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by MICHAV.L ATIYAH 

To Ren~ Thorn on his 68th birthday. 

1. Introduction 

In recent years there has been a remarkable renaissance in the relation between 
Geometry and Physics. This relation involves the most advanced and sophisticated 
ideas on each side and appears to be extremely deep. The traditional links between 
the two subjects, as embodied for example in Einstein's Theory of General Relativity 
or in Maxwell's Equations for Electro-Magnetism are concerned essentially with classical 
fields of force, governed by differential equations, and their geometrical interpretation. 
The new feature of present developments is that links are being established between 
quantum physics and topology. It  is no longer the purely local aspects that are involved 
but their global counterparts. In  a very general sense this should not be too surprising. 
Both quantum theory and topology are characterized by discrete phenomena emerging 
from a continuous background. However, the realization that this vague philosophical 
view-point could be translated into reasonably precise and significant mathematical 
statements is mainly due to the efforts of Edward Witten who, in a variety of directions, 
has shown the insight that can be derived by examining the topological aspects of quantum 
field theories. 

The best starting point is undoubtedly Witten's paper [11] where he explained 
the geometric meaning of super-symmetry. I t  is well-known that the quantum Hamil- 
tonian corresponding to a classical particle moving on a Riemannian manifold is just 
the Laplace-Beltrami operator. Witten pointed out that, for super-symmetric quantum 
mechanics, the Hamiltonian is just the Hodge-Laplacian. In this super-symmetric theory 
differential forms are bosons or fermions depending on the parity of their degrees. Witten 
went on to introduce a modified Hodge-Laplacian, depending on a real-valued function f .  
He was then able to derive the Morse theory (relating critical points o f f  to the Betti 
numbers of the manifold) by using the standard limiting procedures relating the quantum 
and classical theories. 
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With this model of super-symmetric quantum mechanics rigorously understood, 
Witten then went on to outline the corresponding ideas for super-symmetric quantum 
field theories. Essentially such quantum field theories should be viewed as the differential 
geometry of certain infinite-dimensional manifolds, including the associated analysis 
(e.g. Hodge theory) and topology (e.g. Betti numbers). 

Great caution has of course to be used in such infinite-dimensional situations 
but, taking one's cue from physics on the one hand and topology on the other hand, 
it is possible to make intelligent guesses and conjectures. There is now ample evidence 
in favour of many of these conjectures, a number of which have been rigorously esta- 
blished by alternative methods. This applies for example to results concerning " elliptic 
cohomology " [17] and to the topic I shall discuss in detail in this paper. 

Perhaps a few further comments should be made to reassure the sceptical reader. 
The quantum field theories of interest are inherently non-linear, but the non-linearities 
have a natural origin, e.g. coming from non-abelian Lie groups. Moreover there is 
usually some scaling or coupling parameter  in the theory which in the limit relates to 
the classical theory. Fundamental  topological aspects of  such a quantum field theory 
should be independent of the parameters and it is therefore reasonable to expect them 
to be computable (in some sense) by examining the classical limit. This means that 
such topological information is essentially robust and should be independent of the 
fine analytical details (and difficulties) of the full quantum theory. That  is why it is 
not unreasonable to expect to understand these topological aspects before the quantum 
field theories have been shown to exist as rigorous mathematical structures. In fact, it 
may well be that such topological understanding is a necessary pre-requisite to building 
the analytical apparatus of the quantum theory. 

My comments so far have been of a conventional kind, indicating that there may 
be interesting topological aspects of  quantum field theories and that these should be 
important for the relevant physics. However, we can reverse the procedure and use 
these quantum field theories as a conceptual tool to suggest new mathematical results. 
It  is remarkable that tbSs reverse process appears to be extremely successful and has 
led to spectacular progress in our understanding of geometry in low dimensions. I t  is probably 
no accident that the usual quantum field theories can only be renormalized in (space- 
time) dimensions ~< 4, and tiffs is precisely the range in which difficult phenomena arise 
leading to deep and beautiful theories (e.g. the works of Thurston in 3 dimensions and 
Donaldson in 4 dimensions). 

I t  now seems clear that the way to investigate the subtleties of low-dimensional 
manifolds is to associate to them suitable infinite-dimensional manifolds (e.g. spaces 
of connections) and to study these by standard linear methods (homology, etc.). In 
other words we use quantum field theory as a refined tool to study low-dimensional 
manifolds. 

Now quantum field theories have, because of the difficulties involved in cons- 
tructing them, often been described axiomatically. This identifies their essential structural 
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features and postpones the question of their existence. We can apply the same approach, 
at the topological level, and this leads us to formulate axioms for topological quantum 

field theories. These axioms are considerably simpler than for a full blown theory and 
they have a certain naturality which makes them plausible objects of interest, independent  
of any physical interpretation. 

In  the next section I will therefore present a set of such axioms. Although I will 
make a few comments on the physical background and notation, these can be ignored 
and the axioms treated as a basis for a rigorous mathematical theory. 

In  the third section I will enumerate the examples of theories, satisfying such 
axioms, which are now known to exist. Much, though not all, of this has been rigorously 
established by one method or another. The history of these different theories is quite 
varied so it is certainly helpful to see them all as fitting into a common axiomatic 
framework. 

It  will be clear how much this whole subject rests on the ideas of Witten. In  
formulating the axiomatic framework in w 2, I have also been following Graeme Segal 
who produced a very similar approach to conformal field theories [10]. Finally it seems 
appropriate to point out the major role that cobordism plays in these theories. Thus Ren6 
Thom's most celebrated contribution to geometry has now a new and deeper relevance. 

2. Axioms for Topological  Quantum Field Theories  

Before embarking on the axioms it may be helpful to make a few comparisons 
with standard homology theories. We can describe such a thcory as a functor F from 
the category of topological spaces (or of  pairs of spaces) to the category say of A-modules, 
where A is some fixed ground ring (commutative, with 1, e.g. A = Z, lit or C). This 

functor satisfies various axioms including 

(i) a homotopy axiom, described geometrically by using " cylinders " X • I, 

(ii) an additive axiom asserting that, for disjoint sums, F(X 1 u X~) = F(Xx) �9 F(X2). 

Note that (ii) implies, for the empty set ~, 

(ii)' F(z) = O. 

The theories we shall describe will be somewhat similar, but with the following 
significant differences: 

a) they will be defined only for manifolds of a fixed dimension, 
b) the homotopy axiom is strengthened by replacing cylinders with general cobordisms, 
c) the additive axiom is replaced by a multiplicative axiom, and correspondingly the 

cmpty set has value A rather titan O. 

Physically b) is related to relativistic invariance while c) is indicative of the quantum 
nature of the theory. 

93 
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We come now to the promised axioms. A topological quantum field theory (Q.FT), 
in dimension d defined over a ground ring A, consists of  the following data: 

(A) A finitely generated A-module Z(Z) associated to each oriented closed smooth 
d-dimensional manifold Z, 

(B) An element Z(M) ~ Z(0M) associated to each oriented smooth (d + 1)-dimensional 
manifold (with boundary) M. 

These data are subject to the following axioms, which we state briefly and expand upon 
below: 

(1) Z is functorial with respect to orientation preserving diffeomorphisms of Z and M, 
(2) Z is involutory, i.e. Z(E')  = Z(E) ~ where E" is E with opposite orientation and Z(E) ~ 

denotes the dual module (see below), 
(3) Z is multiplicative. 

We now elaborate on the precise meaning of the axioms. (I) means first 
that an orientation preserving diffeomorphism f :  Z - +  Z' induces an isomorphism 
Z ( f )  : Z(Z) -+ Z(Z')  and that Z(gf)  = Z(g) Z ( f )  for g : Z'  ~ Z".  Also i f f  extends 
to an orientation preserving diffeomorphism M -+ M', with 0M = E, OM' = Z', then 
Z ( f )  takes Z(M) to Z(M') .  

The meaning of (2) is clear when A is afield in which case Z(Z) and Z(Z)" are 
dual vector spaces. This is the most important case and, for physical examples A = Cl 
(or perhaps R). However, there are interesting examples (see w 3) with A = Z. In this 
case the relation between Z(Z) and Z(Z')  is like that between integer homology and 
cohomology. The duality can be formalized by considering free chain complexes but 
we shall not pursue this in detail. Instead we shall take A to be afield and the case A = Z 
can essentially be replaced by the fields Q., zp. 

The multiplicative axiom (3) asserts first that, for disjoint unions, 

(3a) Z(Z 1 ~3 ~ )  = Z(Z1) | Z(Z,).  

Moreover if 0 M l = Z x t 3 Z s ,  aM z = E ~ U Z ~  and M = M  I U z . M ~  is the manifold 
obtained by glueing together the common Z3-component (see figure) 

M 

Z3 ! . . . . . . . . . .  
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then we require: 

(3b) Z(M) = ( Z ( M , ) ,  Z(M,)  ) 

where ( , ) denotes the natural pairing 

Z(X,) | Z(Z~) | Z(X,)" | Z(X,) -~ Z(X,) | Z(X,). 

Note that when X 3 = o so that M is the disjoint union of M t and M l then (3b) 
reduces to the obvious multiplicative requirement 

(3c) Z(M) = Z(M,)  | Z(Mz). 

Our  multiplicative axiom, involving (3b), is therefore a very strong axiom. I t  asserts 
that Z(M) can be computed (in many different ways) by " cutting M in ha l f "  along 

any X 3. 
An equivalent way of formulating (3b) is to decompose the boundary M into 

two components (possibly empty) so that 

OM = Z t u X0; 

then Z(M) e Z(Zo) ' |  Z(ZI) ----- Hom(Z(Xo), Z(Xl) ). We can therefore view any cobor- 

dism M between X 0 and Z~ as inducing a linear transformation 

Z(M) : Z(X0) -+ Z(Z,) .  

Axiom (3b) asserts that this is transitive when we compose bordisms. 
Note that the multiplicative axiom (3a) shows that when X = ~, the vector 

space Z(X) is idempotent. It is therefore zero or canonically isomorphic to the ground 
field A. To exclude thc trivial case we should then add a non-triviality axiom 

(4a) Z(~) = A (for ~ the empty #dimensional manifold). 

Similarly when M = ~ axiom (3b) shows that Z(~) e A is an idempotent. To exclude 

the trivial case Z(o) = 0 we impose 

(4b) Z(~) = 1 (for e the empty d + 1-dimensional manifold). 

Again the muhiplicative axiom in its cobordism guise clearly shows that, for a 

cylinder X • I, the element 

Z(E • I) e End(Z(Y.)) 

is an idempotent ~r and more generally it acts as the identity on the subspace of Z(Y.) 
spanned by all elements Z(M) with 0M = X. If  we replace Z(E) by its image under 
the idempotent ~r it is easy to see that the axioms are still satisfied. Moreover, this new 
theory contains essentially MI the interesting ins of  the old one since elements 

in the kernel of o play no real role. Thus it is reasonable to assume o = 1, i.e. to impose 

a further non-triviality axiom: 

(4c) Z(Y. • I) is the identity. 
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Let us now deduce a few elementary consequences of  our axioms. Apply axiom (1) 
with M ---- M' = Y. x I and 

F : M ~ M '  

a h o m o t o p y f  t of maps Y. --+ Y. We deduce the 

homotopy invariance of Z ( f )  : Z(Y 0 ~ Z(Y.). 

This implies therefore tb.at the group F(Z) of  components of the orientation preserving 

diffeomorphisms of Z acts on Z(E). 
Next let us note that when M is a closed (d + 1)-dimensional manifold so that 

aM -= r then 

Z(M) ~ Z(o) = A 

is a constant (element of  the ground field). Thus the theory produces in particular 
invariants of closed (d + l)-manifolds. Moreover if we cut M along Z into two parts M1, M2 

so that we get two vectors 

Z(M1) z(y,), 
Z(M,)  e Z(Z) ~ 

then, as a special case of the multiplicative axiom (3b), we get 

Z(M) = (Z (M1) ,  Z(M,)  ). 

Thus the invariant for a closed manifold can be computed in terms of such a decom- 

position. 
I f  we view Z(M),  for closed M, as a numerical invariant of  M, then for a manifold 

with boundary we should think of Z(M) E Z(aM) as a " relative " invariant. The whole 
theory is then concerned with these invariants and their formal properties. 

I f  we form the product manitbld Z X S x by identifying opposite ends of  the cylinder 

Z x I then our axioms imply that 

Z(Z • S 1) = Trace( Id[Z(Y.  • I)) 

= dim Z(Z • I). 

More generally let f :  E • E be an orientation preserving diffeomorphism, and identify 

opposite ends of Z x I by f l  This gives a manifold Z, I and our axioms imply 

Z(E~,) = Trace Z ( f )  

where Z ( f )  is the induced autornorphism of Z(Z).  
The observant reader will have noticed that our involutory axiom refers only 

to reversing the orientation of  the d-dimensional manifolds Z. Nothing has been said 

so far about  the effect of  orientation reversal on the (d § 1)-dimensional manifolds M. 

In particular our axioms give no relation as yet between the invariants Z(M) and Z (M ~ 

for closed manifolds. Such a relation may or may not exist depending on the theory 
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(as we shall see in w 3). However,  in many interesting cases there is such a relation. This 

depends on the additional assumption that our vector spaces Z(Z) have a non-degenerate 
hermitian structure (relative to a conjugation on A). This gives a natural isomorphism 

Z(S) "  ~ Z(X) 

where V denotes V with the conjugate action of A. We can now consider the extra 

hermitian axiom 

(5) Z(M')  = Z(M).  

I f  0M = Y~0 u Y~I so that Z(M) can be viewed as a linear transformation between 

hermitian vector spaces: 

Z(M) : Z(Xo) Z(Xl), 

then axiom (5) is equivalent to 

(5') Z(M')  is the adjoint of  Z(M).  

In particular for a closed manifold M (5) asserts that the numerical invariant Z(M) 

changes to its conjugate under orientation reversal. Unless all values are real (fixed by 
conjugation) then these invariants can " de t ec t  " orientation. 

Note that for a manifold IV[ with boundary ~ we can always form the double 
M u s M" which is a closed manifold. Axiom (5) shows that 

Z ( M  w z M ~ = I Z(M)I '  

where on the right we compute the norm in the hermitian (possibly indefinite) metric. 
These axioms can be modified in various important ways and this is necessary 

for many of the interesting examples. Let me briefly indicate the kind of  modification 

that can be incorporated. 

(1) the vector spaces Z(Z) may be mod 2 graded with appropriate signs then inserted, 

(2) the manifolds E, M may carry more structure, e.g. a spin structure, a framing or 

some distinguished homology classes, 

(3) one can consider a " relative " theory for a pair Xd_ , C Zn consisting of E and a 
submanifold X. This will have to couple together topological Q FTs in dimensions d 

and d -- r, 

(4) we might want to allow Z n to have a boundary: this is closely related to (3) above 

with r = 1. 

A more serious modification is 

(5) allow Z(Y.) to be infinite-dimensional. 

The axioms in this case certainly need significant changes. For example certain quantities 

become infinite (e.g. Z(Y~ • S 1) ~ dim Z(E)).  
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This list is not meant to be exhaustive particularly if we move away from requiring 

our Q F T  to be strictly topological. For example conformal field theories are clearly 
related to the ideas here (see w 3). 

So far in this section we have deliberately refrained from attempting to describe 
the physical interpretation or terminology (except for the acronym OFT) .  This was 
meant to emphasize the mathematical nature of  the presentation in order to encourage 
mathematicians to take these ideas seriously. However, we should now rectify the situation 
by briefly indicating the physical background. 

Z is meant to indicate the physical space (e.g. d = 3 for standard physics) and 
the extra dimension in Z x I is " imaginary " time. The space Z(Y.) is the Hilbert  
space of  the quantum theory and a physical theory, with a Hamiltonian H, will have 
an evolution operator e "a  or an " imaginary time " evolution operator e- ~a. The main 

feature of  topological Q FTs is that H = 0, which implies that there is no real dynamics 
or propagation, along the cylinder Y~ • I. However, there can be non-trivial " propa- 

gation " (or tunneling amplitudes) from E0 to Y'l through an intervening manifold M 
with 0M = Y'0 u Zx: this reflects the topology of M. 

I f  OM = Z, then the distinguished vector Z(M) in the Hilbert space Z(Z) is 
thought of as the vacuum state defined by M. For a closed manifold M the number  Z(M) 
is the vacuum-vacuum expectation value. In analogy with statistical mechanics it is 
also called the partition function. 

The reader may wonder how a theory with zero Hamiltonian can be sensibly 
formulated. The answer lies in the Feynman path-integral approach to QFT.  This 
incorporates relativistic invariance (which caters for general (d + 1)-dimensional " space- 
times ") and the theory is formally defined by writing down a suitable Lagrangian--a  
functional of the classical fields of the theory. A Lagrangian which involves only first 

derivatives in time formally leads to a zero Hamiltonian, but  the Lagrangian itself may 
have non-trivial features which relate it to the topology. 

For a fuller understanding of topological Q FTs from the physical view-point the 

reader should consult the papers of  Witten on the subject. 

3. Examples 

We shall list a number of interesting examples of topological QFTs in dimensions 
d~< 3. The description will inevitably be brief and it should be emphasized that there 
are many points that have yet to be fully investigated in some of these theories. Some 
parts exist in a fully rigorous mathematical sense while other parts have as yet only 
been treated formally. Nevertheless the general picture is very convincing and there 

seems little doubt  that the essential features are correct. 

Naturally the theories in general increase in difficulty with the dimension d. We 
shall begin with the apparently trivial case of d = 0 and progress up to d = 3. 
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( 3 0 )  = 0 

Space Z now consists of finitely many (say n) points. To a single point we must 
associate a vector space V ~-- Z (point), and to n points we associate the n-fold tensor 
product: V | = V | V | . . .  | V. The symmetric group S,  (diffeomorphisms of  n points) 
then acts on V | Thus the classical theory of representations of  S, appears as a basic 

ingrcdient in theories for d = 0. 
The question now arises as to the origin of the vector space V, the Hilbert  space 

of  the quantum theory. A standard way to get the quantum Hilbert  spacc is first to 
give a classical symplectic manifold (or phase space) and then to quantize this. In par- 
ticular an interesting class of examples arise from compact Lie groups G and their homo- 

geneous symplectic manifolds; thesc arc co-adjoint orbits, generically copies of  the flag 

manifold. I f  we take " in tegral"  orbits for which the symplectic structure comes from 
a line-bundle, then quantizing leads to thc irreducible representations V of G. This 

is the physical interpretation of  the Borcl-Wcil theorem which is usually formulated 
in algebraic-geometric language. The Lagrangian of these theories is the classical action 

(holonomy of the line-bundle). 
Thus topological QFTs with d = 0 arise naturally in relation to classical repre- 

sentation theory of  Lie groups and the symmetric group. In this low dimension there 
is no interesting topology, only quantum symmetries. 

( 3 . 1 )  d = 1 

There are two rather different types of  theory in tiffs dimension, both of  which 

are linked to the Lie group theories in dimension zero. We describe these in turn. 

a) Floer/Gromov theory 
Here the classical phase space consists of paths, in a compact  symplectic manifold X, 

with appropriate boundary conditions. To fit the formal framework we set up in w 2 
we should consider periodic boundary conditions given by closed loops in X. Holonomy 
round such loops, used in (3.0) as a Lagrangian, is now used to modify the Hamiltonian 
as in Witten I11]. For a closed surface M the invariant Z(M) of the theory is the number  
of  pseudo-kolomorphic maps M -~ X in the sense of Gromov [5] (e.g. they are ordinary 
holomorphic maps if X is a Kfi2der manifold). I f  this number  is infinite, i.e. if there are 
" moduli ", then we must fix further data  on M. This can be done by picking some 
points P~ and then looking at holomorphic maps f :  M --)- X with f(P~) constrained to 

lie on a fixed hyperplane. 
Witten [14] has written down the relevant Lagrangian for this theory. Floer [-3] 

has given a rigorous treatment, based on Witten's Morse theory ideas, for the case when 
the boundary conditions are not periodic but instead require the initial and end-points 

o f  paths to lie on two fixed Lagrangian sub-manifolds. This is a case when Z is an interval, 

rather than a circle, and is a modification of the type (4) above. The Floer theory is 

naturally Mod 2 graded and is defined over the integers. 



184 MICHAEL ATIYAH 

b) Itolomorphic Conformal Field Theories 

These are not strictly topological QFTs in our sense since they depend on a complex 
structure, and the Hilbert spaces are infinite-dimensional. However, they are closely 
related to topological QFTs. They have been axiomatized by G. B. Segal [10] and, 
as mentioned in w 1, his axioms motivated our version. 

There are conformal field theories related to compact Lie groups G in which 
the classical phase space consists of co-adjoint orbits of (a central extension of) the loop 
group LG. Q uantizing these produces the Hilbert spaces of the theory as irreducible 
(projective) representations of LG. The whole theory is very similar to that in (3.0). 
The group Diff+(S 1) now substitutes for the symmetric group and plays an important 
role (see [9] for details). The partition function in such theories depends on complex 
structures: it is not purely topological. 

( s . 2 )  d = Z 

There are a number  of similar theories in tiffs dimension. We begin with perhaps 
the most interesting and well-developed theory. 

a) ]ones/Witten theory [12] 

Here the classical phase space, associated to a closed surface ~, is the moduli space 
of flat G-bundles over Y~. The Lagrangian is an integer multiple of the Chern-Simons 
function of a G-connection on a 3-manifold (which has to be " framed "). The integer 
multiple k, called the level, is a parameter  of  the theory and k ~ oo gives the classical limit. 

This theory can be naturally coupled with the d = 0 theory to produce a "  relative " 
theory of the type indicated at the end of w 2. The details have been developed by Witten 
who shows that the partition function for a (framed) link in the 3-sphere is just the value 
of the Jones polynomials [8] for a suitable root of  unity. The theory can be defined over 
the relevant cyclotomic field. 

Instead of coupling the d = 2 theory to d = 0 we can couple it to the d = I 
conformal theory in b) above, by considering Riemann surfaces with. boundary. 

b) Casson theory 

Here th.e " Hi lbe r t "  spaces of the theory are essentially the homology of the moduli 
spaces of flat G-bundles over Y~ (whereas in the Jones/Witten theory one takes a holo- 
morphic analogue). The theory is rood 2 graded and the hermitian forms are indefinite 
(being given by Poincar~ duality). Witten has recently written down a Lagrangian 
for this Casson theory. The invariant Z, for homology 3-spheres is the original Casson 
invariant. The theory is defined over the integers. As yet there are details, related to 
the singularities of  the moduli-spaces, which have not been fully worked out. 

c) Johnson theory 
Recently D. Johnson [7] has developed a theory imitating Casson, but using 

Reidemeister torsion as an essential ingredient. Witten [16] has shown that Johnson's 
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theory can be explained as a topological Q FT for a Chern-Simons Lagrangian. However, 
the group involved is not a compact Lie group G but the semi-direct product IG of G 
with its Lie algebra (viewed simply as abelian group). The classical phase space is the 
moduli space of flat IG-bundles and is not compact, so that the Hilbert spaces of 
this theory are not finite-dimensional. Thus the partition function may sometimes be 
infinite. 

d) " Thurston " theory 

Witten has recently considered [15] a Chern-Simons theory for the non-compact 
group SL(2, C) in relation with gravitational theories in (2 + 1)-dimensions, and hence 
with hyperbolic 3-manifolds. This should make contact with Thurston's work in due 
course. The classical phase space is again the (non-compact) moduli space of flat 
SL(2, C) bundles over a surface 2;. The Hilbert spaces are again infinite-dimensional. 

Remark. m Moduli spaces of flat SL(2, C) bundles (and their generalizations) have 
been considered in a remarkable paper by N. J. Hitchin [6]. Hitchin shows that this 
moduli  space is naturally fibered by Abelian varieties and that the moduli space of flat 
SU(2)-bundles appears as a component of the most degenerate fibre. On the basis of 
Hitchin's paper it seems likely that all the theories described in this sub-section can, 
in a sense, be reduced to the abelian case. This is now being investigated and should 
have major consequences. 

(3.3) d -~ 3 (Floer/Donaldson theory) 

Donaldson [2] has defined integer invariants of smooth 4-manifolds by using 
moduli spaces of  SU(2)-instantons. These invariants are polynomials on the second 
homology. Thus we should consider 4-manifolds with extra data (consisting of an element 
of  the symmetric algebra of  H,).  Witten [13] has produced a super-symmetric Lagrangian 
which formally reproduces the Donaldson theory. Witten's formula can be understood 
as an infinite-dimensional analogue of the Gauss-Bonnet theorem (as I shall explain 
elsewhere). 

The Hamiltonian version of the theory has been developed by Floer [4] in terms 
of  the space of connections on a 3-manifold. Floer uses the Chern-Simons function (the 
Lagrangian of the Jones/Witten theory) to modify the Hamiltonian (see the remarks 
in (3.1) a)) .  The abelian groups he defines have a rood 2 grading. 

I have described this Floer/Donaldson theory at greater length in [1]. Here I 
just wish to emphasize that it formally fits some version of  the axioms of w 2 and that 
there is a Lagrangian formulation. 

This theory is defined over the integers. It doesno t  satisfy any axiom of type (5) 

of  w 2. The Donaldson invariants of  a 4-manifold with its two different orientations 

have no obvious relation to each other. Instantons and anti-instantons are quite different, 
particularly when the signature of the 4-manifold is non-zero. 

94 
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Witten [14] has also shown how one can couple the d = 3 and d = 1 theories 
together: this is quite analogous to the coupling between d = 2 and d = 0 in the Jones 

theory. 

C o n c l u s i o n .  - -  These examples, which have natural geometric origins, and cover 
many of the most interesting topics in low-dimensional geometry show that topological 
QFTs have real relevance to geometry. There are still many technical problems to 
be solved (e.g. the Casson invariant has so far only been treated for G = SU(2)) and 
there are many intriguing questions. For example the Chern-Simons function appears 

in both d = 2 and d ---- 3 theories, but  playing quite a different role each time. What  

is the significance of  this? 
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