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Abstract

The goal of this presentation is to introduce the abc conjecture. The
following topics will be covered:

Statements of the abc conjecture.

Application to Fermat’s last theorem.

Numerical evidence.

Polynomial analogue.

Effective Mordell conjecture.

More equivalent conjectures.

Mochizuki’s work.
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Overview

1 Statements of the abc conjecture

2 Application to Fermat’s last theorem

3 Numerical evidence

4 Polynomial analogue

5 Effective Mordell Conjecture

6 More equivalent conjectures

7 Mochizuki’s work
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Statements of the abc conjecture
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Oesterlé and Masser

The abc conjecture was proposed in the 1980s by

Joseph Oesterlé (French mathematician),

David Masser (British mathematician).

It is also called the Oesterlé–Masser conjecture.
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Oesterlé and Masser

The abc conjecture was proposed in the 1980s by
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Oesterlé and Masser

The abc conjecture was proposed in the 1980s by
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The radical of a positive integer

Let N be a positive integer. The radical of N is just

rad(N) =
∏

p|N prime

p.

By the unique factorization theorem, we can write

N = pm1
1 pm2

2 · · · p
mr
r ,

where p1, p2, · · · , pr are distinct primes numbers and m1,m2, · · · ,mr are
positive integers. Then

rad(N) = p1p2 · · · pr .
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abc triple

An abc triple is a triple (a, b, c) of positive integers a, b, c such that

a + b = c

and
gcd(a, b) = 1.

The abc conjecture compares the radical rad(abc) of the product abc with
c . A trivial bound is

rad(abc) ≤ abc < c3.

However, the conjecture asserts that we can also bound c by a power of
rad(abc).
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The conjecture

Conjecture (abc conjecture, Oesterlé–Masser conjecture)

For any real number ε > 0, there exists a real number Kε > 0 such that

c < Kε · rad(abc)1+ε

for any abc triple (a, b, c).

The conjecture says that abc cannot have “too many” repeated prime
factors of “high multiplicity” if

a + b = c , gcd(a, b) = 1.
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For any real number ε > 0, there exists a real number Kε > 0 such that

c < Kε · rad(abc)1+ε

for any abc triple (a, b, c).

The conjecture says that abc cannot have “too many” repeated prime
factors of “high multiplicity” if

a + b = c , gcd(a, b) = 1.

Xinyi Yuan abc conjecture January 25, 2019 8 / 41



Other forms

There are many other forms of the conjecture. For example, one can just
ask for a single ε satisfying the property.

Conjecture (abc conjecture: weak form)

There exist ε > 0 and K > 0 such that

c < K · rad(abc)1+ε

for any abc triple (a, b, c).

The following may be the most convenient form.

Conjecture (abc conjecture: Baker’s form)

One has
c < rad(abc)1.75

for any abc triple (a, b, c).
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Application to Fermat’s last theorem
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Fermat’s last theorem

Theorem (Fermat’s last theorem)

For any integer n ≥ 3, any integer solution of the equation

xn + yn = zn

has x = 0, y = 0 or z = 0.

This was stated by Pierre de Fermat in 1637, and finally proved by Andrew
Wiles and Richard Taylor in 1994.

For stories of Fermat’s last theorem, google or wiki...
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Fermat’s last theorem

Wiles and Taylor actually proved the modularity conjecture, which asserts
that any (semistable) elliptic curve over Q is modular, i.e., corresponds to
a modular form in a natural way.

To prove Fermat’s last theorem by the modularity conjecture, one also
needs Frey’s construction and Ken Ribet’s theorem of level lowering.
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abc implies Fermat

Assume that Fermat’s last theorem fails; i.e.,

xn + yn = zn

for positive integers n ≥ 3, x , y , and z . Assume that gcd(x , y) = 1. Then
(xn, yn, zn) is an abc triple.

Assume Baker’s form of the abc conjecture:

c < rad(abc)1.75.

Then we have

zn < rad(xnynzn)1.75 ≤ (xyz)1.75 < z1.75×3 = z5.25.

This implies n = 3, 4, 5.
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abc implies Fermat

If we know the weaker form of the abc conjecture, then we will get a
(probably weaker) upper bound of n. Then the problem is still reduced to
small n.
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Fermat’s last theorem for small n

Fermat’s last theorem was proved for small n before Wiles:

n = 4: Fermat. After this, the problem is reduced to the case that n
is a prime.

n = 3: Leonhard Euler, 1770.

n = 5: Legendre, Dirichlet, 1825.

n = 7: Lamé, 1839.

n is a regular prime: Kummer, 1858. Conjecturally, approximately
61% of the primes are regular. The only irregular primes less than 100
are 37, 59 and 67.

n < 2521: Vandiver, 1954.

n < 4× 106: 1993.
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Numerical evidence
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Exponential bounds

We want to bound c by a polynomial of rad(abc). Unfortunately, we only
know exponential bounds. For example, Stewart and Yu proved in 2001
that

c < exp(Lε · rad(abc)
1
3
+ε).
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The logarithms

For an abc triple (a, b, c), denote

q(a, b, c) =
log c

log rad(abc)
.

Recall that Baker’s version of the abc conjecture:

c < rad(abc)1.75 ⇐⇒ q(a, b, c) < 1.75.

The original form of the abc conjecture is equivalent to the following
statement:

For any ε > 0, all but finitely many abc triples (a, b, c) satisfies the
inequality q(a, b, c) < 1 + ε.
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numerical evidence

If c < 1018, there are only 160 abc triples with q(a, b, c) > 1.4.

Largest q(a, b, c) we know is given by:

2 + 310 · 109 = 235, q(a, b, c) ≈ 1.6299.

Another triple with big q(a, b, c) but relatively small c is given by:

1 + 2 · 37 = 54 · 7, q(a, b, c) ≈ 1.5679.
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Polynomial analogue
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Polynomial analogue

Theorem (Mason–Stothers 1981)

Let a = a(t), b = b(t), and c = c(t) be coprime polynomials with real
coefficients such that a + b = c and such that not all of them are constant
polynomials. Then

max{deg(a), deg(b), deg(c)} ≤ deg(rad(abc))− 1.

Here rad(abc) is the product of the distinct irreducible factors of abc.

The theorem holds for polynomials over any field k (instead of just R).
However, if the characteristic of k is positive, we need to assume that not
all of the derivatives of a, b, c are zero. This is to exclude triples like

(ap
n
, bp

n
, (a + b)p

n
).
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Polynomial analogue

Why is it an analogue?

Z and R[t] are analogous. Both are unique factorization domains
(and even principal ideal domains), as a consequence of the division
algorithm (the long division).

Write |f | = edeg(f ) for any f ∈ R[t]. This gives a metric over R[t]. It
is also multiplicative in the sense that |fg | = |f | · |g |. Then it is an
analogue of the usual absolute value |n| for n ∈ Z.

Finally,

max{deg(a), deg(b), deg(c)} ≤ deg(rad(abc))− 1

becomes
max{|a|, |b|, |c |)} ≤ e−1|rad(abc)|.

It corresponds to the integer version with ε = 0.
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Polynomial analogue: the proof

The polynomial analogue is surprisingly easy to prove, compared to the
original integer version. The following proof is due to Snyder in 2000.

(0) Start with a + b + c = 0, we get the derivative a′ + b′ + c ′ = 0.

(1) We have an equality of Wronskians:

ab′ − a′b = bc ′ − b′c = ca′ − c ′a.

In fact, for the matrix (
a b c
a′ b′ c ′

)
,

the sum of the three columns is 0. Therefore,∣∣∣∣ a b
a′ b′

∣∣∣∣ =

∣∣∣∣ b c
b′ c ′

∣∣∣∣ =

∣∣∣∣ c a
c ′ a′

∣∣∣∣ .
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Polynomial analogue: the proof

The polynomial analogue is surprisingly easy to prove, compared to the
original integer version. The following proof is due to Snyder in 2000.

(0) Start with a + b + c = 0, we get the derivative a′ + b′ + c ′ = 0.
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Polynomial analogue: the proof

(2) Denote
W = ab′ − a′b = bc ′ − b′c = ca′ − c ′a.

Then W 6= 0 by gcd(a, b) = 1.

(3) We have

deg(W ) ≥ deg(gcd(a, a′)) + deg(gcd(b, b′)) + deg(gcd(c , c ′)).

In fact, W is divisible by the coprime polynomials gcd(a, a′),
gcd(b, b′) and gcd(c, c ′).

(4) We have
gcd(a, a′) = a/rad(a),

gcd(b, b′) = b/rad(b),

gcd(c , c ′) = c/rad(c).

In fact, if p = p(t) is an irreducible factor of a = a(t) of multiplicity
m > 0, then the multiplicity of p in a′ = a′(t) is m − 1.
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Polynomial analogue: the proof

(5) Combine (3) and (4). We have

deg(W ) ≥ deg(abc)− deg(rad(abc)).

(6) By (5) and

deg(W ) = deg(ab′ − a′b) ≤ deg(ab)− 1,

we have
deg(c) ≤ deg(rad(abc))− 1.

(7) By symmetry,
deg(a) ≤ deg(rad(abc))− 1,

deg(b) ≤ deg(rad(abc))− 1.
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Polynomial analogue: the proof

What is the most important step in the proof?

(0) Start with a + b + c = 0, we get the derivative a′ + b′ + c ′ = 0.

Cheating!!!
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Effective Mordell Conjecture
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Fermat–Catlan conjecture

The abc conjecture is easily applied to some variants of the Fermat
equation, such as bounding integer solutions (x , y , z) of equations of the
form

axm + byn = czk .

This is not surprising.

However, the abc conjecture can actually be applied to much more
complicated Diophantine equations. For example, it implies the Mordell
conjecture.
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Mordell Conjecture

Theorem (Mordell Conjecture, Faltings Theorem)

For any curve X of genus g > 1 over Q, the set X (Q) is finite.

This was conjectured by Louis Joel Mordell (1922), and proved by Gerd
Faltings (1983).

Surprisingly, the abc conjecture implies the Mordell conjecture, by the
work of Noam Elikies (1991).
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Some algebraic geometry

A projective variety X over Q is a set of homogeneous polynomial
equations with rational coefficients:

fi (x0, · · · , xn) = 0, i = 1, 2, · · · ,m.

Denote by X (Q) be the set of common rational solutions (x0, · · · , xn), and
by X (C) be the set of common complex solutions (x0, · · · , xn).

These solutions are understood in homogeneous coordinates. So (0, · · · , 0)
is excluded, and (ax0, · · · , axn) = (x0, · · · , xn) for any a 6= 0.

The dimension of X is the dimension of X (C) as a complex space. We say
that X is a curve if the dimension is 1. If X is a smooth curve, then X (C)
is a compact orientable surface in the sense of topology, and the genus g
of X is just the number of handles on X (C).
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Some algebraic geometry

If X is given by a single irreducible homogeneous equation

f (x , y , z) = 0

of degree d , then X is a curve and its (geometric) genus

g =
(d − 1)(d − 2)

2
− δ.

Here δ ≥ 0 is the contribution from singularities.

If X is smooth, δ = 0. This happens most of the time.
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Some algebraic geometry

Example

For abc 6= 0, the twisted Fermat curve

X : axn + byn = czn

has genus

g =
(n − 1)(n − 2)

2
.

Then g > 1 if and only if n > 3.
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Effective Mordell

Theorem (Mordell Conjecture)

For any curve X of genus g > 1 over Q, the set X (Q) is finite.

Problem

For a given curve X of genus g > 1 over Q, find an effective algorithm to
find all elements of the finite set X (Q).

We may try to enumerate (x0, · · · , xn) in the set Zn+1 to check if it
satisfies the equations. Try from “small tuples” to “big tuples”.

When do we know that we have got all the solutions? Is there an upper
bound on the size of the solutions?

The proofs of Faltings and Vojta give upper bounds on the number of
solutions, but this is not sufficient for our purpose.
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Height

Definition (Height)

For a rational solution P = (x0, · · · , xn) of X (Q), after clearing the
denominators and the common factors, we can assume that x0, · · · , xn are
coprime integers. Then we define the height of P to be

h(P) = log max{|x0|, · · · , |xn|}.

This defines a height function h : X (Q)→ R.

To have a satisfactory answer to our question, we need a computable
constant C (X ) depending on X such that

h(P) < C (X ), ∀ P ∈ X (Q).

This is a part of the effective Mordell conjecture.
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Effective Mordell

Conjecture (effective Mordell)

Let X be a projective and smooth curve over Q of genus g > 1. Then for
any d ≥ 1, there exist constants A(X , d) and B(X , d) depending only on
X and d such that for any finite extension K of Q of degree d ,

h(P) < A(X , d) log |DK |+ B(X , d), ∀ P ∈ X (K ).

Finally, (some version of) the effective Mordell conjecture is equivalent to
(some version of) the abc conjecture.
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More equivalent conjectures
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More equivalent conjectures

The following conjectures (in suitable forms) are equivalent:

The abc conjecture:

c < Kε · rad(abc)1+ε.

The effective Mordell conjecture:

h(P) < A(X , d) log |DK |+ B(X , d), P ∈ X (K ), [K : Q] = d .

Szpiro’s conjecture: for elliptic curves E over a number field K ,

log |∆E | ≤ (6 + ε) log |NE |+ C (K , ε).

Arithmetic Bogomolov-Miyaoka-Yau inequality. The classical
Bogomolov-Miyaoka-Yau inequality asserts that c21 ≤ 3c2 for compact
complex surfaces of general type. There is a conjectural arithmetic
version in the setting of Arakelov geometry.

Vojta’s conjecture for the hyperbolic curve P1 − {0, 1,∞}.
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Mochizuki’s work
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Mochizuki’s work

Shinichi Mochizuki: Japanese mathematician and professor at Kyoto
University. He received a PHD from Princeton University in 1992 (at
age 23) under the supervision of Gerd Faltings.

In August 2012, Mochizuki posted 4 papers on his webpage, which
contains a proof of the abc conjecture, as a consequence of his theory
called the Inter-universal Teichmüller theory (IUT). These 4 papers
have about 600 pages in total, and are based on his other works in
the past many years.

There are few mathematicians in the world who have read part of the
proof.

In May 2018, Peter Scholze and Jakob Stix wrote a 10-page report,
detailing a serious gap in Mochizuki’s proof. In July 2018, Mochizuki
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Mochizuki’s work

Mochizuki’s work would actually imply

c < rad(abc)2

for any abc triple (a, b, c). Recall that Baker’s version of the abc
conjecture asserts

c < rad(abc)1.75.
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Thank you very much.
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