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Switching Random Dynamic Systems
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Figure: A “Sample Path” of A Switching Dynamic System (X(t),α(t)).



Main Features

continuous dynamics & discrete events coexist

switching is used to model random environment or other random
factors that cannot be formulated by the usual differential
equations

problems naturally arise in applications such as distributed,
cooperative, and non-cooperative games, wireless
communication, target tracking, reconfigurable sensor
deployment, autonomous decision making, learning, etc.

traditional ODE or SDE models are no longer adequate

non-Gaussian distribution



Switching Diffusions

M = {1, . . . ,m}
α(·): taking values in M .
w(t): d -dimensional standard Brownian motion
b(·, ·) : Rr ×M 7→ R

r

σ(·, ·) : Rr ×M 7→ R
r ×R

d

dX (t) = b(X (t),α(t))dt +σ(X (t),α(t))dw(t),
X (0) = x , α(0) = α ,

(1)

P{α(t +∆) = j |α(t) = i ,(X (s),α(s)),s ≤ t}= qij(X (t))∆+o(∆), i 6= j .
(2)



Formulation (cont.)

Q(x) = (qij(x)) : generator associated with α(t) satisfying

qij(x)≥ 0, if j 6= i , and
m

∑
j=1

qij(x) = 0, i = 1,2, . . . ,m

L : generator of (X (t),α(t)). For each i ∈ M , and any g(·, i) ∈ C2(Rr ),

L g(x , i) =
1
2

tr(a(x , i)∇2g(x , i))+b′(x , i)∇g(x , i)+Q(x)g(x , ·)(i) (3)

where
∇g(·, i) & ∇2g(·, i): gradient & Hessian of g(·, i),
a(x , i) = σ(x , i)σ ′(x , i),

Q(x)g(x , ·)(i) =
m

∑
j=1

qij(x)g(x , j).



Main Difficulty

Consider (X (t),α(t)) with two different initial data
(X (0),α(0)) = (x ,α) & (X (0),α(0)) = (y ,α), y 6= x .

Since Q(x) depends on x ,
αx ,α(t) 6= αy ,α(t) infinitely often even though
αx ,α(0) = αy ,α(0) = α .



Associated Poisson Measure

∆ij(x): left closed, right open intervals of R, with length qij(x)

h : Rr ×M ×R 7→ R:

h(x , i ,z) =
m

∑
j=1

(j − i)I{z∈∆ij (x)}. (4)

dα(t) =
∫

R

h(X (t),α(t−),z)p(dt ,dz), (5)

where
p(dt ,dz): a Poisson random measure with intensity dt ×m(dz),
m: the Lebesgue measure on R,
p(·, ·) independent of w(·).



Generalized Itô Lemma

If V ∈ C1,2(R+×R
r ×M ), then for any t ≥ 0:

V (t ,X (t),α(t)) =V (0,X (0),α(0))

+

∫ t

0

[
∂

∂s
+L

]
V (s,X (s),α(s))ds+M1(t)+M2(t),

(6)
where

M1(t) =
∫ t

0

〈
∇V (s−,X (s−),α(s−)),σ(X (s−),α(s−))dw(s)

〉
.

M2(t) =
∫ t

0

∫

R

[
V (s−,X (s−),α(s−)+h(X (s−),α(s−),z))

−V (s−,X (s−),α(s−))
]
µ(ds,dz),

µ(ds,dz) = p(ds,dz)−ds×m(dz) is a martingale measure.



An Example

Consider
ẋ(t) = A(α(t))x(t) (7)

where α(t) has two states {1,2},

A(1) =
[
0 −1
1 0

]
, A(2) =

[
−1 2
−2 −1

]
, Q =

[
−1 1
2 −2

]
,

Associated with the hybrid system, there are two ODEs

ẋ(t) = A(1)x(t), and (8)

ẋ(t) = A(2)x(t) (9)

switching back and forth according to α(t).



Phase Portrait of the Components
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Phase portraits of the ‘component’ with a center (in dashed line) and
the ‘component’ with a stable node (in solid line) with the same initial

condition x0 = [1,1]′



Phase Portrait of Hybrid System

The phase portrait is given below.
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Figure: Switching linear system: Phase portrait of (7) with x0 = [1,1]′.



Switching ODEs

This example belongs to a more general class of hybrid systems:

ẋ(t) = f (x(t),α(t)), x(0) = x , α(0) = α , (10)

and Q(x) is an x-dependent generator.

By using the Liapunov exponent, we can also obtain necessary and
sufficient conditions for stability and instability.

• Some new results different from the usual Hartman-Grobman
theorem
with Zhu & Song, Quarterly Appl. Math (2009)



Seemingly Not Much Different from Diffusions without Switc hing?

Q: When we have a coupled system with M = {1,2} and two stable
linear systems, do we always get a stable system?



Seemingly Not Much Different from Diffusions without Switc hing?

Q: When we have a coupled system with M = {1,2} and two stable
linear systems, do we always get a stable system?

Consider ẋ = A(α(t))x +B(α(t))u(t), and a state feedback
u(t) = K (α(t))x(t). Then one gets

ẋ = [A(α(t))−B(α(t))K (α(t))]x .

Suppose that α(t) ∈ {1,2} such that

A(1)−B(1)K (1) =
[

−100 20
200 −100

]
, A(2)−B(2)K (2) =

[
−100 200

20 −100

]
.

The two feedback systems are stable individually. But if we choose α(t) so
that it switches at kη , where η = 0.01. Then the resulting system is unstable.



The hybrid system is unstable
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Why is the system unstable?

1
2
[A(1)−B(1)K (1)+A(2)−B(2)K (2)] =

1
2

[
−200 220

220 −200

]

is an unstable matrix.

The averaging effect dominates the dynamics.
with Zhang, Springer book, 2nd Ed. 2013



Consider a system

ẋε(t) = b(xε(t),αε (t)), αε(t) ∼ Q/ε (11)

each ẋ(t) = b(x(t), i), i ∈ M is stable.

Q irreducible

xε(·)⇒ x(·) such that

ẋ(t) = b(x(t)), b(x) = ∑
i∈M

νib(x , i). (12)

System (12) is unstable.

Use perturbed Liapunov function to show that (11) is unstable.



Regime-switching Diffusion Examples



Average Cost Per Unit Time Problem

Consider a controlled switching diffusion (X (t),α(t)) (drift and diffusion
coefficients also depend on a control u).

Aim: find u∗(·) so

lim
T→∞

E
1
T

∫ T

0
L(X (t),α(t),u(t))dt

is minimized.

Questions: Does there exist an ergodic measure? If yes, can we
replace the instantaneous measure by the ergodic one?



Two-time-scale Markov Chains

Two-time-scale Markov chain α(t) with ε > 0 small,

Q(t) = Qε(t) =
Q̃(t)

ε
+ Q̂(t). (13)

◮ Q̃(t), Q̂(t) are generators of Markov chains.
◮ Q̃(t) = diag(Q̃1(t), . . . ,Q̃ l(t)) nearly decomposable
◮ M = M1 ∪·· ·∪Ml ; Mi = {si1, . . . ,simi

}
Consider the scaled sequence

1√
ε

∫ t

0
I{αε(u)=sij}−ν i

j (u)I{αε(u)∈Mi}du.

Limit: switching diffusion.

with Badowski, Zhang, Ann. Appl. Probab. (2000)

with Zhang, Ann. Appl. Probab. (2007)



Two-time Scale (a demonstration)

s11 s12 s21 s22



Aggregation for Large-scale Systems



Consensus: Flocking



Consensus: Schooling (Couzin et.al. Nature, 2005)



Consensus Problems: High Way Traffic



Consensus: Honeybee Organization (Visscher, Nature, 2003 )



Consensus Issues

multi-agent coordination

a group objective (e.g., alignment during motion, UAVs formation)

to maintain shared information

some kind of agreement such as objective of operation or a
condition for proceeding to further operation

Our work: Stochastic recursive algorithm, topology switching,
multi-scale systems
with L.Y. Wang and Y. Sun, SIAM MMS, Automatica (2011)



Mean-Field Model

α(t): with M = {1,2, . . . ,m0}.

Consider an ℓ-body mean-field model For i = 1,2, . . . , ℓ,

dXi(t) =
[
γ(α(t))Xi (t)−X 3

i (t)−β (α(t))(Xi (t)−X (t))
]
dt

+σii(X (t),α(t))dwi (t),

X (t) =
1
ℓ

ℓ

∑
j=1

Xj(t),

X (t) = (X1(t),X2(t), . . . ,Xℓ(t))′,

(14)

γ(i)> 0 and β (i)> 0 for i ∈ M .
Originated from statistical mechanics, mean-field models are concerned
with many-body systems with interactions. To overcome the difficulty of
interactions due to the many bodies, one of the main ideas is to
replace all interactions to any one body with

an average or effective interaction .
with F. Xi, J. Appl. Probab. (2009)



Insurance Risk Models

The surplus at time t :

S(t ,x , i) = x +
∫ t

0
c(α(s))ds−

N(t)

∑
j=1

Xj(α(Tj)),

(x , i): initial (surplus, regime);

c(i): premium rate;

Xj(i): claim size;

Tj : claim time;

N(t): Poisson process.

α(t) is used to model:
◮ El Nino/La Nina phenomena in property ins.
◮ economic condition in unemployment policy
◮ certain epidemics in health insurance



Stock Price Models

Stock market models
◮ S(t): stock price
◮ w(·): stand Brownian motion
◮ µ : return (appreciation) rate
◮ σ : volatility

traditional GBM model is given by

dS(t) = µS(t)dt +σS(t)dw .



Regime-switching market models

dS(t) = µ(α(t))S(t)dt +σ(α(t))S(t)dw .

◮ both the return rate & volatility depend on α(t)
◮ α(·) and w(·) are independent
◮ α(t): market mode, investor’s mode, & other economic factors (e.g.,

bull, bear)

with X.Y. Zhou, SIAM J. Control Optim. (2003), IEEE T-AC, (2004)
with Bensoussan and Yan (2012), SIAM J. Fin.



Properties



Regularity & Recurrence

Definition

Regularity. A Markov processY x ,α(t) = (X x ,α (t),αx ,α (t)) is said to be
regular, if for any 0 < T < ∞,

P{ sup
0≤t≤T

|X x ,α (t)|= ∞}= 0. (15)

Remark
Let βn := inf{t : |X x ,α(t)| = n}. Then{βn} is monotonically increasing and
hence has a (finite or infinite) limit. It follows that the process is regular iff

βn → ∞ almost surely asn → ∞. (16)



Definition

(i) Recurrence. For U := D×J, whereJ ⊂ M andD ⊂ R
r is an open set

with compact closure, letσ x ,α
U = inf{t : Y x ,α(t) ∈ U}. A regular process

Y x ,α(·) is recurrent w.r.t. U if

P{σ x ,α
U < ∞}= 1 for any(x ,α) ∈ Dc ×M .

(ii) Positive and Null Recurrence. A recurrent process with finite mean
recurrence time for some setU = D×J is said to bepositive recurrent
w.r.t. U; otherwise, the process isnull recurrent w.r.t. U.



Recurrence Is Independent of Sets

(i) The process (X (t),α(t)) is (positive) recurrent w.r.t. D×M if and
only if it is (positive) recurrent w.r.t. D×{ℓ}, where D ⊂ R

r is a
bounded open set with compact closure and ℓ ∈ M .

(ii) If the process (X (t),α(t)) is (positive) recurrent w.r.t. some
U = D×M , where D ⊂ R

r , then it is (positive) recurrent w.r.t.
Ũ = D̃×M , where D̃ ⊂ R

r is any nonempty open set.



Positive Recurrence (1)

Theorem

A necessary and sufficient condition for positive recurrence with
respect to a domain U = D×{ℓ} ⊂ R

r ×M is: For each i ∈ M , there
exists a nonnegative function V (·, i) : Dc 7→ R s.t. V (·, i) is twice
continuously differentiable and that

L V (x , i) =−1, (x , i) ∈ Dc ×M . (17)

Let u(x , i) = Ex ,i σD . It is the smallest positive sol’n to

{
L u(x , i) =−1, (x , i) ∈ Dc ×M ,

u(x , i) = 0, (x , i) ∈ ∂D×M .
(18)

with Zhu SIAM J. Control Optim. (2007), (2009)



Step 1: Positive recurrence. Show the process is positive recurrent if
exists V (·, ·) (≥ 0) satisfying the conditions of the theorem.

Fix any (x , i) ∈ Dc ×M and set σ (n)
D (t) = min{σD, t ,βn}. Dynkin’s

formula implies

Ex ,iV (X(σ (n)
D (t)),α(σ (n)

D (t)))−V (x , i)= Ex ,i

∫ σ (n)
D (t)

0
L V (X(s),α(s))ds

=−Ex ,iσ
(n)
D (t).

Since V (·) is nonnegative,

Ex ,iσ
(n)
D (t)≤ V (x , i).

Letting n → ∞ and t → ∞, Ex ,iσD < ∞. This is positive recurrence.
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Step 2: Show u(x , i) := Ex ,iσD < ∞ is the smallest positive solution of
the BVP (18).

Set σ (n)
D = min{σD,βn} & un(x , i) = Ex ,iσ

(n)
D . Then un(x , i) solves

L un(x , i) =−1, un(x , i)|x∈∂D = 0 un(x , i)||x |=n = 0.

vn(x , i) := un+1(x , i)−un(x , i) is L -harmonic in
(Dc ∩{|x |< n})×M .

Ex ,iσ
(n)
D ր Ex ,iσD by regularity and DCT. Hence we can write

u(x , i) = un0(x , i)+
∞

∑
k=n0

vk (x , i).

Harnack’s theorem implies that u(x , i) is a solution of (18).

Maximum Principle yields u(x , i) is the smallest solution.
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Step 3: Show: If Y (t) = (X (t),α(t)) is positive recurrent w.r.t.
U = D×{ℓ}, then ∃ V satisfying V ≥ 0 and the conditions of the
theorem.

The positive recurrence implies Ex ,iσD < ∞ for all (x , i) ∈ Dc ×M .

Noting σ (n)
D ≤ σ (n+1)

D , Harnack’s theorem for L -elliptic systems
implies that the bounded monotone increasing sequence un(x , i)
converges uniformly on every compact subset of Dc ×M .
Moreover, its limit u(x , i) satisfies L u(x , i) =−1 for every i ∈ M .

The function V (x , i) := u(x , i) satisfies the required condition.



Ergodicity
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Figure 2: Cycles of Y (t) = (X(t),α(t)); m = 3 & ℓ= 1



Cycles

Assume the process is positive recurrent w.r.t. U = E ×{ℓ};
E ⊂ R

r and ℓ ∈ M are fixed from now on.

Let ∂E be sufficiently smooth. Let D ⊂ R
r be a bdd. ball with suff.

smooth ∂D s.t. E ∪∂E ⊂ D.

Let ς0 = 0 and then define for n = 0,1, . . .

ς2n+1 = inf{t ≥ ς2n : (X (t),α(t)) ∈ ∂E ×{ℓ}},
ς2n+2 = inf{t ≥ ς2n+1 : (X (t),α(t)) ∈ ∂D×{ℓ}}.

Then we can divide an arbitrary sample path of the process into
cycles:

[ς0,ς2), [ς2,ς4), . . . , [ς2n,ς2n+2). . . . (19)



Assume Y (0) = (X (0),α(0)) = (x , ℓ) ∈ ∂D×{ℓ}.

Define Yn = Y (ς2n) = (Xn, ℓ),n = 0,1, . . . It is a MC on ∂D×{ℓ} by
strong Markov property

Theorem

A positive recurrent process (X (t),α(t)) has a unique stationary
distribution ν̂(·, ·) = (ν̂(·, i) : i ∈ M ).



Strong Law of Large Numbers

Theorem

Denote by µ(·, ·) the stationary density associated with ν̂(·, ·) and
f (·, ·) : Rr ×M 7→ R is Borel measurable such that

m0

∑
i=1

∫

Rr
|f (x , i)|µ(x , i)dx < ∞. (20)

Then for any (x , i) ∈R
r ×M

Px ,i

(
1
T

∫ T

0
f (X (t),α(t))dt → f

)
= 1, (21)

where f = ∑m0
i=1

∫
Rr f (x , i)µ(x , i)dx .



Cauchy Problem

Let the assumptions of the last theorem be satisfied, and u(t ,x , i) be
the solution of the Cauchy problem





∂u(t ,x , i)
∂ t

= L u(x , i), i ∈ M ,

u(0,x , i) = f (x , i).
(22)

Then as T → ∞,

1
T

∫ T

0
u(t ,x , i)dt →

m0

∑
i=1

∫

Rr
f (x , i)µ(x , i)dx . (23)

A key to establish this result is the result of law of large numbers.



Stability



Definitions

The equilibrium point x = 0 of system is:

(i) stable in probability, if for any r > 0, lim
x→0

P{sup
t≥0

|X x ,α(t)| > r} = 0;

otherwise x = 0 is unstable in probability.

(ii) asymptotically stable in probability, if it is stable in prob. &
lim
x→0

P{ lim
t→∞

X x ,α(t) = 0}= 1.

(iii) p-stable (for p > 0), if lim
δ→0

sup
|x |≤δ ,α∈M ,t≥0

E|X x ,α (t)|p = 0.

(iv) asymptotically p-stable, if it is p-stable & E|X x ,α(t)|p → 0 as t → ∞.

(v) exponentially p-stable, if for some K ,k > 0,
E|X x ,α(t)|p ≤ K |x |p exp{−kt}, for any α ∈ M .



Necessary Conditions

Theorem

x = 0 is exponentially p-stable iff b and σ have continuous bdd.
derivatives w.r.t. x up to the 2nd order. Then for i ∈ M , ∃
V (·, i) : Rr 7→ R s.t.

k1|x |p ≤ V (x , i)≤ k2|x |p, x ∈ N,

L V (x , i)≤−k3|x |p for all x ∈ N −{0},
∣∣∣∣
∂V
∂xj

(x , i)

∣∣∣∣ < k4|x |p−1,

∣∣∣∣
∂ 2V

∂xj∂xk
(x , i)

∣∣∣∣< k4|x |p−2,

(24)

for all 1 ≤ j ,k ≤ n, x ∈ N −{0}, and for some ki > 0 (i = 1,2,3,4),
where N is a neighborhood of 0.

with Khasminskii & Zhu, Stochastic Proc. Appl. (2007)
with Mao & Yuan, Automatica (2007); (Markov switching)
with Xi SIAM J. Control Optim. (2010)



Linearized Systems

For each i ∈ M , ∃ b(i), σj(i) ∈ R
r×r , j = 1, . . . ,d , and Q̂ = (q̂ij) s.t.

b(x , i) = b(i)x +o(|x |),
σ(x , i) = (σ1(i)x , . . . ,σd(i)x)+o(|x |),
Q(x) = Q̂+o(1),



 as x → 0 (25)

Q̂ is an irreducible generator of a Markov chain α̂(t). Use
π = (π1, . . . ,πm) ∈ R

1×m to denote the stationary dist. associated
with Q̂.



Easily Verifiable Conditions

Theorem

Suppose that
σ ′

j (i)+σj(i)

2
≥ 0.

(a) Then x = 0 (i) is asymptotically stable in prob. if

m

∑
i=1

πi

(
Λb(i)+

1
2

d

∑
j=1

[Λaj (i)−2(λσj(i))
2]

)
< 0 (26)

and (ii) is unstable if

m

∑
i=1

πi

(
λb(i)+

1
2

d

∑
j=1

[λaj (i)−2(Λσj(i))
2]

)
> 0, (27)

where ΛA and λA denote the max. and min. eigenvalue of
1
2
(A+A′),

resp,

(b) If X(t) is 1-d, then x = 0 is (i) asymptotically stable in probab if

∑m
i=1 πi

(
bi −

σ2
i
2

)
< 0, & (ii) unstable in probab if ∑m

i=1 πi

(
bi −

σ2
i
2

)
> 0.



Idea of Proof

We only consider (i).
µ = (µ1, . . . ,µm)′ ∈ R

m with µi = Λb(i)+
1
2 ∑d

j=1Λaj(i). Let β :=−πµ > 0.

Then that Q̂c = µ +β11 has a soln. c = (c1, . . . ,cm)
′ ∈ R

m.

Consider V (x , i) = (1− γci)|x |γ , where 0 < γ < 1 is suff. small s.t.
1− γci > 0, i ∈ M . V (·, i) is continuous, nonnegative, & vanishes only
at x = 0. L V (x , i)< 0 for any (x , i) ∈ (N −{0})×M , where N ⊂ R

r is
a small neighborhood of 0. Then we can show that 0 is asymptotically
stable.



Closing the “Gap"

Consider ‘linear system’ with Q(x)≡ Q, and define Y (t) = X (t)/|X (t)|.
Itô’s formula implies that

dY (t) = Φ(Y (t),α(t))dt +Ψ(Y (t),α(t))dw(t),

where w(t) = (w1(t), . . . ,wd(t))′ ∈ R
d with wk (t),k = 1, . . . ,d being

indep. 1-dim. Brownian motions and Φ,Ψ are appropriate functions.
We can represent ln |X (t)| in terms of (Y (t),α(t)).

Denote the stationary density of (Y (t),α(t)) by µ(y , i), i ∈ M

ρ0 =
m

∑
i=1

∫

S

[
y ′b(i)y +

1
2

d

∑
k=1

(|σk (i)y |2 −2|y ′σk (i)y |2)
]
µ(y , i)dy .

Then asymptotically stable if ρ0 < 0 and unstable if ρ0 > 0.



Explosion Suppression & Stabilization



Regularity Criterion (cont.)

Theorem

Suppose that b(·, ·) : Rr ×M 7→R
r and that σ(·, ·) : Rr ×M 7→ R

r×d ,

dX(t) = b(X(t),α(t))dt +σ(X(t),α(t))dw(t), (X(0),α(0)) = (x ,α),
P{α(t + δ ) = j|α(t) = i,X(s),α(s),s ≤ t}= qij(X(t))δ +o(δ ), i 6= j.

(28)

Suppose that for each i ∈ M , both b(·, i) and σ(·, i) are local linear growth
and local Lipschitzian and that ∃ a nonnegative V (·, ·) : Rr ×M 7→ R

+ that is
C2 in x ∈R

r for each i ∈ M s.t. ∃γ0 > 0

L V (x , i)≤ γ0V (x , i), for all (x , i) ∈ R
r ×M ,

VR := inf
|x |≥R, i∈M

V (x , i)→ ∞ as R → ∞. (29)

Then the process (X(t),α(t)) is regular.



Explosion Suppression

x ∈ R
r

f (·, ·) : Rr ×M 7→ R
r

α(t) ∈ M = {1, . . . ,m}

dX (t)
dt

= f (X (t),α(t)) (30)

f (·, i) continuous but the growth rate is faster than linear

We wish to stabilize (30).



Motivational Example

Consider an even simpler problem: the logistic system

ẋ(t) = x(t)(1+x(t)), x(0) = 1.
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Motivational Example

Consider an even simpler problem: the logistic system

ẋ(t) = x(t)(1+x(t)), x(0) = 1.

solution:

x(t) =
1

−1+2e−t .

It will blow up and the explosion time τ = log2.

Question: How can we get a global soln; how can we stabilize
this?

Two things are needed:
1) extend to a global solution;
2) stabilization.



What have been done?

Khasminskii’s book (1981): stabilize 2-d system with two white
noise

Arnold (1972): ẋ = Ax can be stabilized by zero mean stationary
process iff tr(A)< 0

Mao (1994) established a general stabilization results of Brownian
noise under linear growth condition.

Wu & Hu (2009) treated one-sided growth condition

Mao, Yin, and Yuan (2007): showed that both Brownian motion
and Markov Chain can be used to stabilize systems.



Motivation (diffusion case)

dx = µxdt +σxdw , x(0) = x0.

x(t) = x0 exp
((

µ − σ2

2

)
t +σw(t)

)
.

when σ2 > 2µ ,

limsup
t

log |x(t)|
t

≤
(

µ − σ2

2

)
< 0.

This implies exponential stability.



How to Get a Global Solution? Stablization?

add a diffusion perturbation

dX (t) = f (X (t),α(t))dt +a1(α(t))|X (t)|β X (t)dw1(t)

such that 2β −β1 > 0, where w1(·) is scalar Brownian motion.

add another diffusion to get stability

dX (t) = f (X (t),α(t))dt +a1(α(t))|X (t)|β X (t)dw1(t)
+a2(α(t))X (t)dw2(t),

(31)

where w2(·) is a scalar Brownian motion independent of w1(·).
More general,

dX (t) = f (X (t),α(t))dt +σ1(X (t),α(t))dw1 +σ2(X (t),α(t))dw2.
(32)



Results

With proper choice of the perturbations, we get a global solution

limsupt→∞ P(|X (t)| ≥ Kδ )≤ δ
The resulting system is stable w.p.1. In fact,
limsupt log |X (t)|/t < 0 w.p.1.

with Wu and Zhao, SIAM J. Appl. Math (2012)



Example

Begin with (30) together with initial condition X (0) = 1. Suppose that
α(t) is a Markov chain with two states M = {1,2} and

Q =

(
−0.1 0.1

1 −1

)
, f (x ,1) = x(x +1) and f (x ,2) = x(2x +1).

Corresponding to the states, we have two equations

d
dt

X (t) = X (t)(X (t)+1),
d
dt

X (t) = X (t)(2X (t)+1).
(33)

Neither equation has a global soln. For the 1st equation, we have
X (t) = et/(2−et) that will blow up at time ln2; for the second equation,
X (t) = et/(3−2et) that will blow up at time ln(3/2). We plot the
trajectories of the switched system as well as each individual system.



To regularize the system, use a feedback control a1(α(t))X2(t)dw1(t), where
w1(t) is a 1-d Brownian motion. The resulting eq is

dX(t) = f (X(t),α(t))dt +a1(α(t))X2(t)dw1(t), (34)

a1(i) = 2 for i = 1,2.
Although the system has a global solution, it is not asymptotically stable. To
stabilize the system, we add another feedback control a2(α(t))X(t)dw2(t),
w2(t) is 1-d standard Brownian motion independent of w1(t) and a2(1) = 19
and a2(2) = 24.

dX(t) = f (X(t),α(t))dt +a1(α(t))X2(t)dw1(t)+a2(α(t))X(t)dw2(t). (35)
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Figure: Trajectory of system (34) with stepsize ∆t = 10−4.
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Figure: Trajectory of system (35) with stepsize ∆t = 10−6.



Numerical Approximations, Controlled
Switching Diffusions, Games



Numerical Methods for SDE, Controls, and Games
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Numerics for Controlled Switching Diffusions





X (t) = x +

∫ t

0
b(X (s),α(s),u(s))ds+

∫ t

0
σ(X (s),α(s))dw ,

α(t) continuous-time MC α(0) = i ,
(36)

where w(t) is a standard Brownian motion independent of the Markov
chain α(t).

• Kushner & Dupuis, Springer, Markov chain approximation

• with Song & Zhang (2006), regime-switching & jump diffusion



Controlled Switching Diffusions (cont.)

Given B > 0, define a stopping time as

τx ,i ,u
B = inf{t : X x ,i ,u(t) /∈ (−B,B)}.

Objective: choose control u· to minimize the expected cost function




JB
i (x ,u) = E

∫ τx ,i,u
B

0
f (X (s),α(s),u(s))ds,

∀x ∈ (−B,B), i ∈ M ,

JB
i (x ,u) = 0, ∀x /∈ (−B,B), i ∈ M ,

(37)

where for each i ∈ M , f (·, i , ·) is an appropriate function representing
the running cost function.



For each i ∈ M , the value function is given by

V B(x , i) = inf
u∈U

JB(x , i ,u), (38)

where U is the space of all Ft -adapted controls taking values on a
compact set U.



For each i ∈ M , the value function is given by

V B(x , i) = inf
u∈U

JB(x , i ,u), (38)

where U is the space of all Ft -adapted controls taking values on a
compact set U.

Formally, the value functions satisfy Hamilton-Jacobi-Bellman (HJB)
equations,

{
inf

u∈U
{LuV B(x , i)+ f (x , i ,u)}= 0, ∀x ∈ (−B,B), i ∈ M ,

V B(x , i) = 0, ∀x /∈ (−B,B), i ∈ M ,
(39)

where

Luϕ(x , i) =
1
2

σ2(x , i)
d2ϕ(x , i)

dx2 +b(x , i ,u)
dϕ(x , i)

dx
+ ∑

j∈M

qijϕ(x , j).



Algorithm

h > 0: discretization parameter.

Sh = {x : x = kh,k = 0,±1,±2, . . .}. Let {(ξ h
n ,αh

n ),n < ∞} be a
controlled discrete-time Markov chain on a discrete state space
Sh ×M

ph((x , i),(y , j)|u): transition probabilities from (x , i) ∈ Sh ×M to
(y , j) ∈ Sh ×M , for u ∈ U.



Then, V̄ B,h(x , i), the discretization of V B(x , i) with step size h > 0, is
the solution of
{

inf
u∈U

{Lu
hV̄ B,h(x , i)+ f (x , i ,u)}= 0, ∀x ∈ (−B,B)h, i ∈ M ,

V̄ B,h(x , i) = 0, ∀x /∈ (−B,B)h, i ∈ M ,
(40)

where

(−B,B)h = (−B,B)∩Sh, [−B,B]h = (−B,B)h ∪{B,−B}. (41)

V̄ B,h(x , i) = inf
u∈U

{
p̄h,+

i (x ,u)V̄ B,h(x +h, i)+ p̄h,−
i (x ,u)V̄ B,h(x −h, i)

+∑
j 6=i

p̄h
ij (x)V̄

B,h(x , j)+ f (x , i ,u)∆t̄h
i (x)

}

(42)



Rates of Convergence

Theorem

Under suitable conditions, ∃γ ∈ (2,3] and ρ ∈ (0,1] s.t. the Markov
chain approximation algorithm converges at the rate (γ −2)∧ρ ∧ 1

2 .
That is,

|V̄ B,h
i (x)−V B

i (x)| ≤ Kh
1
2∧ρ∧(γ−2), ∀(i ,x) ∈ M ×G.

Note that γ ∈ (2,3] comes from Markov chain ≈, ρ is the Hölder exponent of the cost
function.

PDE approach for controlled diffusions (finite difference approx of PDEs)

◮ Menaldi, SIAM J. Control Optim. (1989)
◮ Krylov, Probab. Theory Related Fields, (2000)
◮ Dong & N.V. Krylov, Appl. Math Optim.

we use probabilistic approach for controlled switching diffusions

◮ with Q.S. Song, SIAM J. Control Optim. (2009)



Main Ideas
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◮ usual notion of cost Ji(x ,m̃);

◮ ours J
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Consider boundary perturbations
◮ usual notion of cost Ji(x ,m̃);

◮ ours J
B

i (x ,m̃)



Tangency Problem

τ and τh: the first hitting time of X (t) and xh(t) to the boundary.
Objective: ≈ Eτ by Eτh

In the Figure, τh 6→ τ , even though xh(·) converges to X (·).
Q: extra conditions needed?

B

Bh

B
h

lim τhτ



Concluding Remarks

In this talk, we

presented several switching diffusion examples

considered such properties as recurrence, ergodicity, stability etc.

developed numerical algorithms for control and game problems

ascertained rates of convergence and treated tangency problems

Further work:

rates of convergence for games

large deviations

null-recurrent switching diffusion systems ...



Past dependent switching and countable switching space:

P{α(t +∆) = j |α(t) = i ,Xs,α(s),s ≤ t}= qij(Xt)∆+o(∆) if i 6= j
P{α(t +∆) = i |α(t) = i ,Xs,α(s),s ≤ t}= 1−qi(Xt)∆+o(∆),
qi(φ) = ∑

j 6=i

qij(φ) for any(φ , i) ∈ C ×Z+.

With D. Nguyen, SIAM J. Control Optim. (2016), Potential Anal. (2017)

Switching jump diffusion:

L f (x) =
r

∑
k ,l=1

akl(x)
∂ 2f (x)
∂xk ∂xl

+
r

∑
k=1

bk (x)
∂ f (x)
∂xk

+
∫

Rr

(
f (x +z)− f (x)−∇f (x) ·z1{|z|<1}

)
π(x ,dz).

with Chen, Chen, Tran, Bernoulli (2018), Appl. Math Optim. (2018)



Thank you
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