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We study conformal field theories with a finite number of primary fields with respect to some
chiral algebra. It is shown that the fusion rules are completely determined by the behavior of the
characters under the modular group. We illustrate with some examples that conversely the
modular properties of the characters can be derived from the fusion rules. We propose how these
results can be used to find restrictions on the values of the central charge and conformal
dimensions,

1. Introduction

In conformal field theory local operators are characterized by their behavior
under conformal transformations z — z’(z). In particular primary fields transform
as conformal tensors under these analytic coordinate transformations [1]. Since the
patching functions on Riemann surfaces are by definition analytic, CFT allows a
very natural formulation on the moduli-space of Riemann surfaces [2]. This turns
out to be an interesting and also very fruitful approach to CFT. The analytic and
modular properties of the partition and correlation functions provide a powerful
means of probing CFT and finding restrictions on the operator content [3]. This
idea has lead to a successful classification of the modular invariant partition
functions for the ¢ <1 discrete series [4].

The situation for c¢>1 is completely different because of the existence of
continuous marginal deformations, and an infinite number of primary fields w.r.t.
the Virasoro algebra. However some CFT’s with ¢ > 1 have similar properties as the
models of the discrete series, in the sense that their partition function can be
decomposed into finitely many analytic building blocks, which can be interpreted as
the characters of an extended algebra. These models all have the striking feature
that the central charge and conformal dimensions of the primary fields are given by
rattonal numbers, and are therefore often called rational CFT’s [5]. RCFT’s have
many other special properties, which make them an interesting class of models to
study.
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In this paper we consider the fusion rules of the primary fields and the modular
properties of the characters of a RCFT. These are two at first sight separate aspects
of these models, but we will show there is in fact an intimate connection. A first
indication that a relation between fusion rules and modular transformations exists
was found in the operator formulation of the gaussian model on Riemann surfaces
[6,7]. For this model we found that one could derive the modular behavior of the
characters by studying the algebra of a set of operators in the Hilbert space. In
analogy with this we will construct, using the primary fields and the fusion rules, a
set of linear operators acting on the space of characters of a general RCFT. Then by
considering the algebra of these operators and the role of the modular group we find
that the matrix S, describing the behavior of the characters under the transforma-
tion 1 — —1 /7, diagonalizes the fusion rules. Furthermore, the matrix S contains
sufficient information to determine the fusion rules completely.

An important ingredient of the derivation is the fact that the algebra of the linear
operators is given by the fusion rules. We indeed find that the fusion rules are
associative and have very similar properties as the product rules of the linear
operators. Furthermore, we will check for many examples that the algebra of the
operators and the fusion rules are equal, but we have not found a general proof of
this fact.

Our results give constraints on the possible fusion rules of a RCFT, but also
restrict the allowed representations of the modular group. By considering the
behavior of the characters under the transformation r — 7+ 1, we find for a given
set of fusion rules powerful restrictions on the central charge and conformal
dimensions.

In sect. 2 we describe the definition of the fusion rules of a RCFT. The relation
with the modular properties of the characters is explained in sect. 3. This also
contains a dimension formula for the number of generalized characters. In sect. 4 we
discuss several examples, in particular the rational gaussian models, the SU(2)
WZW models and the ¢ <1 unitary series. In sect. 5 it is shown that the fusion rules
give restrictions on the values of the central charge and conformal dimensions.
Finally, sect. 6 contains some concluding remarks.

2. The fusion rules

We start by reviewing some facts about the analytic structure of the partition and
correlation functions of a CFT on Riemann surfaces. Consider some unnormalized
correlator G of n primary fields on a genus g surface. This n-point function G
depends on the positions z =(z,,...,z,) of the fields and the moduli m=
(my,..., my,_3) of the Riemann surface. Here (z, m) are a set of analytic coordi-
nates on the moduli-space .#,, of a Riemann surface with n punctures. The
correlator G(z, m,z, m) has a very nice analytic structure, namely it can be
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decomposed into the sum of factorizable terms [1,2].

G(z,m,z,m)= ) F(7,m)h;; % (z,m), (2.1)
I, J

where ?-:'; and %, are the (anti-)analytic building blocks of the correlation function
and Ay, is an hermitean metric. For the case g =1 and » = 0 this equation gives the
decomposition of the partition function in terms of characters. The correlator G and
the blocks %#; depend on the representations of the primary fields at the punctures,
but this is suppressed in the notation.

The #; have in general non-trivial monodromy and modular properties, but the
full correlation function G should of course be single-valued and modular invariant.
This gives constraints on the metric 47, and in particular for the genus one partition
function one finds restrictions on the operator content of the CFT. In the remainder
of this paper we will only consider one chiral half of CFT. Issues like modular
invariance and crossing symmetry are not discussed, although the monodromy and
the modular properties of the blocks %#, will play an important role.

For a rational CFT we can give a more detailed description of the %#;. Consider
some RCFT with N primary operators ¢, (i=0,..., N—1), corresponding to
irreducible representations [¢;] of some chiral algebra. This algebra could be
superconformal [8], affine [9,10] and parafermionic [11], but there are many other
possible algebras. Since we are only interested one chiral half of the RCFT, say the
left, we don’t bother to write an index for the representations of the right algebra.
The label i =0 is used for the representation [1] containing the identity, and a
multiplet of primary fields in the same [¢,] will be denoted collectively by ¢,. In this
paper only algebras generated by operators with integer conformal spin are consid-
ered. We believe that this is not a restriction on the RCFT, but only on what we call
its symmetry algebra.

An important property of the representations [¢,] is the appearance of null states.
In combination with the Ward identities of the chiral symmetry algebra they lead to
a set of partial differential equations for the correlation functions of the primary
fields [1]. These PDE’s involve derivatives with respect to the coordinates z and also
w.I.t. the moduli m [12]. The %, are the analytic solutions to these PDE’s, or to be
precise they form a basis for the vector space of analytic solutions.

From the viewpoint of RCFT there are only a few natural choices for this basis.
Because one can obtain any punctured Riemann surface by sewing 3-punctured
spheres, a complete basis of analytic blocks %#; can be constructed by sewing
three-point functions (cf. [13]). We can represent this sewing operation schemati-
cally by a g-loop Feynman diagram for a ¢* theory, in which each propagator
represents a sum over all states in one of the representation [¢;]. At the vertices the
representations [¢,], [¢;] and [¢, ] of the three propagators have to be fused together
using a three-point function ( 9,94, ). In order to decide whether a block %#; can
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indeed be constructed in this way, we need to know the fusion rules, telling us not
only when but also in how many ways three representations can be joined. The basis
of &%, one obtains for a given ¢* diagram is unique up to phases. This implies that
modular transformations which do not change the ¢* diagram are necessarily
represented by phases.

Before we give a precise definition of the fusion rules, we note that everything we
discuss can be formulated in the language of vector bundles. Because the analytic
blocks &%, have a non-trivial behavior under modular transformations, they should
in fact not be considered as functions but as the holomorphic sections of a vector
bundle V, , over the moduli space .# ., of the n-punctured surface. The bundle
V, . is uniquely characterized by the fact that its holomorphic sections satisfy the
PDE, and is for a RCFT (by definition) finite dimensional [5]. It has several
components which are distinguished by the representations of the fields at the
punctures.

Now let us describe the definition of the fusion rules. Consider the components
Vo, ik of the bundle V; , corresponding to the sphere with the fields ¢;, ¢; and ¢, at
the three punctures. Let the integers N, be the dimensions of the bundles V5, ; ;.
We define the fusion rules in terms of these N, as the formal product rule

¢ X &= 2N, /b, (2.2)
k

where the integers N, j" are related to N, , by using the conjugation matrix C,; = N, ,
as a metric to raise the index k. These N, jk can be interpreted as multiplicities
counting the number of independent fusion paths from ¢, and ¢; to ¢,. In this
respect the fusion rules are very analogous to the rules for decomposing tensor
products of representations of groups. However, we want to stress that (2.2) has
nothing to do with the decomposition of [¢,] ® [¢,], because taking tensor products
changes the central extension of the chiral algebra.

To determine the fusion rules in practice one has to analyse the three-point
function (¢,¢;¢,), or equivalently the operator product expansion of two primary
fields ¢, and ¢,. In a similar way as has been done for the Virasoro [1] and
Kac-Moody [10] algebras one can use the PDE’s to find restrictions on the
three-point function and, at least in principle, determine which representations
occur in the OPE of two primary fields. (Note that, since there are no moduli z and
m associated with the 3-punctured sphere, the PDE must become algebraic.)

Let us return to the analytic blocks %, for an arbitrary surface. For a given set of
external primary fields the number of %, (=dimV, ,) can be computed by using
the ¢* diagram and counting the number of ways the representations can be fused
together. In this way one gets the following set of “Feynman rules”. One writes for
each vertex a factor N, , and contracts the indices as indicated by the propagators.
The result is equal to dimV, ,, and should be independent of the way the spheres are
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sewn together, i.e. of the choice for the ¢* diagram. It is easy to see that it is
sufficient to check this for the conformal blocks for the four-point function. This
gives the following condition on the multiplicities N,

?

ZNijkatm = ZMIkajm . (2-3)
k k

An important consequence of this relation is that the fusion rules (2.2) are
associative and can be interpreted as an algebra of linear operators ¢,. Furthermore,
it implies that the matrices (N,) jk form a representation of this algebra. Because the
matrices N, are symmetric and mutually commuting, they can be simultaneously
diagonalized. Their eigenvalues form the N one-dimensional representations of the
fusion rules. These will play an important role in the next sections.

The fusion rules (2.2) do not seem to give any information about the central
charge and the conformal dimensions 4; of the primary fields ¢,. It is even possible
that different CFT’s have the same fusion rules. However, we will show in this paper
that a given set of fusion rules can only occur for a countable number of ¢- and
h-values. This fact will be a consequence of the relation between the fusion rules and
modular transformations, which we are about to discuss. In the following we will
mainly restrict our attention to the genus one case, although many of the presented
ideas can be generalized to higher genus.

3. Relation with modular transformations

Let us consider the characters x; of the chiral symmetry algebra. To describe their
definition we choose two oriented cycles @ and b on the torus. The b-cycle indicates
the direction of the time evolution, which is generated by L,, while the cycle a
connects points of equal time. The character x; is defined as the trace of the
evolution operator over the representation [¢,]:

Xi= tr[«p,.](q%ﬂ)’ (3.1)

where g =e?>™" and e = — ¢, and 7 is the modular parameter of the torus.

The moduli space .#, of genus one surfaces is obtained from the upper half of
the complex plane by dividing out the action of the modular group generated by T
r—> 7+ 1and S: - —1/7. For chiral algebras generated by operators with integer
conformal spin the characters x; transform in a finite dimensional representation of
the modular group and form a basis of the holomorphic sections of the vector
bundle V; over #, [2]. For other algebras one has to specify boundary conditions
and, consequently, has to consider coverings of the moduli space. For example, the
characters of the superconformal algebra are naturally defined on the spin-covering
of A,.
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The behavior under 7. 7 — 7+ 1 depends only on the central charge ¢ and the
conformal dimension h; of the primary field ¢, It follows directly from its
definition (3.1) that x, transforms as:

T: x> ermithitay (3.2)
The behavior of x, under S§: +— —1/7 gives additional information about the
CFT. On the characters this modular transformation is represented by a unitary
matrix which is also denoted by S:

St xi= LS/, (3.3)
j
Using the fact that under 7 — —1/7 the cycles @ and b are mapped onto — b resp.
a one sees that $? inverts the time direction and consequently transforms x, into
the character x’ of the conjugate representation. So in general the matrix S will
satisfy $? = C, and only when all representations are self-conjugate does one have
§2=1.

We now like to show that there is a connection between the unitary matrix S and
the fusion rules of the primary fields. The basic idea is to use the primary fields to
manipulate the characters and then compare the situation before and after the
modular transformation. First consider the character x, of the representation [1] of
the identity. We can obtain the other characters x,; from x, in the following way.
We insert the identity operator inside the trace (3.1) and rewrite it as the OPE of the
primary field ¢, and its conjugate field. Next we move ¢, along the b-cycle and
then, after it has gone round once, we let the two fields annihilate again. As a result
the trace is no longer over the representation [1] but over [¢,]. To see this one can
for example map the torus on an annular region of the complex plane |g|}/* <z <
|g| ~'/? and pinch the a-cycle i.e. send g — 0. In this picture the field ¢, is moved
from oo to the origin and thus changes the representation. We conclude that this
operation, which will be denoted by ¢,(#), indeed transforms x, into x;:

‘abi(b)Xo:Xi- (3-4)

What happens when we apply the same procedure to some other character x i
Using the same picture we see that in this case, when we move ¢, to the origin, we
have to take the operator product with the primary field at the origin, which is .
Thus again the representation [¢,] over which the trace is taken will change, namely
precisely according to the fusion rules. So we find that under the operation ¢,(b) a
character x , will in general transform into a linear combination of several char-
acters:

¢i(b)Xj= %Azijk (3-5)
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where 4, J." are some coefficients which are only non-zero if the three-point function
( ;4,6 is non-vanishing, i.e. if N, + 0.

One can show that the operators ¢,(b) mutually commute and as a consequence
the coefficients 4, jk have the following properties.

Af=4r, (3.6)
ZAijkAklm = ZAilkAkjm' (3.7)
k k

Using (3.7) one finds that the operators ¢,(b) satisfy the following associative
algebra:

¢i(b)¢j(b)= ZAijk¢k(b)- (3.8)

This algebra is very reminiscent of the fusion rules (2.2), and eventually we would
like to show that both algebras (2.2) and (3.8) are indeed the same.

The manipulation described above can be performed for any cycle on the torus.
In particular it is interesting to consider what happens when we transport ¢; along
the a- instead of the b-cycle. One can easily convince oneself that in this case,
because the a-cycle consists of points with equal time, the representation [¢;] does
not change. In other words, the characters x ; are eigenstates of the operators ¢,(a).

o (a)x ;=X x;. (3.9)

These eigenvalues AV are real or complex numbers, not necessarily phases. The
operators ¢,(a) will satisfy the same algebra (3.8) as ¢,(b). This gives the following
multiplication rule for the eigenvalues A{»

AN = Y A4, A (3.10)
k

Our description of the operators ¢;,(a) and ¢,(b) has been quite intuitive. It is
possible to analyse the different manipulations more carefully. In fact, one finds
that in (3.4) there is in general a factor different from one in front x,. But, because
the ¢,(d) act as linear operators, we can normalize them so that (3.4) holds. In this
way we can express the coefficients A4, J.k in terms of the monodromy properties of
the conformal blocks of the four-point function. The resulting expression is however
rather unpleasant and doesn’t seem to be very useful.

Fortunately, there is another way to get information about the coefficients,
namely by considering the role of the modular transformation §. This transforma-
tion interchanges the cycles @ and » and hence also the operators ¢,(a) and ¢,(b).
In particular the transformed characters (3.3) become eigenstates of ¢;(b). Thus we
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arrive at the important conclusion that the unitary matrix S,/ diagonalizes the
coefficients A, . This gives, by combining (3.3), (3.5) and (3.9) the following
identity:

A4, =Y smmste. (3.11)

Note that the r.h.s. indeed satisfies the property (3.7). By using in addition to (3.11)
the fact that A, =8" we can also express the eigenvalues A" in terms of the
entries of the matrix S

AP =8"/85. (3.12)

Together with (3.11) this allows us to compute the coefficients 4, if we know the
matrix S. In this way we have calculated the coefficients A, j" for many rational
CFT’s for which the modular properties are known, and for all of them we have
indeed found that:

A =Ny - (3.13)

We conjecture that this is true for every RCFT, but a proof of this fact requires a
better understanding of the operators ¢,(5). We have shown that the coefficients
A, ;. have the same properties (3.6) and (3.7) as the multiplicities N, ;. Furthermore,
we know that 4,, =01if N, =0 and that 4, , = N,;,, but all this is not sufficient
to prove our conjecture. Note that (3.13) implies the algebra (3.8) of these operators
has precisely the same form as the fusion rules (2.2). In particular, it allows us to

rephrase (3.11) in a more notation-independent statement:
The modular transformation S: v — —1 /7 diagonalizes the fusion rules!

This is, in words, the main result of this paper. In an attempt to convince the reader,
that our conjecture is correct we will in the next section discuss several examples.

But first we like to mention one consequence concerning the number of gener-
alized characters (= dim V). For those RCFTs for which (3.13) holds (as we will see
this includes many of the known models) we can use the result (3.11)-(3.12) to give
a very simple expression for the dimension of V,, in terms of the entries S,, of the
matrix S. Following the recipe of the preceding section we represent the surface by
a g-loop ¢’ diagram, write a factor N, & for each vertex and contract all indices. By
choosing a convenient @ diagram we can write the result as a trace

ding ={r
i i=0

NilN,-z) " : (3.14)

which can be evaluated in terms of the eigenvalues A" of the matrices (N,), “.
Finally one uses (3.12) and S?=C to obtain the following expression for the
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dimension of the vectorbundle V‘g

N—-1
dimV,= Y |8, s, (3.15)
n=0

It is an amusing exercise to check that the r.h.s. gives integer dimensions for the
RCFT’s for which the unitary matrix S is known. For example, for the Ising model
one recovers the familiar result: dim V"8 =2£'(2% + 1) = the number of even
spin structures on a genus g Riemann surface [2].

4. Some examples

In this section we will illustrate the presented ideas with some concrete examples
and in particular we will check our conjecture (3.13). We explicitly work out the
¢ = 1 gaussian model, the SU(2) WZW models and the unitary series and we briefly
mention some other examples.

The simplest class of RCFT’s are the rational gaussian models. They can be
described by a free scalar field ¢ which is compactified on a circle with a rational
value for the (radius)?. They have as symmetry algebra the U(1) current algebra
extended with some chiral vertex-operator with conformal spin 1N and momentum
(= U(1) charge) YN (N is an even integer). There are N primary fields [¢,] being
the vertex-operators with momentum p/vVN with p € Z,. The fusion rules follow
directly from momentum-conservation:

¢px¢p’=¢p+p’! p’plezN' (4‘]‘)

For these models the operators ¢,(c) can be defined in a more explicit way using
the operator formulation on Riemann surfaces. They can be expressed in terms of
the loop-momentum operators introduced in [6]; this is discussed in [7]. Their action
on the characters can be calculated by inserting the operator

by(e) = exp| = $o | (42)

into the trace (3.1). (Note that this is not the zero mode of a vertex operator.) This
operator measures the momentum flux through the cycle ¢ but at the same time
increases the flux through the cycles intersecting ¢. This is reflected in the relation:

o,(a)g, (b) =77/ N g, (b)o,(a). (4.3)

The operators ¢,(a) and ¢,(b) act on the characters x, precisely in the way we
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expect when we apply the results of the preceding section to this case.
op(@)x, =P/ Ny,
¢p(b)xP’=Xp+p" (4'4)

The operator ¢,(b) shifts the momentum and according to (3.11) has to be
diagonalized by modular transformation S. This implies that S should act as a
Fourier transformation on the characters x ,,

1
S: X, — 3, exmrr/Ny (4.5)
PN L5 »

Note that S? maps x » onto x_, and so only for N =2 the modular transformation
S has order two. The genus one (and higher genus) characters can be expressed in
terms of theta functions with known modular properties agreeing with (4.5). For the
gaussian models this method can be generalized to arbitrary genus. The analysis for
these models is rather easy in comparison with other CFT’s because according to
(4.1) the OPE of two primary field contains only one representation. In a general
CFT this is usually not the case, as we can see in the next (less trivial) example: the
SU(2), WZW models for arbitrary k.

The field content of these models is organized by the Kac-Moody algebra
SU(2),. Gepner and Witten [10] showed that SU(2), has k + 1 integrable represen-
tations [¢,], namely the ones with SU(2) isospin 1/ < 1k. By making use of the null
states in these representations they found the following fusion rules

min(/+ ', 2k—1— ")

b X Py = )y ¢;, (4.6)

j=i=1

where j— |/ —I’| is an even integer.

Using the Weyl-Kac character formula one can express the affine SU(2),
characters x, in theta functions. However, as we will now show, one can derive the
behavior of the characters under S: 7— —1/r without needing these explicit
expressions. The first step is to determine the numbers Ay which, assuming (3.13)
is correct, have to satisfy an algebra of the same form as the fusion rules (4.6). To
find these numbers we only need the finite Weyl-character formula for the group
SU(2). The Weyl character ch,(8) of the isospin }/ representation of SU(2), not to
be confused with the affine SU(2), character x,, is defined by

d _ sin({+1)8
ch,(8) = Z e’ = ( )

m=—|{

4.
sin 8 (4.7)
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with m + [ = even. The product of two Weyl characters can be decomposed into a
sum of Weyl characters

1+

ch,(6)ch,(6)= L ch,(6), (48)

j=l=1

which is nothing but the well-known Clebsch-Gordan formula.

This multiplication rule is almost what we want to have for the numbers A,, only
in (4.6) the sum is over a subset and is truncated below k& + 1. This can be achieved
by choosing the variable § such that ch,_ ,(6) =0, which has precisely k+1
independent solutions, 8 =(n+ 1)x/(k+2), n=0,..., k corresponding to the
k + 1 integrable representations [¢,]. So we get:

- n+1
Ay =ch,(k+2'rr). (4.9)

By repeatedly multiplying the equation ch, ,,(#)=0 by ch,_,(#) and using (4.8)
one finds that ch,_ ,,,(8)= —ch,, ,_,(0) for 8§ =(n+1)7/(k+2). Using this
relation it is easily verified that the eigenvalues A{” have indeed the correct
multiplication rule (4.6).

Finally, to find the behavior of the affine characters x, under r — —1/7 we use
(3.12), which determines the unitary matrix S,, up to a sign. We obtain the
following expression

2 \V?2 (I+1)}(n+1)
N R Y 4.10
Sin (k+2) M2 T (4.10)

which is in agreement with the modular behavior of the explicit expressions for the
SU(2), characters [10].

We briefly discuss the WZW models for an arbitrary Lie group G. Also for these
theories the modular properties of the characters are known. Using the expressions
for the unitary matrix S given in [10] we can compute the numbers A{” and find
that also in this case they are equal to the finite Weyl characters of G, evaluated for
some special elements of the dual Cartan subalgebra. The Weyl characters have
similar multiplication rules as (4.8) with integer multiplicities, which supports our
coniecture (3.13).

Now let us consider the unitary series of the Virasoro algebra. For central charge
c=1-6/m(m+1) (m=3,4,...), the Virasoro algebra has im(m — 1) unitary
representations [¢, ], where p=1,....m—1, g=1,...,m and p+ g=even [14].
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The corresponding primary fields ¢,, have conformal dimension:

_(p(m+1)—gm)’ -1
ra dm(m+1)

h (4.11)

We will compute the eigenvalues X7'9) starting from the modular properties of the
characters, and verify whether their multiplication rules agree with the known fusion
rules.

The representation theory of these models is related to that of the SU(2) WZW
models by the GKO coset construction [15]. By considering the branching of the
representations of SU(2); X SU(2),,_, w.r.t. the diagonal embedding of SU(2),,_,
one finds the unitary representations ¢, of the Virasoro-algebra

m

[0)i® [6,1],, 2= X [94] ® [$g-1] s>

p+g=even

[¢:], @ [¢m—p—1]m—2= il [¢Pq] ® [¢m—q]m~1' (4.12)

ptg=even

For the characters one gets of course the same decomposition [15]. Then by
considering the modular behavior of both sides one can express the matrix .S for the
Virasoro-characters x ,, in terms of the matrix S (4.10) for the SU(2), characters
[4]. The eigenvalues A can be obtained using (3.12) and are equal to the product of
two SU(2) Weyl characters

APT)=ch _ P—'Jr ch, , 1 7. (4.13)
Pq p—1 q

m m+1

Finally applying (4.8) gives the fusion rules for the primary fields ¢, of the unitary
¢ < 1 models:

min(p+p' —1,2m—p-p’'—1) min(g+q' —1,2m—g—g’+1)

Dpg X Ppg = )» ) b, - (4.14)

r=|p—p'|+1 s=|g—gq'|+1

This is indeed the truncated fusion rules for minimal models [1,4].

Recently it has become clear that the ¢ < 1 unitary series are just special cases of
a much larger class of discrete series, which are obtained by generalizing the GKO
construction to other G/H cosets [16]. This is reflected in the modular properties of
the characters and consequently also in the fusion rules. We expect that, similarly as
for the discrete series, the eigenvalues A can again be expressed in the Weyl
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characters of G and H, and hence have a multiplication rule with integer multiplici-
ties.

The only class of solvable CFT’s we have not yet considered are the orbifold
models [17]. One obtains a rational orbifold model by starting with some RCFT and
dividing out a discrete symmetry of the model. The generators of this discrete group
can act as inner or as outer automorphisms on the representations ¢, of the original
model. So to give a systematic analysis for orbifold models one has to distinguish
several cases. Work in this direction 1s in progress [18], and seems to indicate that
also for orbifold models (3.13) is correct.

5. Restrictions on the central charge and conformal dimensions

Encouraged by the previous examples we will now assume that for every RCFT
A; = N, and study what the applications and implications are. In particular we
discuss how this fact might help in a possible classification of rational CFT’s. One
starts by considering the possible fusion rules for a RCFT with N primary fields.
There are some conditions on the allowed fusion rules: each representation must
have precisely one conjugate representation and, secondly, they have to be associa-
tive.

Next one uses the relation with the modular transformations to find restrictions
on the central charge ¢ and the conformal dimensions 4, of the primary fields.
Given a set of fusion rules we can, by reversing the argumentation of sect. 3, try to
find the modular behavior of the characters. First we determine the eigenvalues A{™
and subsequently the unitary matrices S diagonalizing the fusion rules. Unfor-
tunately § is not completely determined by (3.12), because in general we don’t know
the precise correspondence between the eigenvalues A and the characters x . This
is partially resolved by the requirement that, since S describes the modular behavior
under 7 — —1/7, its square has to map each representation onto its conjugate, i.e.
S$2= C. Some of the fusion rules one started with are eliminated by this condition,
but for the remaining cases there are possibly several matrices S with the right
properties.

The relations we gave for the matrix S leaves its sign still undetermined. There is
however a way to fix this sign, which is based on the following observation*.
Because the transformation 7 = —1/7 has a fixed point 7 = i, we know that

L8 %) =x, (1) (5.1)

From the definition (3.1) of the characters one easily sees that x ;(i) is real and
positive for all j. So the matrix S should have an eigenvector with eigenvalue 1 and

* This observation is due to C. Vafa {private communication).
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with positive real components. Since there are no other eigenvectors with the same
property, this indeed fixes the sign of S.

The final step is to consider the behavior of the characters under 1 — 7+ 1 as
given in (3.2) and impose the condition that they form a representation of the
modular group, i.e. that (ST)? = 1. By counting the number of equations one sees
that the eigenvalues e2™**® of T are in fact overdetermined. This means that, if
we want to have solutions to (ST)? = 1, the matrix § must have extra symmetries.
For those cases one finds in general only a countable set of allowed ¢- and A-values,
but sometimes some of these quantities remain unrestricted.

Let us make some speculative remarks on why we may expect to find rational
values for ¢ and h, The numbers A{" are for all known examples given by a
polynomial with integer coefficients in some primitive root of unity {. Because the
unitary matrix S is related to these numbers one can expect that the conditions
(ST)? =1 restricts the eigenvalues e?™"*® of T to certain powers of {. This
clearly gives rational ¢- and A-values.

We illustrate the above program with the simplest cases. First of all, if there are
no other primary operators than the identity, the representation must be one-dimen-
sional. For this case S =1 and one finds for the central charge:

c=0{(mod8). (5.2)

Examples are the k=1 WZW models on the famous groups E; and SO(32).

In the next case we have in addition to the identity one primary field ¢, with
conformal dimension h. Since ¢ is necessarily self-conjugate the possible fusion
rules are:

dXop=1+neo. (5.3)

These fusion rules are associative for all values of n. The eigenvalues A of ¢ are the
solutions of the quadratic equation A>=1 + n\. The matrices S and T are of the
form:

B (cosﬂ sinﬂ)’ (5.4)

" \sin@ —cosé
wie 1 0
T=¢ (0 ezmh) (5.5)

with sin @ > 0. The requirement that S diagonalizes the fusion rules (5.3) yields the
relation tan 8 = A. The condition (ST)> = 1 is easily worked out, and gives for ¢ and
h the following equations:

12h — ¢ =2 (mod8),

cos2mh= —1ink. (5.6)



374 E. Verlinde / 2D conformal field theory

We find that the value of the central charge is only determined up to multiples of 8.
This can be understood as follows. If one takes the tensor product of a RCFT with
the E; model the central charge ¢ is increased with 8, but the conformal dimension
h and the fusion rules are not changed.

Now let us give some examples of RCFT’s with two primary fields. For the case
n = 0 we have found as examples the k = 1 WZW models on the group manifolds of
SU(2) and E,, which have (¢, #) = (1, 1) resp. (7, ;). Note that SU(2),_, is equiv-
alent to one of the rational gaussian models discussed in sect. 4, namely for N =2 in
(4.1). In fact one can show with this method that any CFT with fusion rules of the
gaussian type (4.1) for arbitrary N must have an integer c-value. This suggests that
such models can always be represented by free scalar fields, compactified on some
torus.

The condition (5.6) gives for the case n =1 as allowed values for the conformal
dimension of ¢: h= £ i, + 2 (mod1). Again there are some k=1 WZW models

which fit the description, in this case on the non-simply laced groups G, and F,. For

these models (c, k)= (%, %) resp. (®,3). Also one of the non-unitary minimal
models has all the right properties*; it has (¢, h) = (— %, — }) and describes the

Lee—Yang singularity. We like to mention that the representation of the modular
group for both cases n =0 and n =1 is finite. The transformations S and 7 act on
the ratio of the two characters z = x,/x, as fractional linear Sl(2,C) transforma-
tions, which by identifying the complex plane with the two-sphere generate precisely
the symmetry groups of the octa- resp. icosahedron [4].

For multiplicities n > 2 the relations (5.6) don’t seem to give very nice ¢- and
h-values, and we don’t know of any RCFT corresponding to one of these cases. We
expect that for some reason multiplicities n > 2 are not allowed for RCFT’s with
two primary fields.

Finally we briefly discuss some CFT’s with two non-trivial primary fields ¢, and
¢,. We only consider fusion rules with multiplicities N, , < 1. The two fields ¢, and
¢, can be either conjugate to each other or to themselves. In the first case we find
that the fusion rules are necessarily of the gaussian type (4.1) with & = 3. Examples
are the k = 1 SU(3) and E¢ WZW models.

The Ising model is a well-known example of the second possibility. It is the first
model in the discrete series and corresponds to the case m = 3 in (4.14). In a more
conventional notation the two non-trivial primary fields of the Ising model are a
spin field o and a majorana fermion  with & = ;% resp. 3. The fusion rules are

ecXo=1+4y,
yXy=1,
oXy=g0. (5.7)

*1 thank J.-B. Zuber for pointing this out to me.
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These are in fact the same fusion rules as those for the SU(2),_, (4.6) and
SO2m + 1), _, WZW models. All these models can be described by an odd number
of real fermions with correlated spin structures. The matrix S is also the same for all
models. The condition (ST)?=1 gives in this case only two equations for the
central charge ¢ and the conformal dimensions h, and h,: h; =c/8 and h,= 3
(again mod 1). For all examples the central charge is half-integer, but to prove that
these are the only allowed values one probably has to consider the modular behavior
of the genus two (or higher) characters.

The constraints of associativity combined with S = 1 allows only one other set of
fusion rules for a CFT with three primary fields and N, <1. They are given by:

o X ¢ =1+ ¢,,
¢2X¢2=1+¢1+‘P2,
P XPp,=¢;+ ;. (5-8)

Also in this case the eigenvalues of ¢, and ¢, are elements of a cyclotomic field. We
find: \,=—-¢—¢"!and A\,=1+¢2+{"? with {7=1. The relation (ST)*=1
permits the existence of a CFT with these fusion rules for ¢ equal to any multiple of %,
except multiples of 4, but we have only found an example for ¢ = — £, namely one
of the non-unitary minimal models.

6. Conclusion

The connection we have found between the fusion rules and the modular behavior
of a RCFT can be summarized by the statement that the transformation S:
T — —1/7 diagonalizes the fusion rules. We have given an intuitive derivation of
this result, but in particular a proof of the fact that the coefficients 4, are equal to
the multiplicities N, ; is still lacking. It is very likely that we have to use some extra
ingredients, for example the fact that the characters have a g-expansion with integer
coefficients, or some other special property of the characters.

Another interesting question is whether the method of sect. 3 can be generalized
to surfaces with higher genus or with punctures. In particular one would like to
know if the fusion rules contain sufficient information about the RCFT to de-
termine the monodromy of the conformal blocks, or the modular behavior of the
generalized characters. If such a generalization to other topologies exists, it would
undoubtedly give new restrictions on the central charge, the conformal dimensions
and the fusion rules.

In this paper we have only considered RCFT’s. The reason for this is more of a
practical nature than a matter of principle. Most of the quantities we worked with
can also be defined for CFT’s with an infinite number of primary fields. There is no
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reason why it should not be possible to generalize the relation between fusion rules
and modular transformations to those CFT’s. From the viewpoint of string theory it
is particularly interesting to see what this implies for models with a space-time
interpretation.
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