = [a, b], namely η(I ) ⊆ I = compact
I invariant =⇒ x(t) = 0 for all t ∈ I , thus int(I ) ⊆ A
I invariant =⇒ len(I ) = b − a < 2π
Possible to have I ⊆ J both invariant, with I 6= J

Each invariant I is contained in a maximal invariant J

The maximal intervals are pairwise disjoint

I = [a, b] maximal =⇒ η(a) = η(b) = a



23

Steps in the Proof

Study invariant intervals I = [a, b], namely η(I ) ⊆ I = compact
I invariant =⇒ x(t) = 0 for all t ∈ I , thus int(I ) ⊆ A
I invariant =⇒ len(I ) = b − a < 2π
Possible to have I ⊆ J both invariant, with I 6= J

Each invariant I is contained in a maximal invariant J

The maximal intervals are pairwise disjoint

I = [a, b] maximal =⇒ η(a) = η(b) = a

There are finitely many maximal intervals, and at least one



24

I = [a, b] maximal implies that

I x(t) ≡ 0 in [a, b],



24

I = [a, b] maximal implies that

I x(t) ≡ 0 in [a, b],

and that for any ε:



24

I = [a, b] maximal implies that

I x(t) ≡ 0 in [a, b],

and that for any ε:

I x(t) 6≡ 0 in [a − ε, a] and in [b, b + ε], thus a, b ∈ N ,



24

I = [a, b] maximal implies that

I x(t) ≡ 0 in [a, b],

and that for any ε:

I x(t) 6≡ 0 in [a − ε, a] and in [b, b + ε], thus a, b ∈ N ,

I [a − ε, a] ∩N and [b, b + ε] ∩ N are uncountable, and



24

I = [a, b] maximal implies that

I x(t) ≡ 0 in [a, b],

and that for any ε:

I x(t) 6≡ 0 in [a − ε, a] and in [b, b + ε], thus a, b ∈ N ,

I [a − ε, a] ∩N and [b, b + ε] ∩ N are uncountable, and

I [a − ε, a] ∩A and [b, b + ε] ∩A have infinitely many
connected components.
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Uncountability of N

Suppose I = [a, b] is the only maximal interval of η.

Denote Ik = [a + 2πk, a + 2π(k + 1)]. Then for large m we have

ηm(Ik) ⊇ Ik and ηm(Ik) ⊇ Ik−1.

For any t0 ∈ R let

S(t0) = {t ∈ R | ηµ(t) = t0 (mod 2π) for some µ ≥ 1}.

Then the closure S(t0) is uncountable.

Do this with t0 = a ∈ N . Then S(a) ⊆ N is uncountable.

Iterate the points in S(a) backwards to get them in a
neighborhood of a (mod 2π), and of b.
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Components of A

Again suppose I = [a, b] is the only maximal interval.

There exists some point c ∈ A with c ∈ (b − 2π, a).

Iterate c backward to get arbitrarily close to a. Then a is a limit

point (to the left) of points in A, and of points in N .

Thus A has infinitely many components near a (and near b).
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Can N have nonempty interior?

Answer unknown, but if so it would be very interesting: An interval

where the solution is everywhere C∞ but nowhere analytic.
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N Can Be a Cantor Set

η(t) = t − nπ(1− cos t)

Then there is a maximal interval I = [0, τ ] for some τ ∈ (0, π
2 )

There is also its symmetric “twin” I ′ = [π − τ, π] which is invariant

mod 2π.

Although x(t) is nonzero in I ′, it is nonetheless analytic in the

interior.

But the endpoints of I ′ are not points of analyticity. Thus

(0, τ), (π− τ, π) ⊆ A, 0, τ, π− τ, π ∈ N
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Take any other interval (connected component) of A, say

J = (a, b) ⊆ A, a, b ∈ N

Consider the iterates ηk(J). Either

ηk(J) = int(I ) or ηk(J) = int(I ′)

for some k, or else

ηk(J) ∩ I = ηk(J) ∩ I ′ = ∅ for all k (∗∗)

But (**) is impossible due to a stretching condition.
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In the complement (mod 2π) S of I ∪ I ′, the map η satisfies:

If ηk(t) ∈ S for every k ≥ 1 then

lim inf
k→∞

|η̇k(t)| > 1.

Thus if (**) holds there exist k1 < k2 < k3 < . . . such that

len(ηki+1(J)) > 2len(ηki (J)),

which is impossible.

One similarly shows that N has empty interior.

A final argument shows that N has no isolated points, and so N is
a generalized Cantor set.




