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The Fock space in this talk is the one-variable Fock space.

The Gaussian measure dµ on C is defined by the formula

dµ(z) =
1

π
e−|z|2dA(z).

The Fock space F2 is the closure of C[z ] in L2(C, dµ). Let

P : L2(C, dµ) → F2

be the orthogonal projection.

Given an f ∈ L∞(C), we have the Toeplitz operator

Tf h = P(fh), h ∈ F2.



Connection with physics:

Consider an electron confined to a plane with a perpendicular
magnetic field B of uniform strength. Under the right choice of
orientation, identify the plane with C, the complex plane. We have
the free Hamiltonian

Hb =

(
1

i

∂

∂x
+

b

2
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)2

+

(
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i

∂

∂y
− b

2
x

)2

representing this system, where b = e|B|/ℏc > 0.

This Hb is in symmetric gauge. One can change gauge by unitary
transformation.



When the Fermi energy E is in a spectral gap of Hb, we have the
Fermi projection P≤E = χ(−∞,E ](Hb).

Let f1 and f2 be switch functions (to be explicitly given below) in
the x and y directions respectively. It is known that the expression

σHall(P≤E ) = −itr(P≤E [[Mf1 ,P≤E ], [Mf2 ,P≤E ]])

is the Kubo formula for the Hall conductance of P≤E , provided
that the trace on the right-hand side makes sense.

With δi (A) = [Mfi ,A], we can rewrite the operator inside tr(· · · ) in
the form

P≤E [δ1(P≤E ), δ2(P≤E )],

which is the Chern character of the projection P≤E .



The Hamiltonian Hb can be explicitly diagonalized.

Straightforward calculation shows that(
1

i

∂
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∂

∂y
− b

2
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−b = 4(−∂+(b/4)z̄)(∂̄+(b/4)z).

Denote

Ã = 2∂̄ + (b/2)z and C̃ = −2∂ + (b/2)z̄ .

Then
Hb − b = C̃ Ã.

Ã, C̃ are called annihilation and creation operators.

By a standard exercise using the canonical commutation relation
(CCR), Ã, C̃ give us an explicit diagonalization of Hb.



First of all, [Ã, C̃ ] = 2b. Define

S0 = span{zke−(b/4)|z|2 : k = 0, 1, 2, . . . }.

Then ÃS0 = {0}. For each j ∈ N, define

Sj = C̃ jS0.

The relation [Ã, C̃ ] = 2b implies [Ã, C̃ j ] = 2bjC̃ j−1 for j ≥ 1. Let
φ ∈ Sj for some j ≥ 0. Then there is a ψ ∈ S0 such that φ = C̃ jψ.
Therefore

(Hb − b)φ = C̃ Ãφ = C̃ ÃC̃ jψ = C̃ [Ã, C̃ j ]ψ = 2bjC̃ jψ = 2bjφ.

That is,

(2.1) Sj ⊂ ker(Hb − (2j + 1)b) for every j ≥ 0.

Since Hb is self-adjoint, this means that Si ⊥ Sj for i ̸= j .



For each j ≥ 0, let Ej be the closure of Sj in L2(C, dA).

Now define U : L2(C, dA) → L2(C, dµ) by the formula

(Uψ)(z) = (2/b)1/2ψ((2/b)1/2z)e |z|
2/2, ψ ∈ L2(C, dA).

Then U is a unitary operator. For each j ≥ 0, define

(2.2) Fj = UEj .

Obviously, we have F0 = F2, which is the classic Fock space.

The spaces Fj , j ≥ 1, are the higher Fock spaces.



Now define
A = ∂̄ and C = −∂ + z̄ ,

which safisfy the commutation relation [A,C ] = 1.

It is easy to verify that ⟨Cu, v⟩ = ⟨u,Av⟩ for all u, v ∈ C[z , z̄ ],
where ⟨·, ·⟩ is the inner product in L2(C, dµ). That is, over C[z , z̄ ],
C and A are each-other’s adjoint.

It is also easy to verify that

UÃU∗ =
√
2bA and UC̃U∗ =

√
2bC .

Consequently,
UHbU

∗ − b = 2bCA.



It is easy to see that US0 = C[z ] and that USj = C jC[z ] for every
j ≥ 1. Thus by an induction on the power of z̄ , we have

(2.3) U
∞⋃
j=0

Sj = C[z , z̄ ].

This shows that ∪∞
j=0Sj is dense in L2(C, dA).

For each j ≥ 0, let Ej : L
2(C, dA) → Ej be the orthogonal

projection. Combining (2.1) with (2.3), we see that

Hb =
∞∑
j=0

(2j + 1)bEj .

This is an explicit diagonalization of the magnetic Hamiltonian Hb.



Summarizing the above, the spectrum of Hb consists of
evenly-spaced eigenvalues (2j + 1)b called Landau levels, j ≥ 0.

Since dim(Ej) = ∞, in physics jargon, each Landau level is said to
be infinitely degenerate.

The j-th Landau level eigenspace Ej is identified with the j-th
higher Fock space Fj under the unitary U.

We emphasize that

∞⊕
j=0

Fj = L2(C, dµ).



Let Pj : L
2(C, dµ) → Fj be the orthogonal projection, j ≥ 0.

Then, of course, P0 = P. It follows from (2.2) that

Pj = UEjU
∗ for every j ≥ 0.

For each j ≥ 0 and p ∈ C[z ], we have

∥C jp∥2 = ⟨C jp,C jp⟩ = ⟨AjC jp, p⟩ = j!⟨p, p⟩ = j!∥p∥2.

Hence, for a given j ≥ 0, if we define

Vju =
1√
j!
C jPu for u ∈ C[z , z̄ ],

then Vj extends to a partial isometry on L2(C, dµ) such that

V ∗
j Vj = P = P0 and VjV

∗
j = Pj .



Let f ∈ L∞(C). On each Fj , j ≥ 0, we define the “Toeplitz
operator”

Tf ,jh = Pj(fh), h ∈ Fj .

Then Tf ,0 is the classic Toeplitz operator Tf .

Given an integer (Landau level) ℓ ≥ 0, we define

P(ℓ) =
ℓ∑

j=0

Pj .

We define “Toeplitz operator” of another kind:

T
(ℓ)
f h = P(ℓ)(fh), h ∈

ℓ⊕
j=0

Fj .



It is easy to verify that

[T
(ℓ)
f ,T

(ℓ)
g ] = P(ℓ)[[Mf ,P

(ℓ)], [Mg ,P
(ℓ)]].

When the Fermi energy E is strictly between (2ℓ+ 1)b and
(2ℓ+ 3)b, if it happens that both products

[Mf ,P
(ℓ)][Mg ,P

(ℓ)], [Mg ,P
(ℓ)][Mf ,P

(ℓ)]

are in the trace class, then the Kubo formula for Hall conductance
reads

σHall(P≤E ) = −itr[T
(ℓ)
f ,T

(ℓ)
g ].

This brings us to our familiar territory.



For each z ∈ C, the function

kz(ζ) = e−|z|2/2eζz̄

is the normalized reproducing kernel for the Fock space F2. We
can represent the projection P : L2(C, dµ) → F2 in the form

P =
1

π

∫
C
kz ⊗ kzdA(z).

Define Γ = {m + in : m, n ∈ Z} and Q = {x + iy : x , y ∈ [0, 1)}.
Then

P =
∑
u∈Γ

1

π

∫
Q+u

kz ⊗ kzdA(z) =
1

π

∫
Q
GzdA(z),

where
Gz =

∑
u∈Γ

ku+z ⊗ ku+z , z ∈ Q.



Easy calculation shows that

(C jkz)(ζ) = (ζ̄ − z̄)jkz(ζ) for all j ≥ 0 and z ∈ C.

We now define

k
(j)
z (ζ) = (C jkz)(ζ) = (ζ̄ − z̄)jkz(ζ),

j ≥ 0 and z ∈ C. For j ≥ 0, the projection Pj : L
2(C, dµ) → Fj

has the representation

Pj =
1

j!π

∫
Q
Gz,jdA(z),

where
Gz,j =

∑
u∈Γ

k
(j)
u+z ⊗ k

(j)
u+z , z ∈ Q.

Thus each Fj has properties similar to F0 = F2.



Definition 3.5. Let 0 < a <∞. Then Σa denotes the collection
of measurable functions η on R satisfying the following three
conditions:
(1) 0 ≤ η(x) ≤ 1 for every x ∈ R.
(2) η(x) = 1 if x > a.
(3) η(x) = 0 if x < −a.

We use elements of Σa to construct “switch functions”, functions
that will appear in Kubo’s formula.

Take an a > 0 and pick η, ξ ∈ Σa. Also, fix a 0 < θ < π. Define

f1(ζ) = η(Re(ζ)) and f2(ζ) = ξ(Re(e−iθζ)),

ζ ∈ C.



Proposition 3.7. For all j ≥ 0 and k ≥ 0, the operator

[Mf1 ,Pj ][Mf2 ,Pk ]

is in the trace class. Consequently, for all j ≥ 0 and ℓ ≥ 0, the
commutators

[Tf1,j ,Tf2,j ] and [T
(ℓ)
f1
,T

(ℓ)
f2

]

are in the trace class.

But note that individually, the commutators

[Mf1 ,Pj ] and [Mf2 ,Pk ]

are not even compact.



Proposition 3.9. Let s, t ∈ R be such that s < t < s + π. Define
the wedge

W = {re ix : s ≤ x ≤ t and r ≥ 0}

in C. Suppose that ie iθR ∩ e isR = {0} and ie iθR ∩ e itR = {0}.
Then for all j ≥ 0, k ≥ 0 and i ∈ {1, 2}, the operator

[MχW
,Pj ][Mfi ,Pk ]

is in the trace class.



Define the function
F = f1 + if2

on C. Also, define the square

S = {x + iy : x , y ∈ [0, 1]}.

Theorem 4.1. On the space Fj , j ≥ 0, the essential spectrum of
the Toeplitz operator TF ,j is contained in ∂S , the boundary of the
square S .



Proof. (1) First, we show that the essential spectrum of TF ,j is
contained in S . For this we consider the Calkin algebra

Q = B(Fj)/K.

For each X ∈ B(Fj), denote its image in Q by X̂ .

Note that Tf1,j and Tf2,j are self-adjoint with spectra contained in

[0, 1]. Therefore T̂f1,j and T̂f2,j are also self-adjoint with spectra
contained in [0, 1].

By Proposition 3.7, [Tf1,j ,Tf2,j ] is in the trace class, which implies

[T̂f1,j , T̂f2,j ] = 0. That is, T̂F ,j = T̂f1,j + i T̂f2,j is a normal element

in Q. By the GNS representation of Q, the spectrum of T̂F ,j is
contained in S , which is equivalent to saying that the essential
spectrum of TF ,j is contained in S .



(2) We now show that the interior of S does not intersect the
essential spectrum of TF ,j . Define the following four wedges in C:

A = {re ix : θ/2 ≤ x ≤ (π + θ)/2 and r ≥ 0},
B = {re ix : (π + θ)/2 ≤ x ≤ π + (θ/2) and r ≥ 0},
C = {re ix : π + (θ/2) ≤ x ≤ (3π + θ)/2 and r ≥ 0} and

D = {re ix : (3π + θ)/2 ≤ x ≤ 2π + (θ/2) and r ≥ 0}.

Using Proposition 3.9, it is easy to verify that

Tf2,jTχA,j = TχA,j + KA,

Tf1,jTχB,j = KB,

Tf2,jTχC ,j = KC and

Tf1,jTχD,j = TχD,j + KD,

where KA, KB, KC , KD are compact operators.



Let λ ∈ S\∂S . That is, λ = α+ iβ, where α, β ∈ (0, 1). Since
Tf1,j and Tf2,j are self-adjoint, the operators

Tf1,j−α+i(1−β), Tif2,j−α−iβ, Tf1,j−α−iβ, Tif2,j+(1−α)−iβ

are invertible on Fj . Let A, B, C , D be their respective inverses.

Using the identities on the previous slide, it is easy to verify that

TχA,jA+ TχB,jB + TχC ,jC + TχD,jD

is the right Fredholm inverse of TF ,j − λ, and

ATχA,j + BTχB,j + CTχC ,j + DTχD,j

is the left Fredholm inverse of TF ,j − λ.

Hence λ is not in the essential spectrum of TF . □



Similarly, we have

Theorem 4.2. Let ℓ ≥ 0. Then on the space F0 ⊕ · · · ⊕ Fℓ, the

essential spectrum of the Toeplitz operator T
(ℓ)
F is contained in

∂S , the boundary of the square S .



Guo Chuan’s explicit computation:

Proposition 5.1. We have

tr[Tf1 ,Tf2 ] =
1

2πi
.

Proposition 5.1 only covers the setting of the classic Fock space
F2 = F0. Presumably, we also have

tr[Tf1,j ,Tf2,j ] =
1

2πi

on the higher Fock space Fj , j ≥ 1.

But the proof in the case j ≥ 1 requires the Carey-Pincus theory of
principal functions, which we review next.



Let A, B be bounded self-adjoint operators such that the
commutator [A,B] is in the trace class. Carey and Pincus showed
that there is a gA,B ∈ L1(R2), which is called the principal function
for the pair A, B, such that

(6.1) tr([p(A,B), q(A,B)]) =
−1

2πi

∫∫
{p, q}(x , y)gA,B(x , y)dxdy

for all p, q ∈ C[x , y ], where

{p, q}(x , y) = ∂p

∂x
(x , y)

∂q

∂y
(x , y)− ∂p

∂y
(x , y)

∂q

∂x
(x , y),

which is called the Poisson bracket of p, q.



Define T = A+ iB. Carey and Pincus also showed that for each
point (x , y) such that x + iy is not in the essential spectrum of T ,

(6.2) gA,B(x , y) = index(T − (x + iy)).

This is an important formula for our purpose.



Apply the Carey-Pincus theory to the pair A = Tf1 and B = Tf2 .
Theorem 4.1 says that the essential spectrum of A+ iB = TF is
contained in ∂S . It follows from this fact that

index(TF − λ) = 0 for every λ ∈ C\S .

Therefore for A = Tf1 and B = Tf2 , we have gA,B = nχS , where

n = index(TF − λ) for each λ ∈ S\∂S .

Applying (6.1) in the case p(x , y) = x and q(x , y) = y , we obtain

tr[Tf1 ,Tf2 ] =
−1

2πi

∫∫
nχS(x , y)dxdy =

−n

2πi
.

By Proposition 5.1, n = −1. Hence

tr[Tf1 ,Tf2 ] =
−1

2πi
index(TF − λ) for every λ ∈ S\∂S .



Recall that we have the partial isometry

Vj =
1√
j!
C jP

that maps F0 = F2 onto Fj , j ≥ 1.

Lemma 7.1. Given any j ≥ 1, there exist coefficients c
(j)
1 , . . . , c

(j)
j

such that if f ∈ C∞(C) and if f and ∂∂̄f , . . . , ∂j ∂̄j f are all
bounded on C, then

V ∗
j Tf ,jVj = Tf +

j∑
ν=1

c(j)ν T∂ν ∂̄ν f .



Lemma 7.3. Suppose that the functions η, ξ in the definition of
f1, f2 satisfy the condition η, ξ ∈ Σa ∩ C∞(R). Then

tr[Tf1,j ,Tf2,j ] =
1

2πi
for every j ≥ 1.

Proof. By Lemma 7.1,

V ∗
j [Tf1,j ,Tf2,j ]Vj = [Tf1 ,Tf2 ] + Z1 + Z2 + Z3,

where

Z1 =

j∑
ν=1

c(j)ν [Tf1 ,T∂ν ∂̄ν f2
], Z2 =

j∑
ν=1

c(j)ν [T∂ν ∂̄ν f1
,Tf2 ] and

Z3 =

j∑
ν=1

j∑
ν′=1

c(j)ν c
(j)
ν′ [T∂ν ∂̄ν f1

,T∂ν′ ∂̄ν′ f2
].

One then verifies that Z1, Z2, Z3 are in the trace class with zero
trace.



Lemma 7.4. Let the η, ξ in the definition of f1, f2 be arbitrary
functions in Σa. Given a j ≥ 1, let gj be the Carey-Pincus principal
function for the pair Tf1,j , Tf2,j . Then

gj = −χS .

Proof. Theorem 4.1 tells us that the essential spectrum of TF ,j is
contained in ∂S , whose two-dimensional Lebesgue measure is 0.
Therefore

gj = njχS ,

where
nj = index(TF ,j − λ) for every λ ∈ S\∂S .

The above holds true for an arbitrary pair of η, ξ ∈ Σa.



Now take a pair of η̃, ξ̃ ∈ Σa ∩ C∞(R). Accordingly, define

f̃1(ζ) = η̃(Re(ζ)) and f̃2(ζ) = ξ̃(Re(e−iθζ)).

We then define F̃ = f̃1 + i f̃2. By the preceding slide, the pair Tf̃1,j
,

Tf̃2,j
has a principal function g̃j of the form g̃j = ñjχS , where

ñj = index(TF̃ ,j − λ) for every λ ∈ S\∂S .

Applying Lemma 7.3, we have

1

2πi
= tr[Tf̃1,j

,Tf̃2,j
] =

−ñj
2πi

∫∫
χS(x , y)dxdy =

−ñj
2πi

.

From this we conclude that ñj = −1.

Thus the lemma will follow if we can show nj = ñj .



To prove that nj = ñj , we define

ηt = tη + (1− t)η̃ and ξt = tξ + (1− t)ξ̃,

0 ≤ t ≤ 1. We then define, for each 0 ≤ t ≤ 1, the functions

f1,t(ζ) = ηt(Re(ζ)) and f2,t(ζ) = ξt(Re(e
−iθζ)),

ζ ∈ C, and Ft = f1,t + if2,t . By Theorem 4.1, the essential
spectrum of TFt ,j is contained in ∂S , 0 ≤ t ≤ 1. Moreover, the
map t 7→ TFt ,j is obviously continuous with respect to the operator
norm. Therefore for each λ ∈ S\∂S , the map

t 7→ index(TFt ,j − λ)

remains constant on the interval [0, 1]. Since F0 = F̃ and F1 = F ,
we have nj = ñj as promised. This completes the proof. □



Proposition 7.5. Suppose that the η, ξ in the definition of f1, f2
are arbitrary functions in Σa. Then for every j ≥ 1 we have

tr[Tf1,j ,Tf2,j ] =
1

2πi
.

Proof. Applying the Care-Pincus trace formula and Lemma 7.4, we
have

tr[Tf1,j ,Tf2,j ] =
−1

2πi

∫∫
gj(x , y)dxdy

=
1

2πi

∫∫
χS(x , y)dxdy =

1

2πi
.

□



By combining Proposition 7.5 with more trace argument, we obtain

Theorem 8.1. For each ℓ ≥ 0, the commutator [T
(ℓ)
f1
,T

(ℓ)
f2

] is in
the trace class with

tr[T
(ℓ)
f1
,T

(ℓ)
f2

] =
ℓ+ 1

2πi
.



Let g (ℓ) be the principal function for the pair T
(ℓ)
f1

, T
(ℓ)
f2

, ℓ ≥ 0. It
follows from (6.2) and Theorem 4.2 that

g (ℓ) = n(ℓ)χS ,

where
n(ℓ) = index(T

(ℓ)
F − λ) for every λ ∈ S\∂S .

Applying (6.1), we have

tr[T
(ℓ)
f1
,T

(ℓ)
f2

] =
−n(ℓ)

2πi

∫∫
χS(x , y)dxdy =

−n(ℓ)

2πi
.



By Theorem 8.1, we can express the quantized Hall conductance

σHall(P≤E ) = −itr(P(ℓ)[[Mf1 ,P
(ℓ)], [Mf2 ,P

(ℓ)]])

for the case (2ℓ+ 1)b < E < (2ℓ+ 3)b, in the following two ways:

σHall(P≤E ) =
1

2π
index(T

(ℓ)
f1+if2

− λ), λ ∈ S\∂S ;

σHall(P≤E ) = −ℓ+ 1

2π

ℓ ≥ 0.

Remark. It is not a priori obvious that σHall is additive with
respect to Landau level ℓ



We now consider the pair of functions

φ1(ζ) = Re

(
ζ

|ζ|

)
and φ2(ζ) = Im

(
ζ

|ζ|

)
,

ζ ∈ C\{0}. Furthermore, define

Φ = φ1 + iφ2.

That is, Φ(ζ) = ζ/|ζ| for ζ ∈ C\{0}.

φ1 and φ2 are NOT the kind of function suitable for the Kubo
formula, but they are mathematically interesting.



For the pair of function φ1 and φ2 we have

Theorem 9.1. (1) The Toeplitz operator TΦ is a compact
perturbation of the unilateral shift.
(2) The commutator [T ∗

Φ,TΦ] is in the trace class. Consequently,
the commutator [Tφ1 ,Tφ2 ] is in the trace class.
(3) We have tr[T ∗

Φ,TΦ] = 1. In other words, tr[Tφ1 ,Tφ2 ] = (2i)−1.
(4) The Toeplitz operator TΦ is hyponormal.



By Theorem 9.1 and the Carey-Pincus theory, we have

tr(P(0)[[Mφ1 ,P
(0)], [Mφ2 ,P

(0)]]) = − 1

2i
index(T

(0)
Φ − λ)

when |λ| < 1. The obvious question is, does the analogue of this
hold at Landau levels ℓ ≥ 1?

Mathematically, the following embodies all the difficulties:

Problem 9.2. For ℓ ≥ 1, does the commutator [T
(ℓ)
φ1 ,T

(ℓ)
φ2 ] belong

to the trace class?

For an ℓ ≥ 1, if T
(ℓ)
Φ is hyponormal, then [T

(ℓ)
φ1 ,T

(ℓ)
φ2 ] is in the trace

class. But is it?

This is the kind of problem that gets operator theorists excited.



THANK YOU!


