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Dirac operators in Lattice Gauge Theory

A naive Dirac operator in lattice gauge theory is given by

where V,, and V;, denote backward and forward finite differences:
(Vup)(n) = [Un,up(n + 1) —¢(n)] /a
(Vi) (n) = [¥(n) — Unpp(n — i1)] /a

with a the lattice spacing (Here D is skew-adjoint).




But it encountered a problem of fermion doubling, extra freedom
of fermions that appears in lattice gauge theory. In order to overcome
this point Wilson proposed the Wilson fermion operator :

Dw =D+ W,

where W = —%(V;‘;VM) > 0. But Dy, has another difficulty, namely it

breaks the chirality; I' Dy + Dy I’ = 0. Then the third Dirac operator,
the overlap operator, was found by Neuberger ,which is given by

D=11+0)
a

CLDV[/—].

laDyy — 1|
Ginsparg-Wilson relation, which is a perturbation of the chirality.

with U =

It still breaks the chirality but satisfies the



The Ginsparg-Wilson relation
[ an involution, namely M =1, r =1
An operator D satisfies the Ginsparg-Wilson relation if

DI +1'D =aDI'D

with a € R. At a = 0, it means that D anti-commutes with I.

Proplosition 1 Let U be a unitary operator with TUIT = U*. Set
D = —(14+U). Then D satisfies the Ginsparg-Wilson relation.
a

In fact,

DI +TTD=0xU)/a+T(1+U)/a= Q2 £UlI £TU)/a
IS equal to
aDIFD=1xU)M(14+U)/a= (T £Ur£TU+UIU)/a

since UT'U =1T. )
Remark. spec (—(1 + U)) tends to the imaginary axis iR as a — O.
a
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A universal Ginsparg-Wilson algebra

Given an involution I and a unitary U with TUI" = U™*.
Set " = I'U, which gives another involution:

(M*=U*r =Turuv =1, (M2=rurv=v*v =1
Conversely, given two involutions ' and ", we set U =T T/. Then U

is a unitary with TUlr = U™*. This argument implies:

Proposition 2 Let S! be the unit circle in C and € € Z> an involution
that acts on S by the complex conjugation: e¢(z) =z (z € S1). The
resulting crossed product C(SY) x Z, is isomorphic to the universal
C*-algebra generated by two involutions.

Definition 1 The crossed product C(S1) x Z, called a universal
Ginsparg-Wilson algebra and denoted by Cgy, -




The K-theory of Cfy,
Let = € R be the for the unit circle St c C:

T+ 1
Thus R is identified with S1\ {1} and there is a short exact sequence:

e ESl.
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0 — Co(R) ¥Zo — ChLyy — C*Zp — 0O

where 7 is the evaluation at z = 1 € S!. Then one has the 6-term
exact sequence:

7 — 73 — 7°

O «— 0 «— O
Thus the K-group of CE";W are:

Ko(Cow) 223,  Ki(Chy) 2 0.



Proposition 3 Define projections in Cfy, such as

p=(1+4¢€)/2, p/=(1—|—eew)/2.
Ko(Ckyy) admits a basis given by [p] — [¢'], [p] — [1 — 9], [1], where
[p] — [P'] € Ko(Co(R) x Zp) £ Z,
me([p] — [1 = p']), m«[1] € Ko(C*Z) = 72

generate those groups. Let ez = (x + ¢)"lp(z + €) be the graph
projection. Then the (index) class

lez] — [1 —p] € Ko(Co(R) x Z2)
coincides with [p] — [p'].

Definition 2 Set

Ind(U,-1) :=[p] = [p'], Ind(U,+1) :=[p] - [1 -p].

We call Ind(U,—-1) a (universal) index class and Ind(U,+1) a
(universal) doubler class.




The Ginsparg-Wilson Index theorem

Given an involution ' and a unitary U with T'Ul' = U™* on a Hilbert
space H, there exists a x*-homomorphism

p:Chiyw — L(H)

to the bounded operators on . in such a way that p(e??) = U, p(e) =T.
Associated to I and U, the Ginsparg-Wilson index can be defined:
p«(Ind(U, —1)) is called the index class and p«(Ind(U, +1)) the doubler
class, denoted often suppressing px.

Recall "' =TU is an involution. Define selfadjoint operators such as
Hy =(+4+r1")/2, H = -1r"/2.

Let V(U,+1) be the eigenspace of U of eigenvalue £1, respectively.
One has

V(U,+1) = {£|T¢€ = £I'¢} = ker H=
since 1+U=0(C£r").
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Theorem 4 (The Ginsparg-Wilson index theorem) Suppose
that the spectrum £1 € spec(U) are isolated and the correspond-
ing projections are finite. Then one has p«Ind(U,£1) € Kg(K)
with IC the ideal of compact operators and

Tr(p« Ind(U, £1)) = Tr(F|V (U, £1)) = Tr(| ker H=)

Moreover, if Hy is traceable, then

Tr(p«Ind(U,£1)) = Tr(H+/2).

The second identity is easily follows from

px(p—p)=@Q4+N/2-1Q+T)/2=H_
p(p—(L—p))=QQ+T)/2-Q-T")/2=Hy
Theorem justifies the notation Ind(U, £1) since they are associated to

the spectral projection of U corresponding to +1. Also note that Hy /2
are not projections in general, but the trace turned out to be integers.



Examples of the Ginsparg-Wilson index

Example 1 Let D be a Dirac operator on a closed manifold and I
the grading operator such as D + DI' = 0. The Cayley transform
U= (D —1i)(D+i)~ 1 satisfies

D—z’l__D—I—z'
D+i  D—3i

rvr =1 =U".

Then one has
Ut = —¢ = (D—i)6 = —(D+i)f — £ckerD
and thus
Tr(Ind(U, —1)) = Tr(rV(U,—1)) = Tr(I|ker D) = Ind(D™).

On the other hand, one has V(U,+1) = 0 since (D —i)§ = (D 4 )&
if and only if £ = 0. Thus Tr(I'|V(U,4+1)) = 0 although the class
Ind(U,+1) does not belong to Ko(K). Replacing D by f(D) with f a
tempered function of xz/|x| on R, one has e Ko(K).



Example 2 (Finite dimensional case) Set
=t 1) r=(¥ 1)
with n4+m =k -+ 1. Then one has

1n O / / 1 O / O O
P=(1+F)/2=<0 o)’ p:(1+r)/2:<ok o)’ 1—p:<0 1l>

and thus
Tr(Ind(U, —1)) = TI’(P — Pl) = n—%k
Tr(Ind(U,+1)) =Tr(P-(1—-P))=n -1

Note that the Fredholm index of F' : V — W does not depend on the
choice of F' if V is finite dimensionl. However, we can get a nontrivial
index class Ind(U, —1) with the doubler class Ind(U,+1) trivial (take
n=¢) even ifdimV < oo.
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Example 3 As in Example 1, let D be a selfadjoint elliptic operator on
a closed manifold and take I a grading operator such as ' D+ DI = 0.
Also take a selfadjoint operator A such that DA = AD and A = AIl'.
Set

D — 1A
! on (ker D N ker A)+
U=<D+1A
1 on ker D N ker A

One has

D — 1A D+ A
B —[ = — Mir =1
D+ A D — A

and thus TUI = U*. It then follows that

Tr(Ind(U, —1)) = Tr(| ker D) = Ind(DT)

Tr(Ind(U,+1)) = Tr(I" kerDNker A) = Tr(I'| ker(D 4+ iA))
Since D+ 1A dose not anti-commute with [T, the second index is not an
ordinary index for an odd operator. In fact, we can obtain a nontrivial

doubler class for suitable D and A. . This is
generalized to the case of Dolbeault index theorem on SU(2).
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A Fuzzy sphere

S2 C R3: the standard sphere defined by z3 + 23 + 23 = 1

A(S?)= the algebra of polynomials in z; restricted to S2

G = SU(2) naturally acts on S2 (SO(3)-action)

A(SQ) splits into the direct sum of irreducible representations of G-

oo
A(S?) =DV
=0
where V; is the representation space with highest weight [ € NuU {0}, a
unique irreducible representation of SU(2) with dimV = 2l + 1 or the

eigenspace of the Laplacian A on S2 with eigenvalue (I 4+ 1).

Definition 3 A fuzzy sphere js the C*-algebra Ay = End(V;) with
N = 2[, where it decomposes into irreducible G-representations:

2]
Ay =End(V)) =Vi@V,= P V.
k=0
One has Ay — A(S?) as N = 2] — oo “naively” .
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The fuzzy Dirac operator

L; € End(V}) (i = 1,2,3): standard self-adjoint infinitesimal generators
of SU(2)-action, namely L, are the angular momentum operators such
dasS [L,L',Lj] = V_leijkLk' They satisfy

L2+ L5+ L3 =1(14+1)1y
Set X; = L;/,/l(l+ 1) = L;/I. One has

v—1
XT+ X5+ X5=1, [ X5, X5 = €ijkX —> 0
i+ 1)
as | — oco. Moreover, with A = 1/\/l(l + 1), one has
v—1

T[X,L-,Xj] — {x;,x;} : the Poisson bracket on S?

as h — 0. Thus noncommutative coordinate X; converges to ordinary
coortinate x; as I — oo in a suitable sense (Rieffel, D'Andorea-Lizzi-
Varilly, ... ).
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o; € End(Vl/Q) = M>C (: = 1,2,3):the Pauli matrix, namely

0 1 0 —i 1 0
"1:<1 o)’ "2:<z’ o)’ “3:(0 —1)'

Define operators on the fuzzy spinors Ay ® Vi 5 = End(V)) ® V; 5 by
D;=1/24+Y 1% g0, Dy=12-YL"®o,
i i

with LV X = L,X and L X = XL; for X € End(V)) ® V3 /. Set

M1 = D1/|D1], Mo = Dy/| Dy,
which are involutions. One has
1 +T1> 1 D
— 1 L, X]®o0;) = .
> 25+1( + 3 1L X1 @ o) 21+ 1

Here ) is the (unbounded) Dirac operator on 52, which preserves the
fuzzy spinors Ay ® Vy 5 C A(S?) ® V12
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In the commutative limit (N = 2] — o0), one has

_|_1—|—|_2_ 1 | | D
H—I-_ 5 = 5 1(1—|—§ [LZ,X]®O'z)—>—| |

_ =T 1 (1) ("“)) . . L
H_ = > = o 15 (L,L. —I—L,L- ®OZ—>E T; D o; =€

since X; = L;/l “converges” to x;, where ¢ is the grading operator on
the spinor bundle on S2. Consider the GW index:

Ind(U,£1) = Tr(H+|ker Hr) = Tr(H+)

Theorem 5 (The index theorem on fuzzy sphere)

Ind(U,—-1) =Tr(H-) =0, Ind(U,+1) =Tr(Hy) =41+ 2

Remark. 1) In the commutative Ilimit (I — oo0), one has
Tr(H_|ker Hy) — Tr(elker D) = Ind(pT) = 0, thus Ind(U,—1) con-
tains no doubler fermions.

2) In a similar way we can define the Dirac operator on Vl®Vm®V1/2,
where one has Ind(U,—-1) = 2m — 2[, Ind(U,+1) =2+ m) + 2.
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A GW index theorem on SU(2)

SU(2) =2 S3: the 3-dimensional sphere

£ = C°(S3) ® C2: the space of spinors with I = [é _01} € End(C?)

X, Y, Z:left-invariant differential operators on S3 corresponding to a
basis of Lie algebra; Do not confuse End(C?2) with Lie(SU(2)).

X = (_01 é) y = (S 8) Z = <é f@) e Lie(SU(2)).

A Dolbeault operator lifted from S2 is defined by
0 5*] 0 X +iY

D = on £.

o 0 X +1iY 0
Since [Z,X] =2Y, [Z,Y] = —2X, the Dolbeault operator D commutes
with the action by T = [g 2222}.
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D — 1A
Z. k- with A, =—1T —k (k€Z). One has TUI =U* as is
D—|—2Ak

proved in Example 3.

Set U =

Theorem 6 (A GW index theorem on SU(2)) The doubler

class Ind(U,+1) belongs to Kg(K) although the index class
Ind(U,—1) not. One has

Ind(U,+1) = Tr(|ker(D +iA4)) = Ind(81T @ H(k)).

Here H(k) denotes the ample line bundle on S2 of degree k,
namely the first Chern number c¢1(H(k))[S?] = k and

0T @ Ly - QU0(S2, H(k)) — Q1 (S?, H(k))
is the Dolbeault operator coupled with H(k).
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Thank you for your attention
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