1. Introduction

1.1 The Early Days of Dual Models

In 1900, in the course of trying to fit to experimental data, Planck wrote
down his celebrated formula for black body radiation. It does not usually
happen in physics that an experimental curve is directly related to the
fundamentals of a theory; normally they are related by a more or less
intricate chain of calculations. But black body radiation was a lucky
exception to this rule. In fitting to experimental curves, Planck wrote
down a formula that directly led, as we all know, to the concept of the
quantum.

In the 1960s, one of the mysteries in strong interaction physics was
the enormous proliferation of strongly interacting particles or hadrons.
HNadronic resonances seemed to exist with rather high spin, the mass
squared of the lightest particle of spin J being roughly m2 = J/d/, where
o' ~ 1(GeV)™? is a constant that became known as the Regge slope.
Such behavior was tested up to about J = 11/2, and it seemed conceiv-
able that it might continue indefinitely. One reason that the proliferation
of strongly interacting particles was surprising was that the behavior of
the weak and electromagnetic interactions was quite different; there are,
comparatively speaking, just a few low mass particles known that do not
have strong interactions.

The resonances were 50 numerous that it was not plausible that they
were all fundamental. In any case consistent theories of fundamental
particles of high spin were not known to exist. Consistent (renormaliz-
able) quantum field theories seemed to be limited to spins zero, one-half,
and one, the known examples being abelian gauge theories and scalar
and Yukawa theories. That limitation on the possible spins in consis-
tent quantum ficld theory still secms valid today, though now we would
include Yang-Mills theory in the list of consistent theories for spin one.
The apparent limitation of consistent yuantum field theories to low spin
was compatible with the existence of a successful field-theory description
of the electrom>7netic interactions, in which the basic : - *icles have spin
one Lalf and sy  one, and was compatible at least w" tempts (which
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Figure 1.1. An elastic scattering process with incoming particles with momenta p,, p3
and ontgoing particles with momenta —ps,—p4 (we adopt the convention that the
labels refer to incoming momenta). Both s- and t-channel diagrams are indicated. In
field theory the amplitude is constructed as a sum of s-channel and ¢-channel diagrams.

in time succeeded) at field theories of the weak interactions. But a similar
approach to strong interactions did not appear promising.

A related puzzle about strong interactions concerned the high-energy
behavior of the scattering amplitudes. Consider an elastic scattering pro-
cess with incoming spinless particles of momenta p1, p2 and outgoing parti-
cles of momenta p3, py. We adopt a metric with signature {— + +...+},
so that the mass squared of a particle is m®> = —p?. The conventional
Mandelstam variables are defined as

s=—(p+m), t=—(p2+m)? u=-(pm+p). (L11)

They obey the one identity s+t+u = 3 m}. We assume that the external
states in fig. 1.1 arc particles such as pions that transform in the adjoint
representation of the flavor group, which for three flavors is SU(3) or
U(3). The flavor quantum numbers of the ith external meson are specified
by picking a flavor matrix A;. We will discuss a term in the scattering
amplitude proportional to the group-theory factor tr(AjA2A3A4). Since
this group-theory factor is invariant under the cyclic permutation 1234 —
2341, Bose statistics require that the corresponding amplitude should be
cyclically symmetric under p1papsps — p2p3pap1. In terms of Mandelstam
variables, this permutation of momenta amounts to s « t, which is the
symnietry we will require for the amplitude A(s, ).

In quantum field theory, the leading nontrivial contributions to the
scattering amplitude come from the tree diagrams of fig. 1.1. The basic
reason that it is difficult to construct sensible quantum field theories of
particles of high spin is that tree diagrams with the exchange of high spin
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particles have bad high-energy behavior. Asymptotically, they exceed
unitarity bounds. Consider, for instance, the t-channel diagram. Denote
the external particles in fig. 1.1 as ¢ and the exchanged particle as . If &
has spin zero fig. 1.1 may involve a simple ¢*¢o interaction; the amplitude
is then simply A(s,t) = —g?/(t — M?) with g being the coupling constant
and M the mass of the o particle. This amplitude vanishes for ¢ — oo,
this being one aspect of the excellent high-energy behavior of the cubic
scalar interaction we are discussing,

Figure 1.2. A one-loop diagram can be made by sewing together two tree diagrams,
as indicated here.

Suppose instead that the sigma particle is a spin J field o, ,,...,,. For
such a field, the cubic coupling in fig. 1.1 must then be something like

$*04,0py ... Oy, ¢ - o1#2-#3 In fig. 1.1 there are now 2J factors of
momenta. If the external particles are scalars then the contribution to
the scattering amplitude of the exchange in the ¢ channel of this spin J
particle has the form

g (=s)’

Aj(s,t) = — —Tr

(1.1.2)
at high energies! The behavior of this amplitude is therefore worse and
worse (more and more divergent) for larger and larger J. An objective
criterion for what is a ‘bad’ amplitude is to ask what will happen when we
sew together amplitudes like that of (1.1.2) to make loops, as in fig. 1.2.

* This is the behavior of the tree-level scattering amplitude in the asymptotic
region of large s, fixed {. The s’ behavior is easily found by contracting the
momenta that appear in the interaction vertices in fig. 1.1. The exact formula
(for moderate s) is more complicated, involving a Legendre polynomial P;(cos 6;)
(6: is the center-of-mass scattering angle in the ¢ channel). We prefer to write only
the high-energy behavior, which is transparent and adequale for onr pnrposes.



‘+ L. AIBUI VU BLLIL I

The one-loop integrand in n dimensions is roughly [ d*p A?/(p?)?, with
A being the tree amplitude of (1.1.2). In four dimensions such a loop
diagram is convergent for J < 1, has a potentially renormalizable loga-
rithmic divergence for J = 1, and has a nasty unrenormalizable divergence
for J > 1.

There are strongly interacting particles of various mass and spin that
might be exchanged in the ¢ channel, so we must think of a ¢-channel
amplitude of the general form

Als,t) = Z”’(‘;}, , (1.1.3)

where now we allow for the possibility that the couplings gy and masses
Mj of the exchanged particles may depend on J (and perhaps on other
quantum numbers that we do not indicate). Of course, one might take
the point of view that the strong interactions are so strong that a Born-
like approximation as in (1.1.3) is hopeless. But let us be optimists and
see how well we can do. What is the high-energy behavior of the sum in
(1.1.3)? If this is a finite sum, the high-energy behavior is simply deter-
mined by the hadron of largest J that contributes in (1.1.3). This is very
different from what is observed in nature; the actual high-energy behavior
of hadron scattering amplitndes is much softer than the behavior of any
individual term in (1.1.3). (In fact, Regge asymptotic behavior of the
type described in §1.1.2. is a reasonable approximation to experiment.)
On the other hand, it is not reasonable to think of (1.1.3) as a finite sum.
There certainly does not seem to be any such thing as a ‘hadron of highest
spin’. With (1.1.3) viewed as an infinite sum, it is certainly conceivable
that the whole sum might have a high-energy behavior better than the
behavior of any individual term in the series, just as the function e~* is
smaller for z — oo than any individual term in its power series expansion
e = En—o(—z)"/"!

Regarding (1.1.3) as an infinite sum has another consequence. In a phys-
ical process such as the elastic scattering of pions, we expect the t-channel
poles that appear in (1.1.3), but we also expect s-channel resonances or
in other words poles in the amplitude at certain values of s. In fact, the
cyclic symmetry that we discussed earlier requires that the coefficient of
tr(A1A2A3)4) in the scattering amplitude have both s- and ¢-channel poles
or neither. A finite sum (1.1.3) defines an amplitude A(s,t) that has no
s-channcl poles; for fixed ¢, (1.1.3) manifestly defines an entire function
of s, as long as there are only a finite number of ter  in the sum. It
is precisely for this reason that the perturbative expansion of ordinary
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quantum field theories satisfies crossing symmetry by including both s-
and t-channel diagrams. In the case of an infinite sum, things are differ-
ent. Though each term in (1.1.3) is an entire function of s, the infinite
sum might diverge at some finite values of s, giving poles in the s channel.
Thus, once we accept the fact that (1.1.3) is essentially an infinite series,
it is no longer obvious that s-channel terms must be inclnded separately;
they may be already implicit in (1.1.3).

Similar remarks could be made if we took as our starting point resonant
scattering or in other words contributions to scattering amplitudes with
s-channel poles. We would then construct an amplitude analogous to
(1.1.3) but with s-channel poles rather than t-channel poles:

Als,t) = Z 9’(_]:}: (1.14)

Symmetry under cyclic permutation of the external momenta requires that
the same masses and couplings appear in (1.1.4) as in (1.1.3). Studying
(1.1.4) we would again observe that a finite sum of the type in (1.1.4)
inevitably has a high-energy behavior much worse than the observed be-
havior of hadrons, but this is not inevitably true for an infinite sum of
this type. Furthermore, a finite sum (1.1.4) would certainly define (for
fixed s) an entire function of ¢, but this might not be true for an infinite
sim.

Pursuing these thoughts still furthier, one might imaginc that if the
couplings g7 and masses M are cunningly chosen, then the s-channel
and {-channel amplitudes A(s,t) and A'(s,f) might be equal. In this
case, the entire amplitude could be written as a sum over only s-channel
poles, as in (1.1.4), or as a sum over only {-chanuel poles, as in (1.1.3).
This would be a sharp contrast to the field-theory situation in which one
ordinarily needs a sum over both s- and t-channel poles.

Equality of the s- aud ¢-channel amplitudes was advocated around 1968
by Dolen, lorn and Schmid, who argued, on the basis of an approximate
evaluation of (1.1.3) and (1.1.4) (carried out with the help of experimen-
tal data), that the equality A(s,t) = A'(s,) was indeed approximately
obeyed for small values of 8 and ¢. This was called the ‘duality’ liypothesis,
the hypotlicsis that s- and ¢-channel diagrams give altcrnative or ‘dual’ de-
scriptions of the same physics. Is duality an approximation or a principle?
At first sight it looks well nigh impossible to choose the resonance masses
and couplinge  obey exactly the duality relation A(s,t) = A'(s,t). How-
cver, a way of doing this was found by Veneziano ir 'R, Veneziano
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simply postulated a formula for the scattering amplitude, namely

Als,t) = rl(,(_‘_"i‘z))r:‘:g;) (1.0.5)
Hlere T is the Euler gamma function,

I(u) = / t*1e~tat, (1.1.6)
0

and o(s) is the ‘Regge trajectory’, for which Veneziano postulated the
linear form a(s) = a(0) + a’s; o’ and a(0) are known in Regge-pole
theory as the Regge slope and the intercept, respectively.

1.1.1 The Veneziano Amplitude and Duality

It is not evident at first sight that the Veneziano amplitude obeys duality,
but we will now show that it does. First of all, we need to know something
about the gamma function. This function obeys the identity

I'(u + 1) = ul'(u). (1.1.7)
This is proved, starting from (1.1.6), by simple integration by parts:

dt
0 0

o0 d ©
T(u+41)=— [tt—etdt = u/t“-le“‘dt = ul'(u). (1.1.8)

It is evident from (1.1.6) that I'(1) = 1. If u is a positive integer, then
repeated use of (1.1.7) implics that

I'(u) = (u — 1. (1.1.9)

The integral representation of the I function in (1.1.6) is valid as long as
the real part of u is positive, and shows that I' has no singularities in this
part of the complex u plane. The recursion relation (1.1.7) can be used
to extend the domain of definition of I' and determine its singularities.
Writing (1.1.7) in the form

I(u) = r(—":ﬁ-l-)- (1.1.10)

gives a definition of the gamma function for Reu > -1, since the right
hizned side of (11 10) has already heen defined in that region  Feuatiou



