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Path-integral quantisation and Feynman rules:
scalar and spinor fields

In this chapter we shall quantise scalar and spinor fields by path-integral
quantisation. in analogy with the treatment of quantum mechanics in the last
chapter. This will enable us to find the propagators for the scalar and spinor
fields. We shall then introduce interactions, treat them perturbatively, and find
the Feynman rules. After considering spinor fields in more detail, we conclude
by calculating the pion—nucleon scattering cross section.

6.1 Generating functional for scalar fields*

Suppose the scalar field ¢(x) has a source, in the sense of §5.5, J(x), then,
analogously to expression (5.68), we may define the vacuum-to-vacuum transi-
tion amplitude in the presence of the source J as

Z[J] = f?L-qbexp {1f d4x[§£(¢) + J(x)p(x) + %apz]}
< (0, »[0, =)’ (6.1)

Here we have made the substitution 9q(t) — D¢(x*), and have put z=1. L is
the Klein—Gordon Lagrangian (3.10). So, instead of dividing time up into
segments, we divide space and time up, and Minkowski space is broken down
into 4-dimensional cubes of volume &* in each of which ¢ is taken to be
constant

¢~ O(xis Yj» 2is ).
Derivatives are approximated by, for example,
¢ 1
ax ikt o
Now let us replace the four indices (i, j, k, [) formally by one index n, and
write

[d)(xi + 69 y]7 Lk tl) - ¢(xiv y]v Zps tl)]‘

°<g((p(-xiv Yis> k> t[)a ayq)(xi9 Yis Zk> tl)) = $(¢nv ay(pn) = °(-£n~

* In this section and for much of this chapter I have drawn on the lectures of J. Wess, Karlsruhe
University, 1974 (unpublished). and Popov (1983).
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If i, j, k and [ each take on N values. then n takes on N 4 values, so the action
S.= f&E d*x becomes

N4
§S= 6%,
n=1
The vacuum-to-vacuum amplitude Z[J] is then
N4 N4 i
Z[J] = Jlim, fﬂ1d¢n exp {i,,§=:164(§£n + ¢,J, + Eeqbn)}. (6.2)
Let us now calculate this for a free particle (field), for which
£ = 30,990 — m*¢).
The corresponding vacuum-to-vacuum amplitude is (taking the limit N — %)
Zo[J] = f Dpexp (i f (38,93 ¢ — (m* — ie)¢?] + ¢J} d“‘x). (6.3)
We use the identity

j 3,43 pd'x = j 3, (3 ¢) d'x — j O d'x,

and convert the first term on the right to a surface integral, using the
4-dimensional version of Gauss’ theorem. This surface term vanishes if ¢ — 0
at infinity, so we have

J 3,03 pdx = — j PO dix, (6.4)
giving
i Zo[J] = J@qbeXp {—ij[%qb(m +m? - ie) — $J] d‘*x}. (6.5)

(Note that the field ¢ in this generating functional does not obey the Klein-
Gordon equation (3.8).) To evaluate Zy[J], let us change ¢ to

P(x) = P(x) + Po(x). (6.6)
Using the fact that
j%(u + m? —ig)pdix = J'qb(D + m? — ie)gydix,

which follows from an argument analogous to that leading to (6.4), we have,
under (6.6),

f[%¢('3 +m? —ig)p — ¢pJ]d*x — f[%¢(D + m? —ie)g + ¢(O + m? — ie)y
+3¢0(0 + m? — i) gy — ¢J — oJ]d'x.
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If ¢, is now chosen to satisfy

(O + m? = ig)gg(x) = J(x) (6.7)
then this becomes
j L@ + m? — ig)p — oo d*x. (6.8)
Now the solution to (6.7) is
Pux) = = [Ax(x = 1)I() &'y (6.9)
where Ag(x — y) is the so-called Feynman propagator, obeying
(O + m? — ie)Ap(x) = —6*(x). (6.10)

Substituting (6.9) into (6.8), we see that the exponent in (6.5) is —i times
%j¢(m + m? —ig)pdix + %f](x)AF(x - M) dixdly.  (6.11)

So Z,[J] now takes the form (where dx stands for d*x, and similarly for y)
Zo[J] = exp [—% [1@) ARG = y)I(y) dx dy]

x f@¢e><p[—%f¢(m + m?— ie)d)dx]. (6.12)

The superiority of this expression to (6.5) lies in the fact that here Zy[J] has
separated into two factors, one depending on ¢ only, and the other on J only.
In fact, the integral involving ¢ is actually a number, let us call it N, since the
integral has been taken over all functions ¢. Finally, then, we have

m Zo[J] = Nexp[—%f](x)AF(x — )I(y)dx dy]. (6.13)

Since we are only interested in normalised transition amplitudes, the value of
N, in the applications we consider, is irrelevant.

The aim of this section, to derive equation (6.13) for the vacuum-to-vacuum
transition amplitude, has now been achieved. In the next section we shall show
how the same equation is derived using rather higher brow mathematical
techniques of functional integration. Before finishing this section, however, we
shall consider briefly the Feynman propagator Ag(x), defined by (6.10). It is
easy to see that Ag(x) has a Fourier representation

. —ikx
Ap(x) = — f d*hk—2F
2m)* k?

. (6.14)
- m? +ie
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Note that the presence of the ie term, which was put in originally (see (6.1)) to
ensure vacuum-to-vacuum boundary conditions, dictates the path of integration
round the poles at ko= (k> + m?)"2. In fact, the poles are at kg=k> +

m? — ig, and therefore at

ko= £(k* + m)2 ¥ i6 = £E Fio. (6.15)

This is shown in Fig. 6.1, where the integration path of kg is along its real axis,
as shown. In the limit 6— 0, i.e. €é— 0, which is implied in the expression
(6.14), the poles reach the real axis, and in this case the integration path is as
shown in Fig. 6.2.

There is another way of incorporating the vacuum-to-vacuum boundary
conditions, which is to rotate the time axis, instead of through the small angle
8, shown in Fig. 5.7, through an angle of 7/2, so that t — —i%. Defining

X4 = it = ixo (616)

this limit is x4, — . This space—time, with an imaginary time axis, is Eucli-
dean, for the invariant interval is

4
ds? = (dx%)? — (dx')? — (dx?)? — (dx?)? = = 3 (dx ™).
u=1

Fig. 6.1. Integration path along the real k, axis in the definition of Ap(x).

Fig. 6.2. New integration path on taking the limit ¢ - 0(6 — 0).
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Defining, in addition,
ky = —iko, (6.17)
giving, in the Euclidean space,
K=+ i3+ k3 + k) =-kk (6.18)
and
d*kg = &k dk, = —id*k,

the Feynman propagator is

_l 4 e—ikgx

Ap(x) = j d*kg— . (6.19)
2n)* kg + m?

Here there is no problem of choosing a contour, for the poles are not on the

real axis, but at k; = +i(k? + m?)'2. Referring to equation (6.3) for Z,[J],

noting that d*x = —id*xg and that (3¥¢)> = —(3f¢)?, the Euclidean transition

amplitude is

Zul7) = [avesp(~[({GED + P = o) '5e). (620

The exponent in the integrand is negative definite, so the integrand converges;
the role of the € term in (6.3) was, in effect, to make the integrand converge.

6.2 Functional integration

We shall now generalise the usual formulae for Gaussian integration over a
finite number of variables, to formulae for functional integrals, and then show
how (6.12) (or (6.13)) follows from (6.5). To begin, we have, from (5A.1),

1p
f e~ @2y = (2—”) (6.21)
a

(the limits —% and <« are to be understood in this, and all subsequent,
integrals). Now we take the product of n such integrals (with all a; > 0)

2 n/2
fexp (—%Ea,,xi) dx;...dx, = (’IL (6.22)
n HaVz
i=1
Let A be a diagonal matrix with elements a4, . . ., a,, and let x be an n-vector
(x1, - - -, x,). Then the exponent above is the inner product

Za,,xz, = (x, Ax)
n
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and the determinant of A is

detA = ajay ... a, = []a;.

Equation (6.22) then becomes
[ert AP e = 2m) P (det 4) 7 (6.23)

Since this holds for any diagonal matrix, it also holds for any real symmetric,
positive, non-singular matrix. Defining the measure
(dx) = d"x(2m) "7,

equation (6.23) becomes

j e~ 492 (dx) = (det A)2, (6.24)
This equation may be extended to quadratic forms

Q(x) = 3(x, Ax) + (b, x) + c. (6.25)
The minimum of Q lies at ¥ = —A~!b and

Q(x) = Q(F) + 3(x — %, A(x — %))
so we have
[exp (=[x, Ax) + (b, x) + c]}(dx) = exp[s(b, A7'b) = c](det 4)™'".
(6.26)

This equation is analogous to (5A.3).
Let us make a small digression to the case of Hermitian matrices. Squaring
(6.21) gives

J’e—a(x:fv:)/l dx d_V — _gz
a

Putting z = x +1iy, z*=x —iy,dxdy = ~lidz*dz, we have

[ee d* dz _ 1 (6.27)
Qm)? Qm)r  a

The generalisation of this formula is that if A is a positive definite Hermitian
matrix and we define the measure (dz) = d"z(27i)”"/. then

f e~ 49 (dz*)(dz) = (det A) . (6.28)
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The formulae written down so far are rigorously true; they are simply the
result of generalising the integration space from one dimension to a finite-
dimensional vector space. We now assume that we can generalise the above
formulae to an infinite-dimensional function space. This actually needs a
careful mathematical justification, but, assuming that this can be made, then, if
the generalisation is to the case of a single real variable f(z), the inner product

(. s
(1, ) = [IFOF dr.

In our case, we are concerned with real functions of space—time, ¢(x*), so we
have

(9.9) = [[p(x)P d'x. (6.29)
The generalisation of equation (6.24) is
j?Dq)exp[—%jdb(x)Adb(x)dx] = (det A) 12, (6.30)

A may be, in general, a differential operator. If ¢ is a complex field, we
instead generalise (6.28) to give

f@(ﬁ*@qbexp[—f(p*(x)Aqb(x)dx] = (det A)71. (6.31)

We are now in a position to prove (6.12) from (6.5). The exponent of the
integrand of (6.5) is a quadratic form, so we employ equation (6.26) (or,
rather, its functional generalisation), with A = i(0 + m? —i¢), b = —iJ, ¢ =0,
giving

ZolJ] = exp ij(x)(m + m? —ig)"I(y)dx dy][deti([] + m? —ig)]" 2.

The determinant term is defined by (6.30), and we have, from (6.10),
(O+ m? — i)™l = =Ap(x — y), (6.32)

SO

Zo[J] = CXP[—%IJ(X)AF(X = y)J(y)dx dy]
X f@q&exp [—%fd)(l] +m? = i£)¢dx]

which is equation (6.12). We recall that the last factor is just a number N, so
Z[J] can be written in the form (6.13).



6.3 Free particle Green’s functions 189

6.3 Free particle Green’s functions

We shall now show that the amplitude Zy[J] is the ‘genérating functional’ for
the free particle Green’s functions, which will be defined as we proceed. We
begin by expanding equation (6.13), to give

2dn==N{l—iﬁunAﬂx—yynwdxmv

+ _(_) UJ(x)AF(x - y)J(y)dxd\])

_ 3
+ %(7‘) Uf(x)AF(x — y)J(y)dxdy| + } (6.33)
Introducing the Fourier transform of J(x) by
J(x) = ff(p)e"i”*' d'p, (6.34)

we have, using (6.14) and temporarily reverting to d*x instead of dx, etc.,

—i J’ J(p1) e~ {pitk)x o=i(p2=k)y J(ps)
2(27)*
x d*p,d*p,dikdix dty

- o _J(=k)J(k)
= (2 )jk2 — +16d4 (6.35)

> [10)8ex = 1)I(y) dix aty = —
2 k* — m® + ie

in which we have integrated over x and y to give two delta functions, and then
over p; and p,. We may represent this diagrammatically by using the following
rules of correspondence (Feynman rules in momentum space).

p 1 i
@n)* p? — m* + ie
p (6.36)
—— iC2mY(p).
J

These Feynman rules may be compared with those in (5.45). Since the
non-relativistic limit of p?> — m? is 2m(T — p*/2m) (T = kinetic energy), the
propagator above is clearly the (relativistic) propagator for one particle. The
expression (6.35) then corresponds to the diagram

He—————X
J J (6.37)

1=
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The vacuum-to-vacuum amplitude (6.33) may then be written in terms of
Feynman diagrams (ignoring N)

Zy= 1+;M+1(”

. (6.39)

where, in the last line. we have resorted to a pictorial representation reminis-
cent of Fig. 5.6. We shall now show that the implied suggestion is correct; in
other words, it is correct to interpret this series as the propagation of one
particle between sources, the propagation of two particles between sources,
and so on. We therefore have a many-particle theory, consistent with our
original philosophy of using a field, which yielded particles on quantisation.
Each term in the above series is a Green’s function so Zy[J] is a generating
functional for the Green's functions of the theory.

To understand how to interpret the power series expansion of a functional,
let us first recall the formula for the power series expansion of a function, say
F(y1, ..., yx) of k variables yq, ..., y;. Itis

u[\ﬁz~
;';M’*

= 1 .
F{y}=F(y, ..,y = z ;'T(ll’---’ln)yil---yi,,

where
n
Ty, ... i) = — W | (6.39)
8y,~l e ay;n y=0

Going over to the case of continuously many variables, i —> x;, y; (i=1, ...,
ky— y(x), —»<x<= and >,;,— fdx, and we obtain the power series
expansion of a functional

Fly] = Zofdxl C. dx,,;l;T,,(xl, e X))y (xy) - y(x)

where

| s s .
T,(x1. ..., X,) = F . .
(1) = D (6.40)

F[y] is called the generating functional of the functions T,,(x1, . . ., x,).
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Now we return to Zg[J]. It is convenient here to settle the question of its
normalisation. Zy[J] is the vacuum-to-vacuum transition amplitude in the
presence of the source, J, so it is sensible to normalise it to Zy[J =0]=1. In
that case, referring to (5.61), we may define Zy[J] by

Zo[J] = (0, |0, —=)’ (6.41)
which automatically obeys
Zol0] = 1. (6.42)
Equations (6.5) and (6.13) must then be rewritten as
f@q;exp {—ifg(p(m + m? —ig)p — ¢J]dx}
ZolJ] = (6.43)
J’Qb¢exp [-—if%d)(l] + m? - is)(;bd.x]

and
ZolJ] = exp[—% f J&)As(x — y)J(y)dx dy]. (6.44)

These new definitions clearly obey (6.42). Then Z[J], as defined by (6.44), is
clearly the generating functional for

1 o" Zo[.]]

i" 8J(xy) ... 0J(xy)

(6.45)

T(Xq, .oy Xy) =

J=0

At this point we refer back to equation (5.76), which was derived for its use
here. The analogous equation in the case of fields, and using our new
normalisation, is

8" Zo[J]

5I(xy) - - . I(xy) =0 =1"(0[T(¢(x1) - . . §(x,))[0) (6.46)
). n =

or
1 0" Zo[J]

e 0) = ‘
<O]T(¢(-x1) ¢(Xn))l > in (5](X1) o (SJ(X,,) J=0

(6.47)

Comparing (6.45) and (6.47) we have
t(xy, ..., x,) = (O] T($(x1) ... (x,))]0). (6.48)

These quantities, the vacuum expectation values of time-ordered products of
field operators, are called the Green’s functions or n-point functions of the
theory. They are closely related to the S matrix elements — we shall see this
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connection later, when we introduce interactions. We then have

Zo[J] = ZI—,J dxp ... dxd(xy) .. T T, -y X)) (6.49)
n=0Mn.

which expresses Z as the generating functional of the Green’s functions 7. This

equation corresponds to the pictorial equation (6.38).

Let us now calculate some n-point functions. We start with the 2-point
function

(x,y) = ——ézé[;’]—— (6.50)
8J(x)0J(y) =0
with Zo[J] given by (6.44). (Recall again that we are still concerned with a free
field theory, since we started with the free Lagrangian, and thus with (6.3).
The expressions we shall find below refer, therefore, to the free particle
Green’s functions. The corresponding Green'’s functions for interacting fields
will differ from these, and will be found later.)
From (6.44) we have

16Zo[J] _1_ 6
i 0J(x)  idJ(x)

exp [—%J’ dxy dxyJ(x1)Ap(xy — Xz)](xz)]

= - j Ap(x = x1)J(xp) dx, exp[—% j dx; deyJ (x1) Ap(xy — xz)J(xz)],

1861 8
i 8J(x)i 8J(y)

Zo[J] =1Ap(x = y)exp (—%J’JAFJ)
+ f Ap(x = x1)J(xp) dx j As(y — x1)J(x1) dx;

X exp (—%jJAFJ). (6.51)

Here we have abbreviated the notation in the exponent, for simplicity. Finally,
putting J =0,
1 61 6
10J(x)i 8J(y)

Zo[]]l = iAp(x = y),
J=0

or
(x, y) = iAs(x — y). (6.52)
What is the physical significance of this? From (6.48) the 2-point function is
w(x, y) = (0| T(9(x)9(y))/0)
= (06(xo — y0)p(x)@(y) + B(yo = x0)(¥)$(X)|0).  (6.53)
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From (4.14), we may decompose ¢ into its positive and negative frequency
parts

9(x) = ¢@) + ¢O@) (6.54)
with
(F(x) = dB—k k
9 = | TRCNTEALLC
(=) — ___ik_* * T k
970 = | e K4

and where fi(x) is given by (4.11). Because a(k) and a'(k) are annihilation
and creation operators, the only terms to survive the vacuum expectation value
in (6.53) are ¢ (x)¢{7)(x), so that

t(x, y) = 68(xo — y0){01¢M (X)) (»)|0) + 6(yo — x0) (0] (y) ¢ (x)|0).
(6.55)

The first term is the amplitude for creating a particle at y, at time y,, and
destroying it at x, at time xy (> yg). The second term is the amplitude for
creating a particle at x, at time x,, and destroying it at y, at time y, (> xg).
These are represented schematically in Fig. 6.3. We shall now verify that the
sum of these terms is the Feynman propagator iAg(x — y).

To prove this, let us first re-express Ag(x — y). From (6.14)

d4k e—ikx
Ap(x) = [ S5
2m)* k” — m” + ie
_ jd3kdk0 g ikx
Qn)* ki — (K> + m?) + ie

B J'd3k dko e'“‘"( 1 B 1 )
(277)4 2, \kg — wy + 16 ko + wy — 16

where j = k* + m?. The integration path over kg is shown in Fig. 6.1. The
exponential contains e~ k% g0 when xo >0, we may complete the integral in
the lower half of the k( plane, and the contribution on the semicircle at infinity

Time Time

) j ) (
Yo Xo
Space Space

Fig. 6.3. Interpretation of equation (6.55). (See text.)
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‘ . . the other hand,
will vanich: 1. Path cncloses the pole at ko = w — 6. Onclose the pole at
when o, =0,y “mplete in the upper half plape and en

ko= ~u, 4 b, Lpplying Cauchy’s theorem then gives

Py RIws o _ s AiwrXxg .
Ayl Tk "7 f(xq)(—1) e 70 — G(—x)i @40
)

. f
‘ . cting the value o
In the second Imtegral, e may change k to —k without affecting
the imcgml, 9wy, lm:xll'/.,

2 e _ eik(x—y)]_
Alx = yy ’ T T kg = yoy e 4 By — x0)

(2m)" 20, (6.56)

: .54) into (6.55),
This iy the form we want for Ap(x — y). Now we substitute (6.54)
giving
4 K
(x, y) I d kd“L—j
, (271);,(2’”’2(””)1/4
P00 x0)Olatk) fi(y)a' (k') f(x)]0)]
i ’ 'k d'k’

—[0(xy = yo) e K=K (0]a(k)a’(k")|0)
(Vu )"7,(;;,,2(1)1(.

} “(.Vu Xn) e My ko) <0|a(k)aT(k')‘0>]
where we have "
(4.1()(1), to find

[0(xo = yo)(Ola(k)fi(x)a" (k") f£(¥)I0)

. 1 n
e (4.11) for Ji(x). Now we use the commutation relatio

ik(X~y)]
—ik(x— —_ e
m(x, y) - ’ k ~[0(xy — yo) e C=9) 4+ 9(yy — x)

()20, (6.57)
A (x ~ y)

. d
. n the process foun
from (6.56). We Ly Now proved (6.52) again, and hﬁve ;eationp propagation
an interpretation o, the 2-point function in terms of the ¢ ’
and destruction o Oun particle between two points.

. -point
' et . ion. What is the 1-poin
We have found 4, txpression for the 2-point function
function? 1y i clear thiy

16ZoUT|  _ (6.58)
T 01T p)[0) = (0]p)|0) = i 8J(x) =0
Let us now find the .%-pnim function.
L o1 61 6 il .
v xy) = T(;;(—)Jl 8J(x2) i 0J(x3) J=0
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We saw above (equation (6.51)) that

1.6 1
i 6](X7) 1 6J(X3)

Zo[J] = iAp(xs — x3)exp (—% f JAF])

+ f Ap(xy — x)J(x)dx f Ap(x; = x)J(x) dx exp(—% f JAFJ).

Further differentiation then gives

1 61 8 1 6
i 0J(x1) i 0J(x2) i 6J(x3)

= —iAp(x; — x3)fAF(x'1 — x)J(x)dxexp ZJJAFJ)

Zo[J]

—iAp(x; — xl)fAF(r - x)J(x)dx exp( zf]A}:J)
—iAp(xs — xl)fAF(rﬂ - r)](x)drexp( zf]AFJ)
dx

pr(x, - x)](x)drfAF(r3 — )J(x)

X f Ap(x; — x)J(x) dx exp (—% f ]AFJ). (6.59)
Putting J = 0 reduces this expression to zero, so

T(x1, X2, x3) = (| T(p(x1) P(x2) $(x3))|0) = 0. (6.60)
To find the 4-point function we carry on in the same way, by differentiating
(6.59) once more and putting J = 0. We have
1 6 1 9
18J(x)) i6J(xy)

Zo[J] = —Ap(xz — x3)Ap(x; — xy)exp (—%IJAF])
— Ap(xy = x1)Ap(x3 — xy)exp ("%f]AF])

— Ap(x; — x1)Ap(x; — xy)exp (—%f]AFJ)

+ (terms which vanish when J = 0),

so the 4-point function is

(O] T (p(x1) p(x2) Pp(x3) P(x4))|0)

—[Ap(xy = x2)Ap(x3 = xy)

+ Ap(x; — x3)Ap(xy — xy)

+ Ap(x) — x3)Ap(x; — x3)]. (6.61)

(X1, X2, X3, X4)
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This is simply the sum of products of 2-point functions, and may be written

Xy———————X, X3 X4
(X1, X2, X3, X4) = +
X3 X4
+ (6.62)
X X,

Going to higher orders, it is clear that if n is odd, the n-point function always
vanishes,

T(x1, X2, .« ., X2541) = 0, (6.63)

and it turns out that, if #n is even, the n-point function is a sum of products of
2-point functions,

T(X1, X2, oo X20) = ) T(Xp, Xp) oo T(Xpy 1 Xy ), (6.64)
perms

where
T(x, y) =iAp(x — y).

This important result, when derived using the ‘canonical’ method, employing
the operator commutator relations, is known as Wick’s theorem.

In this section we have derived the Green’s functions in a scalar free field
theory. The interesting case, however, is the one for which interactions are
present; how do we calculate the Green’s functions then? When we know this,
we are one step nearer calculating a scattering amplitude for a real physical
process!

6.4 Generating functionals for interacting fields

The Lagrangian

£ = 13,43 — Im*¢? - 4%¢4 =%y + Line (6.65)

describes a scalar field which interacts with itself, through the term in ¢*. We
shall first show how to find the Green’s functions for a general interaction £,

and then in the next section apply the formulae to the case of ¢* theory. The
normalised generating functional is
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f@d)exp (iS + ifhpdx)
Z[J] = : (6.66)

fﬁb(j)eis

with S = JEB dx. It is clear that, when £, =0, this becomes the expression
(6.43), which we were able to show is the same as (6.44). Equation (6.44) is in
a form suitable for functional differentiation with respect to J, and therefore
for finding the Green’s functions. We want to find the expression which
corresponds to (6.44) in the case of interacting fields. We proceed by finding
the differential equation satisfied by Z[J], and then solving it in terms of
ZylJ].
First note that, from (6.44),

1 ¢
idJ(x)

Zli) = = [Arx = )y exp(—% [1ac7ax dy),

. . . . b)
0, since Af is minus the inverse of O + m~,

@ + m)L2
07

Zo[J] = T(x) Zo[ ). (6.67)
x)

This is the differential equation satisfied by Zy[J].
Now we have, from (6.66),

fexp (iS + if]q)dx)qb(x)@)qb

I‘Z([])] = . (6.68)
HoJ f &S B¢
We define the functional
Z[¢] = _es—— (6.69)
J' eGP
Then
ZU] = j Z[¢]exp [i f J(x)¢(x)dx]@¢. (6.70)

This is the functional analogue of the Fourier transform. Now we take the
functional derivative of Z[¢], noting that

S = [(2,99"0 ~ im0 + Fin) d'x = = [B0(0 + m)p — L] d'x. (671)
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We obtain
.52[(}5]‘_.1 [ b — P14 is o
Foot) 16¢{exp[ lj[2¢(D + mY)p — Linld x]}[fe @¢]
= (@ + m)g(x) 2[¢] — 2 2[g)
- =
= (0 + m)¢(x) Z[§] — Lin(¢) Z[ ] (6.72)

where the prime on ¥}, means differentiation with respect to the argument.
Now we multiply both sides of (6.72) by exp [i f J(x)¢(x)dx] and integrate over
¢. The right-hand side gives

J(D + m2)¢(x) exp (iS + ifhpdx)@(p Ffz{m(@ exp(iS + ij]d)dx)@gb

J’eis@(P feis@(p

- n10ZJ] _ o, [li]
R b UGS

where (6.68) has been used, and the argument of £, has been changed from ¢
to (1/1)(6/8J), since it operates on Z[J]. The left-hand side of (6.72) gives

if%g;ﬂexp (ij]qbdx)@qb =iexp (if1¢dx)2[¢]‘%w
+f](x)2[¢]exp(ij]¢dx)@¢
= J(x)Z[J] (6.74)

from (6.70). Equating (6.73) and (6.74) gives

n10Z[J] ¢ (1 6 -
@+ m)- 0 gg,m(ié](x))zm J(x)Z[]]. (6.75)

We must solve this equation for Z[J]. In the free field case, £, = 0 and the
equation reduces to (6.67), for Zy[J]. We shall now show that the solution to
(6.75) is

Z[J] = N exp [i f seim(%?%) dx] ZolJ] (6.76)

where N is a normalising factor. The proof is in two stages.
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Proof
(a) We first prove the identity

fo) fo)
Lo
exp[ jsf.m( 5J(y))dy]J(x>exp +1j ( 6}()))@]

1 6
=] - mt U 6.77
(x) ( 5ICr )) (6.77)

This follows by observing that the functional analogue of

[xi, 19 =i0;
i ax,

is

o
[():6—() =1id(x — y).

Repeated application of this equation gives

(5 n _' B 1 (5 n—1
[()( 6J(y))]_ o y)( 6](y))

(5 n—1
16](y)[ (). (1 5J(y)) }

S n—-1
=1d(x — y)n (1 (5](y)) . (6.78)

By expanding the function

F(¢) = F(0) + ¢F'(0) + %ZF"(O) + .. 2 " Fn(0)

n=0 n!

and making the replacement ¢ — (1/1)(6/8J), it then follows from (6.78) that

_ 18
[( *): f ( 6J(y)) ]_IF(iaJ(x))' (6.79)

Now we use the Hausdorff formula

eABe'A=B+[A,B]+%[A,[A,B]]+... (6.80)

where A and B are operators, and put A = —ifEBim((l/i)((S/cSJ(y)))dy and
B = J(x). Since, in this case, A commutes with [A, B] (from (6.79)), only the
first two terms on the right-hand side of (6.80) appear, and (6.77) is proved.
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(b) We must now show that (6.76) is the solution of (6.75). From (6.76) and
(6.77)

J(x)Z[J] = mmexp[ if sfz( fy) )dy] Zo[J]

6 (1 6
= Nekp[filnt( m)dy][‘]( ) ffml( 6]( ))]ZO[‘I]

The first of these terms is transformed using (6.67) and, in the second, the
order of e/l and £, may be interchanged, giving

, 1(520
)z = Aexp[[sz,m( 5J(y)) ]( e

(16 o (10
st,m(l ~ (x))exp [, j se.m(.—a o) )d)’}zo[]]

=@+ m)r 22U se[ ] g
i 6J(x) 8J(x)
where (6.76) was used. This is equation (6.75). QED.
We are now in a position to calculate the Green’s functions in the interacting
field case, which we proceed to do, as usual in quantum theory, by perturba-
tion theory.

6.5 ¢ theory
Generating functional

As we saw in (6.65), the interaction Lagrangian in ¢* theory is
$m=—%¢- (6.81)

The normalised generating functional Z[J] is

eXP“éﬁm( (zz))dZ] eXp[ fJ(X)AF(X = y)J(y)dx dy]

. 1 6 i
Lot ——— —= -
{exp[lf m(iaj(z))dz]exp[ 2fj(x)AF(x y)](y)dxdy}}‘}=O
(6.82)

Z[J]=

The only way of treating exp (iffﬁim) is as a power series in the coupling
constant g, i.e. by perturbation theory. Substituting (6.81) into (6.82) and
expanding in powers of g, the numerator of Z[J] is

[1 ig (1 b} )4dz + o(gz)}exP[—ifJ(X)AF(x ——y)](y)dxdy].
16J(z) 2
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To order g°, we just have the free particle generating functional Zo[J]. To
order g, we proceed as follows:

i
T exp[——i [T At - y)f(y)dxdy]

= _JAF(Z —x)J(x)dx eXP["'%jJ(X)AF(x = y)J(y)dx dy];

& sz))’exp[—-% [7astx = i axay

[Artz - x)](x)dx]'} exp '—é [7088(x = )7y ax d,v];

16 Y i ;
(:5](1)) exp[‘.EJ’J(x)AF(x y)J(y)dx dy‘

- {3[—iAF(0)]fAF(z — x)J(x)dx — UAF(Z - x)J(x)dx}:}

X eXP[—-%J’J(x)AF(x — y)J(y)dx dy];

4 .
(% - ]‘?2)) exp[—% [1)aGe = 1) I() dx dy]
+

K
- {_3[AF(0)]2 + 6iAF(0)UAF(z — x)J(x)dx jAF(z - x)J(x)dx] }

X exp [“%JJ(X)AF(X - y)J(y)dx dy}.
(6.83)
We may write this expression diagramatically. Let
x ———y = Ap(x — y) (6.84)

represent the free particle propagator. Ag(0) = Ap(x — x) is then represented
by a closed loop

O — Ap(0). (6.85)

Equation (6.83) may then be written

el 200 e 1o

(6.86)
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The meeting of four lines at a point in the three diagrams in (6.86) is clearly a
consequence of the fact that ¥, contains ¢*. Moreover, the coefficients 3, 6
and 1 follow from rather simple considerations of symmetry. The first term on
the right-hand side of (6.86), for example, results from joining up the two pairs
of lines in the third term, in all possible ways; and there are three ways to do
this. The second term is got by joining any two lines of the third term, and
there are six ways to do this. These numerical coefficients are known as
symmetry factors. The first term, with two closed loops, is known as a vacuum
graph. because it has no external lines. The term with one closed loop has two
external lines (i.e. two Js) and the last term four external lines (four Js). It is
now an easy matter to write down the denominator of (6.82). Putting J =0
eliminates the second and third terms in (6.86), so we have

o o]

The complete generating functional, given by equation (6.82), is, to order g,
_igff_ : i
[1 2 ( 3OO+6l>e—Q-><+X)dz]exp( 2JJAFJ)
1-%[(-300)dz

- [1 - L;‘;J'(éi Qs + X)dz] exp(—*%fJAFJ), (6.88)

_q g, _
=1 4J( 300)dz. (6.87)

J=0

Zl] =

where the denominator has been expanded by the binomial theorem. The
interesting thing that has happened is that the vacuum diagram has disappeared
in Z[J]. It turns out that this is true to all orders in perturbation theory, and is
a general property of normalised generating functionals.

2-point function
The 2-point function is defined by
(X, Xp) = —;SZZL . (6.89)
0J(x,)0J(x1) lu=0

By looking at (6.88), it is seen that the first term in Z will give iAg(x; — x5) in
7; this is the free particle propagator. The term in in (6.88) contains four
Js and so gives no contribution to the 2-point function. The term in » O y is

Lan(0)] drdy dza(e - x)7(x) Az - y)J(y)exp(—% [ JAPJ).
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On differentiation we get

15
1(5](x1)

( ) = —-if—AF(O)ZJ’ dy dzAp(z = x1)Ap(z = y)J(y)

X exp(—-%f]AFJ) + -,

( ) = —§AF(O> f dzAp(z = x)Ap(z = x2)

X exp(——%J’JAF]) +...,

where the omitted terms vanish when J = 0. We then have

1 6 1 6
10J(x,7)16J(x1)

7(x1, X2) = IAR(X, = X3) — %AF@ j dzAp(z = x)AR(z — x2) + O(g?)

(6.90)

=i -§ Q1 0(gY). (6.91)

To order g, this represents the effect of interaction on the free-particle
propagation. The free-particle propagator is, from (6.14),

Ap(x — y) = d*k,

1 f e—ik'(x—y)
@m)*) k2 — m? + e

and its Fourier transform contains a pole at k> = m?. This identifies the mass
of the particle as m. We shall now show that the effect of the interaction is to
change the value of the physical mass away from m. Indeed, the second term in
(6.90) is

~1gA(0) j Ap(x = 2)Ap(xy — 2) dz

_ 8 Ap(0) e~ip(xi=2) ' e i (x2=2)

2 o lipt—mP+ie > - mP+ie d'pdqd'z
_ g A(0) eip-(xi=x2)
2 @m* ) (p* = m? + ie)?
- _8 Ap(0) eip(xi—x2) d.
2 @nt ) (p* = m? + ie)’

8'(p + q)d*pdiq

giving, for the 2-point function (6.90),

7igAr(0)
pr—m? +ie

i e~ ip(xi—x2)
. x) = ——

(2m*

d*p. (6.92)
p2 - m? + ie
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Formally, the term in square brackets above can be written as

[1 _ _3igAe(0)
p?—m*+ie

-1

s

so we have
e—ip'(X[—XQ)

1
(2n)4f p? — m? = ligAg(0) + ie

(X1, xp) = d*p. (6.93)

The Fourier transform of t(x;, x,) will now possess a pole at p* equal to

m? + LigAp(0) = m? + 5m? = m? (6.94)

where

om? = ligAp(0); (6.95)

m;, is now identified as the physical mass, or renormalised mass. The change in
(mass)?, dm?, is a quadratically divergent quantity, since Ap(0) contains four
powers of p in the numerator (d*p) and two in the denominator. It happens,
then, that the renormalisation of the mass is by an infinite quantity, but that is
a distinct circumstance; the essence of renormalisation is that the physical
quantity (mass, in this case) is not the same as the parameter in the Lagran-
gian, if an interaction is present. More will be said about renormalisation in
Chapter 9.

4-point function
Let us proceed, finally, to the 4-point function, given by (equation (6.45))

AR

, (6.96)
8J(x1)8J (x2)87 (x3)0J (x4) | 1=0

(X1, X2, X3, X4) =

where Z[J] is given by (6.88). The first (order g°) term in 7 is the same as that
found in (6.61)

—[Ap(x1 = x2)Ap(x3 — x4) + Ap(xy — X3)Ap(x; — Xx4)
+ Ap(x; — x)A(x; — x3)] = —(=+ || + ) = -3(=). (6.97)

This is the free particle 4-point function and will not contribute to the
scattering. The next term in Z[J], of order g, gives, as may be checked,

e |
4 8J(x1)8 (x2)0 (x3)5J (x4) —C—exp 2f](x)AF(x y)J(y) dxdy
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_g 5
4 8J(x1)0J(x2)8J(x3)0J(x2)

X {AF(O)fdx dy dzAp(x — 2)Ap(y — Z)J(Y)J(x)exP(—%J’JAF])} J=0

_TigAF(O) [ dzlAr(z = 2)ArE = x)Ar(xs = xi)

+ Ap(z = x1)Ap(z = x3)Ap(x2 — x4) + Ap(z — x1)Ap(z = x4)Ap(x2 — x3)
+ Ap(z = x2)Ap(z — x3)Ap(x; — x4) + Ap(z — x2)Ap(z — x4)Ap(x; — x3)
+ Ap(z = x3)Ap(z = x4)Ap(x) — x3)]

—Q—] (6.98)

L

—-3ig

The diagram above does service for the six equivalent terms in the expression
above it. Each of these terms contributes twice, so the ‘symmetry factor’ of the
diagram is 12.

The final term in Z[J], of order g, gives

—ig ol
4! 6J(x1)0J(x2)0J(x3)0J(xy)

{ xexp[—g [76)88x = I3 dx dy]}’

J=0

_ ~ig &
4! 5](X1)6J(X2)6](X3)6](X4)

X {UAF(z - x)J(x)dxrexp(—%jJAFJ)}

“ingF(xl = 2)Ap(x2 — 2)Ap(x3 — 2)Ap(xy — z)dz

J=0

—ig[ X ] (6.99)

The complete 4-point function, to order g, is then
] -asf=] - (X
—3[——] ——“g[lz % 6(_0_) + 24( X )]

41

T(X], X2, X3, X4)

(6.100)

The first term, of order g% does not contribute to the scattering. The
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numerical coefficients above are easily derived by simple combinatorics, and
this suggests a rather direct way to write down all the diagrams of a given
order. Let us consider, for example, all diagrams contributing to the 4-point
function of order g. in g¢*/4! theory. We deduce them as follows. First of all,
we are considering a g¢* theory, so to order g" we have the n vertices

XX X+ X (6.101)

and corresponding to the 4-point function we draw four external points

> ST —

RS (6.102)

X, ——— —e X,

The 4-point function in g¢* theory to order g is then constructed from the
following prediagram

1 X X3 (6.103)

X, X4

(This is called a prediagram to distinguish it from a real Feynman diagram.)
We now join up all the lines. There are three topologically distinct types of
Feynman diagram which result, drawn in Fig. 6.4. The multiplicities are
calculated as follows. To get diagram (a) (in Fig. 6.4) join x; up to one of the
legs of the vertex in (6.103). There are four ways to do this. Now join x, up to
one of the remaining three legs — there are three ways. There are 4! = 24 ways
to complete the diagram (a), which is the coefficient in equation (6.100). Next,
to make diagram (b) join x; directly to one of the other external points x,, x3,
x4. There are three ways to do this. Choose one leg of the vertex and join it up
to one of the two remaining external points. There are 4 X 2 ways to do this.
Join one of the three remaining legs of the vertex to the one remaining point.
There are three ways to do this. Join the remaining two legs together. The total
multiplicity is 3 X4 X2x3=12X6, as in (6.100). The reader will easily
convince himself that the multiplicity of diagram (c) is 3 X 3 =9. The reason
this diagram does not appear in (6.100) is that it is a multiple of the vacuum
diagram OQ (see above) and Z[J], being properly normalised, produces no

vacuum diagrams.

(a) ) (©)

Fig. 6.4. First-order terms in the 4-point function.
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In summary, the Feynman rules for ¢* scalar field theory, in co-ordinate
space, are

line x y Ap(x — y)
vertex Xz “ig

integration over z (6.104)
symmetry factor - S/4!

In calculations of realistic processes, involving, for example, electrons and
photons, the particles are not identical and there is then no symmetry factor to
contend with. We postpone, until we consider these real scattering processes,
the derivation of the S matrix from the Green’s function.

It is however, convenient to mention here that, of the two order g diagrams
in (6.100), the first one,&, only contributes to the trivial (diagonal) part
of the § matrix, so is not interesting. It describes the two particles moving
independently, and the effect of the interaction is to modify the propagator of
one of them. This graph is called disconnected. The other order g graph, <,
is connected, since every line in it is connected to every other line. Only
connected Feynman diagrams contribute to S — 1, i.e. to the non-trivial part of
the § matrix.

6.6 Generating functional for connected diagrams

Now it turns out that there is a generating functional W, which generates only
connected Feynman diagrams or connected Green’s functions. It is related to
Z by

Z[J] = "l (6.105)
or
W[J] = —iln Z[J]. (6.106)

We shall now show, by considering the 2-point and 4-point functions in ¢*
theory, that W[J] generates no disconnected graphs. We have, firstly,

W _ i 6z oz _ i ¥z (6.107)
8J(x1)0J(xy)  Z28J(x1) 0J(x2)  Z 8J(x1)dJ(x»)
When J = 0, we have
OZUN o zioj=1 10
8J(x) l;=o (0 (6.108)

SO

FW
6J(x1)6J(x2)

&z

=0 ‘im =it(xy, x2) (6.109)

J=0
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showing that W generates the propagator, to any order in g. This is as we
expected, since the propagator has no disconnected part. To find the 4-point
function, we differentiate (6.107) twice more and set J = 0, to give

s'w _ i[ 1 &z &z
8T (x1)8J(x2)87(x3)8T (x4) li=0 | Z2 87 (x1) 8T (x3) 8J(x3)07(x4)
L1 &Fz &z
Z? 0J(x1)6J(x3) 6J(x2)07(x4)
1 &FZ a4
Z2 8J(x1)0J(x4) 6J(x2)6J(x3)
1 8z
Z 8J(x1)0J(x2)0J (x3)0J (x4)

= i[t(x1, X2)T(x3, X4) + T(x1, X3)T(x2, X4)

J=0

+ T(xy, X4)T(x2, X3) — T(x1, X2, X3, X4)]-
(6.110)

We have to show that this contains no disconnected diagrams. The most
convenient way to do this is to substitute the diagrams themselves into (6.110).
Working, as always to order g, and substituting equations (6.91) and (6.100)
into (6.110) gives (in a notation which is meant to be self-explanatory; 1 stands
for x,, etc.)

8w
0J(x1)0J(x2)8J(x3)8J(x4) l1=0
=i[(i1 2_g1 2)i3 4_§3 Q4)

2
+(11 3_£1O3)(i2 4_5204)
2 2
+(11 4—£1Q4)(i2 3___g_2Q3)
2 2
(1 2 1 3 1 4)
+ + +
3 4 2 4 2 3
1 02 1 43 14 3.4 24
+£( s s s 202 20
213 4 2 4 2 31 2 1 3
2Q3)
+_———
1 4
Ll 2 13
+—g( +...(24terms))]
41\3" 4
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g 1><2 1 ><3
= + +...(24terms)| = — . 6.111
4! (3 4 2 4 ( )) s X - ( )

We see, indeed, that only the connected diagram survives™.
Finally, let us briefly consider the n-point function. It is

T(Xy, .oy Xp) = L At . (6.112)
i" 0J(xq) ... 0J(x,) ly=0
We then define the irreducible n-point function ¢(xy, . .., x,) by
1 O"W[J
PLxrs - oo Xn) = ] : (6.113)
i 8J(x1) ... 0J(x,) li=0

To justify the name, note that we have, from (6.100) and (6.111),

w(xy, ..., xg) = —ig X —3ig = (6.114)
ig(xy, ..., xq) = —ig X |

and from (6.110)

ip(xy, ..oy xq) = T(xy, - .o, Xg) = T(xq, X2)T(x3, Xg)
- T(X], X3)'L'(X2, X4) - r(xla X4)‘L'(X2, X3).

We have, however, 7(x;, x2) = i¢(x1, x3), SO
T(xy, o ooy Xg) =1P(x1, - o oy Xg) — D P(xs, Xi) (x4, X5, (6.115)
p

where D » stands for the sum over all possible partitions of the indices (1 . . . 4)
into classes (i, iy)(i3, i4). Equation (6.115) is now the same as (6.114). The
4-point function is decomposed into an ‘irreducible’ (or ‘connected’) part
and reducible parts and , in which, in general, a subset of
the incident particles scatters into a subset of the final particles, quite inde-
pendently of the rest. For the 4-point function we have,

% = % irred. + . (6.116)

which gives, to first order in g,

>@< - >< . s T o (6117

* For a more general proof that W[J] generates only connected diagrams, see J. Zinn-Justin, (1997), section
6.1.1. I am grateful to Dr B. Sheikholeslami-Sabzevari for bringing this reference to my attention.
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This generalises to n-point functions, for example

%%é . e 1

irred.

6.7 Fermions and functional methods

We saw in §4.3 that there is a connection between spin and statistics, so that
fermion fields obey the anticommutation relations

{9, Y(3)omyo = 0.

(Actually, the restriction x* = y? is unnecessary; the fields anticommute at all
times.) In the canonical approach to field theory, y(x) are regarded as
operators, so we deal with a set of anticommuting operators. In the functional
approach, however, the generating functional for the Green’s functions is
written as a functional integral over the fields, which are regarded as classical
functions: c-numbers. To extend functional methods to Fermi fields, therefore,
demands that, in the functional integral, they are regarded as anticommuting
c-numbers. To most physicists this notion is strange, if not contradictory, but in
the mathematical literature it goes back to 1855, where it appears in a paper by
Hermann Grassmann on linear algebra. The generators C; of an n-dimensional
Grassmann algebra obey

where i, j = 1,2, ..., n. In particular,
Cc?=0. (6.120)

The expansion of a function contains only a finite number of terms; for
example, for two variables

f(Cr. ) = ag + a;C, + a,C, + a3C1 G
=ay+ a,C, + a,C, — a3C,C

where ay, . .., a3 are ordinary c-numbers. There are no terms in C%CZ, etc.
because of (6.120). We may define differentiation as lefr differentiation, so
that, for example, operating on the function above

L
; ! Ll (6.121a)
__i = a_f =a, — a3C1
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Of course, it would also be possible to define it as right differentiation
— =qa; — a;C,, (6.121b)
but I shall usually choose differentiation to mean left differentiation. Note that
of
C =qa,C; + a3C,C
13 c. 11 3616,

Cif = agCy + a,C1 Gy

i(le) =ay + a,C,,

aC,;
hence
3 3
—+ —C|f =
( 3¢, ac l)f ¢
or
1__8_ + __a_Cl =
aC; aC
as an operator identity. In general we have
{c,- 3 }=a,-,-, {—i 2 }=o; (6.122)
oG oC; 3¢

the second identity is one which the reader will have no problem in verifying.
We now need to define integration with respect to Grassmann variables. We
clearly need the infinitesimals dC; to be Grassmann quantities, so that

(G, dC} =0,
{dG;, dd-} = 0.} (6.123)

Multiple integrals are to be interpreted as iterated, so for example

[acidcrc, ey =[ac [ [acarcc. cz>].

What are [dC, and [C; dC;? We have

Udcl)2 = fdcljdcz

= f dC,dC,

= —ijgdCl

).
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hence
qu:fdcz:o.
Since there is no other scale to Grassmann variables, we are free to define
fdclc1 =1, etc.
In the n-dimensional case these last two equations become
fdc,- =0, de,C,- =1. (6.124)

(there is no summation over i in the second equation.) Referring to the
function f(Cy, C,) above, we then have

fdclf = fdcl[a0 +a,C, + a,Cy + a3C,Cy]

= a(,fdc1 + alfdclc1 - azczfdc1 + a3C2de1C1

= a; + a;C,.

From (6.121a) we see that differentiation and integration give the same result!
Now let 77 and 7 be independent (complex) Grassmann quantities, so that

fdr]=fdf7=0, fdnn=fdﬁr‘]=1.
Because 7> = 77 = 0, we have
e M=1-1n
and hence

fdﬁdne""” = jdﬁdn - jdﬁdnrm

=0+ fdﬁdnm']
=1,

We now look for the generalisation of this formula to higher dimensions: let us
consider the 2-dimensional case,

= () =3

The exponent 7n (which should properly be written 7’7, where T stands for
transpose) is ‘ '

nm=mm + hmn
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SO
() = (m + m)(m + hm)
= Mmin + hhinm
= 20
and higher powers of #jn are zero, so we have
e™M=1=(m + M) + Iimiam.

Applying the integration rules above, and defining d#7 dy = d7, dn- d7, dy,, we
then see that )
fdﬁdﬂ e M= deh dij dny dmpimipn,

=1, (6.125)

as in the 1-dimensional case.
Now let us change variables, putting

n=Ma, n=Na (6.126)

where M and N are 2 X 2 matrices, and « and & are the new independent
Grassmann quantities. We have

mm = (Mua; + Mpay)(Mya; + Mpay)
=(MyMy — MpMy)aa;
= (det M) o av;.
However, in order to preserve the integration rules
Jdﬂl d’?z’h’)ﬁ = fdal deyay oy
we must require
dn,dn, = (det M) 'da, dar, (6.127)

in contrast to the normal rule for a change of variable. Substituting (6.126) into
(6.125), and remembering (6.127), we now have

(det MN)™! f dadae V™M = 1

But since det MN = det MT N, this gives, putting MTN = A,
f da@dae 4% = det A. (6.128)

This formula, or rather its generalisation to the infinite-dimensional case, will
be used in the next chapter, in finding the Feynman rules for gauge fields.
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To describe Fermi fields, we now make the transition to an infinite-dimen-
sional Grassmann algebra, whose generators may be denoted C(x). They obey
the relations

{C(x), C(y)} =0,

aLARc(x) _
SC(y)

de(x) =0 J’C(x)dC(x) =1.

o(x — y), (6.129)

Integrals like (6.128) then become functional integrals over complex Grass-
mann variables. As in the case of scalar fields, we shall treat these formulae
with the confidence that, one day, a rigorous mathematical justification for
them will be found. In this spirit, we write down an expression for the
generating functional for free Dirac fields, by analogy with our treatment of
scalar fields — see equation (6.1). Since the Lagrangian for the Dirac field is

L= i{[)‘yyayw - ””7”/},

the normalised generating functional for free Dirac fields is
_ 1 (= (r=r g
Zo[n, 1] = ﬁf@tﬁ@wew {1f[w(x)(ly "3 = m)y(x)

+ 7(x)p(x) + 17)()6)77(36)]6195} (6.130)

where the integral over x is 4-dimensional, and
N = j@ﬁ@wexp [if@(x)(iyea - m)w(x)dx]. (6.131)

Here #j(x) represents the source term for (x), and n(x) the source for (x). It
is now our aim to express this in a form analogous to equation (6.13), so that
we can perform functional differentiation, and calculate Green’s functions and
S-matrix elements. To simplify the appearance of the formulae, we define the
operator S~

St =iy*3, — m. (6.132)
Then
o1 (= o= on -
Zaln, 1) = — [P pexp [1 @7+ + gdx| (6.133)
Putting
Oy, ) = S~y + Ay + ym,

we now find the value of y which minimises Q. It is
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Y = =81, @m =-7S

(where we have assumed that S~! possesses an inverse; it will be shown below
that it does), and the minimum value of Q is

Qm = Q(wm’ J’m) = ‘775'7
We then have

Q=0n,+ (11-0 - 1—»[}m)s_l(w = Ym)

and
Zy= %j%@wexp {ij[Qm + (V= ¥)STH (W = Yn)] dx}
- %exp[—ifﬁ(x)Sn(y)dx dy] det (—iS™1).
In the last step, ¢/9” has been placed outside the integral, since Q,, does not

depend on v or 1, and equation (6.128) has been used, duly extended to the
functional case. Moreover, it is clear that N = det(—iS™!), so, finally,

Zo[n, 1] = exp [—ifﬁ(X)S(x = y)n(y) dx dy]- (6.134)
It is easy to show that S exists. It is given by
S(x) = (iy-3 + m)Ap(x) (6.135)

where Ag(x) is the Feynman propagator. With equation (6.132) we have
SIS = (iy- 9 — m)(iy-3 + m)Ag(x)
= (-0 = m?)Ap(x)
= &*(x).

We may now find the free propagator for the Dirac field. By analogy with
equation (6.50), it is defined by

— 6220[77’ 7-7]
) = )0R0y) n=n-o
8 8 s ~
= o0 exp{ 1fn(x>5(x y)n(y)dxdy} .
=iS(x — y). (6.136)

Let us summarise our formulae for the free propagators of scalar and spinor
fields. For scalar fields, with Lagrangian (up to a total divergence)

Lo = 33,939 — ym*¢* = —1¢(0 + m)o
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we found the 2-point function

w(x, y) = iAp(x = y) (6.52)
where the Feynman propagator Ag obeys
(@ + m)Ap(x = y) = =&'(x — ). (6.10)

For spinor fields, the Lagrangian is (see (6.132))
$o = iyYy"3,y — myy = yYS~ly
and the 2-point function is i times the propagator

(x, y) =iS(x — y).

In each case, it is seen that the propagator is the inverse of the operator
appearing in the quadratic term in the Lagrangian. (The factor % in the scalar
Lagrangian is immaterial, and appears because ¢ is real; for complex ¢, it is
absent.) It is possible to take this as a definition of a propagator, and this is
what we shall do when we consider gauge fields.

Finally, it will be convenient here to point out a further consequence of fields
obeying Fermi statistics. It follows from the relation obeyed by the differential
operators for the Grassmann fields. By a generalisation of (6.123), we have

& &
on(x)én(y) on(y)om(x)

where 7 is a fermion source, and the operation of differentiation refers to
either left or right differentiation. For left differentiation we have

6

om(x1)
What we want to show is that these rules result in a factor of —1 for each
closed fermion loop in a Feynman diagram. For example, a spinor field
coupled to a scalar field will give a correction to the free scalar propagator
shown in Fig. 6.5, which contains a closed fermion loop and two interaction
vertices. The appropriate 2-point function will be derived from the generating
functional with interactions included. By a generalisation of (6.76), this will
take the form

(6.137)

[n()n(y)] = 6*(x1 = x)n(y) = 8*(x1 = y)n(x).

_ . 16 16 _
Z[rl, n] = exp [lfffint(;—é—n', -l-'—g’-_?—) dX] ZO[YI, 77] (6138)

Fig. 6.5. Modification to the scalar field propagator by a closed fermion loop.
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with Z given by (6.134). The third term in its expansion is

—%fdx dy dx’ dy'7(x)S(x = y)n(»)AG)S(x" = y)n(y")-

The loop in Fig. 6.5 will contribute a term of the form
& &
6m;(2)0m;(z) OMi(z")om(z’)

(i, j, k and I are spinor indices). On substituting (6.138) for Z[n, 7j] and
applying (6.137), this term is seen to be

+ Su(z — 2)8k(z" — 2).

The overall sign would be — if the fields obeyed Bose statistics, hence the —1
factor for the fermion loop.

Z[n, 7]

6.8 The S matrix and reduction formula

We have seen how to calculate the Green’s functions for an interacting theory,
but we now want to calculate quantities which we measure directly in experi-
ments. The commonest types of process which concern the elementary particle
physicist are firstly scattering processes, in which a cross section for a particular
reaction is measured, and secondly a decay of one particle into two or more, in
which a partial lifetime is measured. The calculation of both these quantities.
the cross section and the lifetime, is carried out by first calculating the quantum
mechanical amplitude that the process takes place. Once we have the am-
plitude, the rest of the calculation is fairly straightforward. In this section we
show how to calculate the amplitude, which we call the scattering amplitude,
and show how a particular scattering amplitude is related by a simple formula
to a corresponding Green’s function. We apply this to the case of the
pion—nucleon interaction, and in the next section show how to obtain the
scattering cross section. Let us consider, quite generally, a process in which an
initial configuration of particles o ends up as a final configuration . We
denote the scattering amplitude for this Sg,, and call it the (Ba) 'matrix
element’ of the scattering matrix or § matrix. § is the collection of all Sg,. The
states « and [ are defined asymptotically. at times t— —x and t—
respectively, so we define

Sga = (B, t > ®|a, 1 — —0). (6.139)
In the absence of interactions with long-range forces, these asymptotic states
consist of free particles, which is a great simplification. Long-range inter-

actions, like electromagnetism, bring complications which we prefer to leave
aside. An alternative notation is to define the "in’ and ‘out’ states

|a/>in = |C(, - _°°>’ |ﬂ>0ut = Iﬁ’ - °°>-



