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We derive a general expression for correlation functions of topological Landau-Ginzburg
models on an arbitrary genus Riemann surface. The expressions we find for the correlation
functions suggest that for ¢ >1 the perturbation of the theory by chiral primary fields of
dimensions bigger than one is rather singular, though perturbation by relevant chiral primary
fields seems sensible regardless of the value of ¢.

The N = 2 superconformal Landau-Ginzburg (LG) models have been studied
previously! in the context of classification of N = 2 superconformal theories and
constructing string vacua. It was found there that a large class of N = 2 theories can
be characterized by a superpotential W (x,) of an N =2 supersymmetric LG theory,
where x,denote chiral superfields asi =1, ..., n. Moreover, it was shown that a finite
number of states of any N = 2 theory are topological in the sense that their naive
operator product has no singularities, and they form a closed ring. This ring was
named the chiral primary ring ®. For LG models this ring takes the particularly
simple form

_ Clx]
R= s ey

i.e., the free ring generated by x, modulo setting the derivatives of W to zero (which
corresponds to getting rid of the descendants). For W to give rise to a conformal
theory, it was noted that W needs to be quasi-homogeneous, i.e., all the fields x,
have a definite charge g, once we associate charge 1 to W. For a review of various
aspects and open questions in the context of N=2 superconformal theories see
Ref. 2, also for some recent progress in their understanding see Refs. 3 and 4.
More recently, following general considerations in Ref. 5, it was found® that there
is a twisted version of these conformal theories for which the chiral primary fields
are the only physical excitations, thus deserving the name ‘topological LG’ models.
It was shown in Ref. 7 that in general the twisted N = 2 models can serve as topo-
logical matter which could be coupled to topological gravity. It was conjectured by
Witten’ and generalized in Ref. 8 that topological gravity coupled to topological
matter is equivalent to the matrix models® for an appropriate choice of topological
matter, which itself is believed to be equivalent to ordinary matter coupled to 2d
gravity. By now there is a lot of evidence for all these conjectures. More recently,
in an interesting work Li' provided some evidence that the appropriate topological
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matter which gives rise to the n matrix model, is the n-th minimal twisted N =2 model.
These models are among the N =2 models which do admit an LG description.! This
conjecture of Li has been recently put on a firmer ground in Ref. 11 in which it was
shown that the twisted minimal N = 2 models indeed give the same correlation as
the matrix model on the sphere. One of the key observations in Ref. 11 was the fact
that the LG description of the minimal model is most suitable for computing the
ring structures. In particular, the ring (1) of a superpotential which has been
deformed from a quasi-homogeneous form, still gives the relevant ring of observables
for the deformed topological theory.

In this paper we compute the correlation functions for an arbitrary topological
LG theory on an arbitrary genus surface. The main new input is to use an explicit
Lagrangian description of a topological LG theory.

There are two types of operators of interest in the topological LG*: those with
dimension zero ¢, and those with dimension one (on left and right) ¢V, The di-
mension zero fields are precisely the chiral primary fields before being twisted, and
the dimension one fields are the first descendant of the chiral primary fields with
respect to the generators of superconformal transformations (GG ~). The U(1)
charge conservation implies that on genus-g surface the non-vanishing amplitudes

(000 [ 0% [ 020,

satisfy

r r+n

24+ 2(g-1)=t0-g), 2
where ¢ is the normalized central charge of the theory (which in turn is equal to the
maximum U(1) charge in the untwisted superconformal ring). We see that for the
topological LG theory we can have non-vanishing correlations on arbitrary genus
consistent with U(1) charge conservation.

Let us focus on topological LG models not coupled to topological gravity (though
these correlations are needed in the computation of their coupling to topological
gravity). We can add operators of dimension 1 to the superpotential and thus
obtain a new topological LG theory. So in order to compute arbitrary correlation
functions it suffices to compute the correlation functions of operators of dimension
zero in the presence of an arbitrary perturbation of W. The correlations involving
the mixture of dimension zero fields and dimension one fields can be obtained by
taking appropriate derivatives with respect to couplings in the superpotential. So
we now relax the condition that W be quasi-homogeneous, and consider arbitrary
functions W (finite perturbations of the superconformal W by chiral primary fields).
With no loss of generality we assume that W is deformed in such a way that there
are no degenerate critical points, i.e., for the points at which dW =0, i.e.,

ii—VK=0foralli

dx .

H

*There are, in addition, operators which are defined as integral over one-dimensional cycles over the
surface, but those we will not consider here.
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the Hessian H does not vanish
H=det(doW)=0.

We can set the couplings on the superpotentials to any values at the end of our
computations.

It is convenient to use an explicit description of a topological LG model. One
version was done in Ref. 12. However, we need a different form. In fact, we simply
take the LG Lagrangian before twisting and then declare that the fields have
different spins (as is meant by twisting®). We take the action

S=[d*zd*0X ‘X" + [a*2d*OW (X ) +c.c.
=[d*2(ox' P+ |0, W )+ (p'd0’ +5'07")
+p'0,0 WP + W I OW y . (3)

After twisting ' and V; have dimension zero and p‘and p’ are (left/right) one
forms. The BRST transformation which renders the action topological is given by
the standard transformation GT + G T,

Sxi=yl+ Y, SY=-0W, Sy'=9W,
Sp'=—0ox', 6p'=-ox’,
dx'=0.

For general topological sigma models® the semiclassical configuration dominate
the path-integral and in fact give an exact answer to the path-integral. The idea is
to rescale the action § — ¥S and note that the variation of the action is a BRST-
commutator and thus does not change the correlations. Taking the limit y —
restricts to the field configurations which give zero action and those, in the context
of topological sigma models, are nothing but holomorphic instantons. The
simplest kinds of instantons that are always present on an arbitrary manifold are
the constant maps. The moduli for such instantons are precisely the manifold itself,
and the correlation in these sectors boil down to computing intersection of cycles
over the manifold.

There is, however, a difference between the topological theory defined by (3)
and topological sigma models, in that the action is not a BRST-commutator,’
nevertheless it is still true that the 2d energy momentum tensor is a BRST-
commutator®:

T,=-8(dx'p'), T, =8(3;W y'), T,,=-8(x'p").

So we cannot use the trick of rescaling the coefficient in front of the action by
an arbitrary amount, as the action is not BRST-trivial. Instead, to compute the

®This is due to one of the F terms.
*Note that, since the trace of the energy momentum tensor is non-vanishing, this topological QFT is not
a topological CFT whose properties have been discussed in detail in Ref. 11.
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correlation function the trick in this case is to use the topological property and
rescale the worldsheet metric

g— g
The action changes according to
S=[d’z(|ax' P+ 22| QW) +(p'dy’ +5'0F' )
+p 0, 0WpI+ AW 9.0 Wyl . 4)

The fact that A is arbitrary allows us to take a large-4 limit and see from the
bosonic piece of the action that the path-integral gets dominated by configurations
where dW ~ 0 (in order to give a finite action) i.e., near configurations given by

x'(z) =const. and JW(x)=0.

We are thus left with constant instantons which map the surface to the critical
points of the superpotential. In particular, there is one instanton for each critical
point of W, which in turn is equal to the number of chiral primary fields, as long as
we restrict our attention to relevant perturbations of W. It is interesting to think
about this in the following way: In contrast to the sigma model case where the
moduli space of trivial instanton was isomorphic to a manifold, here the moduli
space in question is a number of points, which suggests that the space itself is a
number of points. This way of thinking is in accord with the way we think about the
matrix model. According to Ref. 10 the n-matrix model is related to the minimal
model with superpotential x*!. The deformation of this theory gives » isolated
critical points. So the manifold in question consists of n-point, which could be
identified with the number of matrices in the matrix model. It would be interesting
to see if this analogy can be pushed further. In particular from this point of view it
seems natural to expect that it should be possible to describe theories with ¢ > 1
using a finite number of matrices, as there seem to be one matrix corresponding to
each critical point. In other words, LG theories with ¢ > 1 do have finitely many
chiral primary fields and there should be a matrix model analog. In fact, probably
more can be said: There is a (generalized) Dynkin diagram associated to every
LG theory (for any ¢) as is familiar from singularity theory. The number of nodes
corresponds to the number of chiral primary fields, and the links between them
represent the intersections of the mid-dimension homologies of the resolved
singularity.’® It is tempting to conjecture that there is a matrix model with the
number of matrices equal to the number of nodes and with the interactions
between them dictated by the links of the Dynkin diagram. This conjecture is
motivated from the ¢ < 1 theories. Unfortunately at the present we do not know
how to deal with a general matrix model even for all ¢ < 1 models, however, this
suggests that we should try to develop techniques for dealing with them and their
generalizations which would correspond to é > 1.

Going back to our computation, we have seen that the path-integral is dominated
by constant instantons at critical points of W. Near each of these instantons, the
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path-integral (for the non-zero modes) becomes simply the ratio of bosonic and
fermionic determinants which in fact precisely cancel. The only subtlety is that
the zero modes of both bosonic and fermionic modes should be treated separately.
The constant modes of the bosonic field gives us

Jndzxi exp (- A9, W |*),

where, noting that A is large, d,W can be replaced by its linear term and the above
integral reduces to a simple Gaussian with the answer

Z,=A"(HH)",

where H is the Hessian defined above evaluated at the critical point.

The fermionic zero modes are also easy to deal with. Though here we have
to recall that the zero modes for p’(p’) correspond to the holomorphic (anti-
holomorphic) one-form and we have gof them, and the zero modes for w’T(W’T) are
just the constant functions and that is only one. Therefore we find

z,=|[ ldp'dp’ exp(-p'd,3,Wp")I*
x [ TIdy dy’ exp(-A*§'9,9,W y/) = A" HH .

Putting the bosonic and fermionic zero mode contributions together we finally
obtain (the A independent answer)

Z=2,72,=H"".

The appearance of the power (g —1) can be intuitively understood as the reflection
of the fact that there is a U(1) charge violation by g — 1 units, and that is equivalent
to inserting g — 1 copies of spectral flow in the genus-g amplitude. Moreover, the
operator H in the superconformal theory is the operator which corresponds to the
spectral flow' and this seems to hold true even in the perturbed theory.

So just to review, we have found that we can evaluate any correlation by
restricting our path-integral to constant maps corresponding to the critical points
of W, and the contribution of the path-integral near each of these configurations
is H#™'. Therefore, the correlations from a 2d theory reduce to a zero-dimensional
theory, summed over critical points of W and we obtain for arbitrary correlations

(FL(x )Fy(x,)... Fy(x,)), = 2 BE F H®', )

where F, are polynomials in the superfields x, and on the right-hand side of (5) are
to be evaluated at the critical points. There is a simple way to recast Eq. (5) to make
contact with the operator formulation of topological theories. Let alabel the set of
critical points of W, i.e., where dW = 0. For each a we consider the ket | & ). This
Hilbert space is in fact isomorphic to the physical Hilbert space of our theory, as
there is a one-to-one correspondence between these minima and the chiral primary
fields. In other words, instead of realizing the space of chiral primary fields as
identified with monomials in x‘ we can take them to be this new Hilbert space.
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In fact the appearance of this Hilbert space is clear from the fact that our path-
integrals could be restricted to this class. This Hilbert space gives a description of
the physical states in a BRST equivalent way to the description involving the
fields x’. But the advantage of choosing the basis of critical points as the Hilbert
space is that the fields x’ are diagonal in this basis. But it is clear that we can rewrite
(5) in a basis independent way as

(F(x")... FN(xi)>g= Tr F(x')... F,(x")H®" . (6)

Written in this way it makes contact with the general form one expects for the
correlation functions of a topological matter theory derived in Ref. 7 where H is to
be identified as the operator one gets from a genus-one surface with two punctures
(this is also familiar from the study of Verlinde algebra'#). Moreover, this guaran-
tees that we are not missing a genus-dependent normalization from our path-
integral derivation (modulo the possibility of rescaling the coupling constant).

Let us discuss some simple properties of (5). First we note that if we compute
any correlations involving fields proportional to dW it vanishes, as the sum is
over the critical points of W. This indeed is consistent with the statement that
the observable states in the theory are given by the ring (1). Also note that the
partition function at genus-one, with no operators inserted, is simply equal to the
number of critical points. Let us ask how continuously (5) varies as we change W.
In particular suppose we start from a quasihomogeneous W, which corresponds
to a (twisted) superconformal theory. If we add operators of charge less than one,
the degenerate critical point at the origin of field space split to a number of
critical points near the origin. So all the correlations (5) change continuously
under such perturbations. However, the same cannot be said about perturbations
with fields of charge bigger than one. Such operators necessarily exist among the
chiral primary fields for theories with ¢ > 1 (e.g., there is always a field with! g = ¢).
These operators before perturbation have dimension bigger than one and cannot
be added to the action in a renormalizable way. In the twisted theory one might
have thought that their dimension is one and can be added with no penalty.
However, adding such terms gives rise to new critical points coming from infinity
in the field configuration space. Therefore the correlations, (5), do not change
continuously under such perturbations. For example, consider a theory with W
given by

wo XLV )T

+
n n (24

where € is a small perturbation parameter and we take o > n/2 so that the pertur-
bation is by a chiral primary field with dimension bigger than one. For n > 4 the
unperturbed theory has ¢ > 1 (the general formula is' ¢ = Z(1 ~ 2¢,) which gives
¢ =2 - (4/n)). We now see that we get additional critical points from infinity (the
reader can easily verify that x = y = g7/ {5 a new critical point). Therefore (5)
will not change continuously under such perturbations (for instance, the genus-one
partition function which counts the number of critical points of W jumps). Put
differently, the dimension of the chiral ring defined by (1) changes. This seems to
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indicate that only fields with charge less than or equal to one can be added to the
superpotential. It would be interesting to see if this is a topological reflection of
the d =1 barrier in the usual formulation of 2d gravity. At any rate, in the following
we will restrict our attention to perturbations which can be obtained by adding
operators of charge less than (or equal to) one.

On the face of it (5) looks quite complicated. In particular one cannot expect
to be able to find all the critical points of W explicitly. However, from the formu-
lation of it given by (6) it is clear that the answer is quite simple. This is because
we can compute the trace in any basis, and in particular if we compute it in the
basis of the monomials, where each monomial is represented by a matrix in this
space (using dW = 0), we have a simple trace to compute. There is another way to
do this, which is even simpler. Let us start with the case of one variable. In that
case (5) can be rewritten as

(F(x)... FN(x))g

9

2W)E
=d;'—o(F1"‘FN(32W)g)/32W= re{FIH.FN(a = ]

oW

(where the residue involves taking a contour at large radius). This is the same
result obtained in Ref. 11 for the topological CFT based on the LG model. This
reformulation of (5) has the advantage of making it explicitly possible to compute
(by expanding the polynomials at large x and taking the contour around infinity).
There is a similar trick which works for the case of many fields. We can write (5)
using a residue for n variables!®> namely?

dx dx....d
5152 P px)HE (x). (8)
O WIW...0 W

(F), =

(This residue has been investigated previously in the context of N = 2 superconformal
LG models in Ref. 4.) Let us define a generalized residue by

res,, (F(x)) = (F(x)) ., -

It is clear that the higher genus correlation functions can be computed using this
residue by multiplying F with a factor H#. Now we will show a number of proper-
ties hold for this residue which allows us to effectively compute it. The following
properties hold,

(i) res, (aF + bG)=ares, (F)+ bres,(G),
(ii) res, (F)=res, (F+Gd, W),
(iii) res, (H)=u,
(iv) res, (F)=0if Q,<¢. C)]

¢ This can be defined precisely using the Dolbeaut isomorphism discussed in Ref. 15 as an integral of a
2n-1 form in the boundary of a ball of a large radius.
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Property (i) is obvious, property (ii) follows from formula (5). Property (iii} where
H denotes the Hessian and g is the criticality index of (the unperturbed) W which
is the same as the number of chiral primary fields, again follows in a straightforward
manner from (5). The only property in need of explanation is property (iv), which
states that if F is a field with charge O (well-defined in the unperturbed theory)
less than the maximum allowed, i.e., ¢, then its residue vanishes. This property is
clear in the unperturbed theory as it violates the selection rule (2). We are stating
that it is true even after perturbing W. The proof of that is simple using the
representation of (5) given by (8). We simply note that we can deform all the
contours® by rescaling the x, according to

x, > AMx,,

where g, denotes the charge of x, in the unperturbed theory. Using the quasi-
homogeneity property of the unperturbed W and recalling that we are allowing
perturbations with monomials of charge less than one, allows us to see that in the
large- A limit we end up with a W which in the leading order is unperturbed and the
integral gets a prefactor

22°20-29) - 20-¢_

and so we obtain the desired result.

Now we show that the properties (9) are in fact sufficient for the computation of
the residue. First we recall an important fact about the N = 2 unperturbed chiral
ring: Any field F with charge bigger than ¢ vanishes by adding terms proportional
to dW. After perturbation this is no longer true, but since we have perturbed by
terms with charge less than one, the fact that it vanishes before perturbation means
that by the addition of the same terms proportional to W we see that this field
is equivalent to a field of lower charge. In this way we can inductively find a
representative of any field which involves only states with charge less than or
equal to ¢. The state with charge ¢ is equivalent to a multiple of H up to addition
of lower charge states. This follows from the fact that in the unperturbed theory
there is a unique state with charge ¢.! So we see that for any F we have

F=aH+G'9,W+ (Q < ¢ fields)
then according to (9) we obtain
res, (F)=opu.

This concludes our derivation of a relatively simple method for the computation
of the correlations (5). Note that the final result applies also to the case where the
W has degenerate critical points.

One can generalize the considerations of this paper in many directions.
One direction is to consider twisted LG orbifolds.' It seems that the considerations
of this paper do generalize to these cases and, when ¢ is integer, this will give a
realization of topological sigma models in a simple way.

¢ This can be made precise along the lines indicated in Ref. 15.
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Probably the most urgent question is how to couple topological LG to topologi-
cal gravity. In this direction, one would need to understand the exact relation
between the model proposed here and the topological conformal theory related
to it. Also, it would be interesting to see in exactly what way are the twisted and
untwisted N = 2 supergravity theories related. This would be interesting to uncover
also in connection with the critical N = 2 strings.!” It would be interesting to see
if techniques similar to the ones developed here for understanding correlations
of topological LG theories can be combined with the techniques developed in
Ref. 18 to elucidate the structure of 24 gravity theories and in particular prove the
conjectures made in Ref. 19.
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