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Motivation: Jacobian variety and theta functions

Let C be a smooth projective curve of genus g,

JC = {vector bundles E of rk(E) = 1, deg(E) = 0 on C}

Fix a κ0 ∈ Picg−1(C), we have theta divisor

θκ0 = {E ∈ JC |H0(C,E ⊗ κ0) 6= 0 } ⊂ JC

Let E be a universal line bundle on C × JC
π−→ JC , then

ΘJC := O(θκ0)k = detRπ(E ⊗ κ0)−k

H0(JC ,ΘJC ) is the so called space of theta functions of order k

dim H0(JC ,ΘJC ) = kg
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Motivation: Moduli spaces and generalized theta functions

A. Weil observed: JC ∼= Hom(π1(C), U(1)), suggested to study

Hom(π1(C), U(r))

(Mumford, Narasimhan-Seshadri): On Hom(π1(C), U(r)), there is a
natural structure of projective variety UC , which is the moduli
spaces of semi-stable vector bundles of rank r and degree 0.

θκ0 = {E ∈ UC |H0(C,E ⊗ κ0) 6= 0 } ⊂ UC

ΘUC := O(θκ0)k = detRπ(E ⊗ κ0)−k.

A formula was predicted by Conformal Field Theory, when r = 2,

dim H0(UC ,ΘUC ) =

(
k

2

)g (k + 2

2

)g−1 k∑
i=0

1

(sin (i+1)π
k+2 )2g−2
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The moduli spaces: UC,ω = UC(r, d, ω)

C: projective curve of genus g ≥ 0 with at most one node

ω = (k, {~n(x),~a(x)}x∈I): a finite set I ⊂ C of smooth points,

~n(x) := (n1(x), n2(x), · · · , nlx+1(x))

~a(x) := (a1(x), a2(x), · · · , alx+1(x))

and an integer k > 0 such that

0 ≤ a1(x) < a2(x) < · · · < alx+1(x) ≤ k.

UC,ω: moduli space of semistable parabolic sheaves of rank r and
degree d on C with parabolic structures determined by ω
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The moduli spaces: Parabolic sheaves

A torsion free sheaf E has a parabolic structure of type ~n(x) and
weights ~a(x) at a smooth point x ∈ C, we mean a choice of

Ex = Qlx+1(E)x � · · · · · ·� Q1(E)x � Q0(E)x = 0

of fibre Ex with ni(x) = dim(ker{Qi(E)x � Qi−1(E)x}) and a
sequence of integers

0 ≤ a1(x) < a2(x) < · · · < alx+1(x) < k.

For any F ⊂ E, let Qi(E)Fx ⊂ Qi(E)x be the image of F ,

nFi (x) = dim(ker{Qi(E)Fx � Qi−1(E)Fx })

parχ(F ) := χ(F ) +
1

k

∑
x∈I

lx+1∑
i=1

ai(x)nFi (x).
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The moduli spaces: Semi-stability

E is called semistable (resp., stable) for ~a
k if for any nontrivial

subsheaf F ⊂ E such that E/F is torsion free, one has

parχ(F ) ≤ parχ(E)

r
· r(F ) (resp., <).

There exists a seminormal projective variety

UC,ω = UC(r, d, ω)

which is the coarse moduli space of s-equivalence classes of semistable
parabolic sheaves E of rank r and deg(E) = d with parabolic
structures of type {~n(x)}x∈I and weights {~a(x)}x∈I at points {x}x∈I .

If C is smooth, then it is normal, with only rational singularities.
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Generalized theta functions on UC,ω

There is an algebraic family of ample line bundles ΘUC, ω on UC,ω
(the so called Theta line bundles) when

` :=
kχ−

∑
x∈I
∑lx

i=1 di(x)ri(x)

r

is an integer, where

di(x) = ai+1(x)− ai(x)

ri(x) = n1(x) + · · ·+ ni(x).

H0(UC,ω,ΘUC, ω): The space of generalized theta functions. An
explicit formula of

Dg(r, d, ω) = dim H0(UC,ω,ΘUC, ω)

was predicted by Conformal Field Theory.

Xiaotao Sun (School of Mathematics, Tianjin University)A finite dimensional proof of the Verlinde formula 7 / 41



Verlinde formula: Dg(r, d, ω) =?

Dg(r, d, ω) = (−1)d(r−1)

(
k

r

)g
(r(r + k)r−1)g−1

∑
~v

exp
(

2πi
(
d
r −

|ω|
r(r+k)

)∑r
i=1 vi

)
Sω

(
exp 2πi ~v

r+k

)
∏
i<j

(
2 sin π

vi−vj
r+k

)2(g−1)

where ~v = (v1, v2, . . . , vr) runs through the integers

0 = vr < vr−1 < · · · < v2 < v1 < r + k.

For given ω = (k, {~n(x),~a(x)}x∈I), let λi = k − ai(x)

λx = (

n1(x)︷ ︸︸ ︷
λ1, . . . , λ1 ,

n2(x)︷ ︸︸ ︷
λ2, . . . , λ2 , . . . ,

nlx+1(x)︷ ︸︸ ︷
λlx+1, . . . , λlx+1 )

Let Sλx(z1, ..., zr) be Schur polynomial, |λx| =
∑
λini(x),

Sω(z1, ..., zr) =
∏
x∈I

Sλx(z1, ..., zr), |ω| =
∑
x∈I
|λx|.
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Rational Conformal Field Theory (RCFT)

Let Λ be a finite set with an involution λ 7→ λ∗, a RCFT is a functor:

(C,−→p ;
−→
λ ) 7→ VC(−→p ;

−→
λ )

where −→p = (p1, . . . , pn), pi ∈ C,
−→
λ = (λ1, . . . , λn), satisfies axioms:

A0: VP1(∅) = C, A1: VC(−→p ;
−→
λ ) ∼= VC(−→p ;

−→
λ ∗)

A2: Let (C,−→p ;
−→
λ ) = (C ′,−→p ′;

−→
λ ′) t (C ′′,−→p ′′;

−→
λ ′′). Then

VC(−→p ;
−→
λ ) = VC′(

−→p ′;
−→
λ ′)⊗ VC′′(−→p ′′;

−→
λ ′′)

A3: For a family {Ct,−→pt ;
−→
λ }t∈4, there are canonical isomorphisms

VCt(
−→pt ;
−→
λ ) ∼= VC0(−→p0;

−→
λ )

A4: If C0 has a node x, π−1(x) = {x1, x2}, π : C̃0 → C0. Then

VCt(
−→pt ;
−→
λ ) ∼=

⊕
ν

V
C̃0

(−→p0, x1, x2;
−→
λ , ν, ν∗)
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The fusion rules

dimVC(−→p ;
−→
λ ) depends only on g = g(C) and

(λ1, ..., λn) := λ1 + · · ·+ λn.

N(Λ) := {x = λ1 + · · ·+ λn |n ≥ 0, λi ∈ Λ },

Ng : N(Λ) → N, Ng(x) := dimCVC(−→p ;
−→
λ ).

Ng(x) =
∑

λ∈ΛNg−1(x+ λ+ λ∗)

N0(0) = 1

N0(x) = N0(x∗) (∀ x ∈ N(Λ))

N0(x+ y) =
∑

λ∈ΛN0(x+ λ)N0(y + λ∗) ( ∀ x, y ∈ N(Λ)).
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The fusion ring F and Verlinde formula

Let F = Z(Λ) be the free abelian group generated by Λ, define

λ · µ =
∑
ν∈Λ

N0(λ+ µ+ ν∗) · ν.

F is called the fusion ring associated to the RCFT,

Let Σ = {χ : F → C } be the set of characters of F . Then

dimVC(−→p ;
−→
λ ) =

∑
χ∈Σ

χ(λ1) · · ·χ(λn)

(∑
λ∈Λ

|χ(λ)|2
)g−1
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Tsuchiya-Ueno-Yamada (1989): WZW model

Wess-Zumino-Witten (WZW) model is associated to a simple
complex Lie algebra g and integer k > 0.

Given a simple Lie algebra g and integer k > 0, let Pk be the set of
dominant weight of level ≤ k, V−→

λ
:= Vλ1 ⊗ · · · ⊗ Vλn (λi ∈ Pk) and

VC(−→p ;
−→
λ ) := Homg⊗AC (Hk, V−→λ ), AC = OC(C − {q})

where Hk is the basic representation of level k of affine Lie algebra ĝ,
and g⊗AC ↪→ g⊗ C((z)) ⊂ ĝ is a Lie subalgebra of ĝ.

Tsuchiya-Ueno-Yamada (1989): Functor: (C,−→p ;
−→
λ ) 7→ VC(−→p ;

−→
λ )

satisfies the axioms A0 to A4.

The characters of its fusion ring Rk(g) are determined by
Beauville (for slr) and Faltings (for all the classical algebras and
G2).
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Moduli stack of G-bundles and double quotient

Let g = Lie(G), Ċ = C \ {q}, D = Spec(Ôq), Ḋ = D ∩ Ċ. Then
there is a bijective map of sets

G(O(Ċ))\G(O(Ḋ))/G(Ôq)
φ̄−→ BundG

X := G(O(Ḋ))/G(Ôq) is called affine Grassmannian, which is a

inductive limit of generalized Schubert varieties {Xw |w ∈ W̃/W }.

There is an algebraic G-bundle P → C ×X, which defines the
morphism of stacks:

X = G(O(Ḋ))/G(Ôq)
φ−→ BundG

H0(BunG,ΘBunG) = H0(X,φ∗ΘBunG)Γ, Γ := G(O(Ċ)).
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WZW model and generalized theta functions

Beauville- Laszlo (1994): For g = slr(C), we have

VC(∅) ∼= H0(BunSL(r),ΘBunSL(r)
)

Faltings (1994): It is true for arbitrary simple Lie algebra g !

VC(∅) ∼= H0(BunG,ΘBunG)

BunG is the moduli stack of G-bundles on C.

Pauly (1996): For g = slr(C), when g ≥ 2, we have

VC(−→p ;
−→
λ ) ∼= H0(UOCC,ω,ΘUOCC, ω

)

where UOCC,ω is the moduli spaces of semi-stable parabolic bundles on
C with trivial determinant.
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Faltings: A proof for the Verlinde formula

The referee has asked me to remark that there are several
interpretations of the term ”Verlinde formula”.

One is equality of dimensions for spaces of global sections and their
analogues in conformal field theory, and this is proved here.

Another version is an explicit formula for these numbers. It follows
from the previous and from certain facts about integrable
representations of Kac-Moody Lie algebras.

According to experts these facts (Conjecture 5.1) are ”true” and
”known”, but I have not found any written proof.

D. Kazhdan has suggested to use the methods from [GK]
(Gelfand-Kazhdan: Examples of tensor categories, Invent. Math. 109
(1992), but I have not understood his argument.
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Faltings’s conjecture 5.1

Let T ⊂ G be maximal torus, g = Lie(G). ∀ γ ∈ T ,

χγ : Rk(g)→ C, E 7→ χγ(E) := TrE(γ).

Let W be the Weyl group, T reg ⊂ T be the set of elements where
W -action is free.

Conjecture 1 (Faltings)

All characters χ : Rk(g)→ C are of the form

χγ : Rk(g)→ C, E 7→ χγ(E) := TrE(γ)

where γ ∈ T reg/W .
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Finite-dimensional proofs: r = 2

Beauville: The basic distinction between the proofs using standard
algebraic geometry, which up to now work only in the case r = 2,
and proofs that use infinite-dimensional algebraic geometry to mimic
the heuristic approach of the physicists-these work for all r.

Compute χ(Θk
UC ): Bertram-Szenes, Zagier, Donaldson-Witten.

Thaddeus (1994): Stable pairs, linear systems and Verlinde formula
(Invent. Math. 117, 317-353).

Narasimhan-Ramadas (1993-1996): Factorization of generalized theta
functions I, II (Invent. Math., Topology): |I| > 0.

Daskalopoulos-Wentworth (1993-1996): An analytic proof when
g ≥ 2 (Math. Ann. (1993), (1996)): |I| > 0.
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Finite-dimensional proofs: r > 2

Jeffrey-Kirwan (1998): Intersection theory on SUC(r,L) (Ann. of
Math.): (r, d) = 1, |I| = 0.

Marian-Oprea (2007): Counts of maps to Grassmannians and
intersections on the moduli space of bundles (J. Diff. Geom.):
(r, d) = 1, |I| = 0.

Jeffrey (2001): The Verlinde formula for parabolic bundles (J. of the
LMS): (r, d) = 1, |I| > 0, weights {~a(x)}x∈I are very small !

Bismut-Labourie (1999): χ(ΘUC, ω) equals to the index of a Dirac
operator when k >> 0 (Surv. Differ. Geom. 5, 97–311).

E. Meinrenken: This result combined with recent vanishing results of
(C. Teleman, Ann.of Math.) gives a new proof of the Verlinde
formula when k is sufficiently large.
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Degeneration method

Degenerate Ct  C0 = X to a curve X with one node x0 ∈ X.

Need to prove: dimH0(UCt,ωt ,ΘUCt,ωt ) = dimH0(UX,ω,ΘUX,ω).

Let π : X̃ → X be the normalization, π−1(x0) = {x1, x2}.

Theorem 1 (Sun, 2000-2003, JAG and Ark. Mat.)

H0(UX,ω,ΘUX,ω) ∼=
⊕
µ

H0(U
X̃,ωµ

,ΘU
X̃,ωµ

)

H0(UX1∪X2,ω1∪ω2 ,ΘUX1∪X2,ω1∪ω2
)

∼=
⊕
µ

H0(UX1,ω
µ
1
,ΘU

X1,ω
µ
1

)⊗H0(UX2,ω
µ
2
,ΘU

X2,ω
µ
2

)

where µ = (µ1, · · · , µr) runs through 0 ≤ µr ≤ · · · ≤ µ1 < k.
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Vanishing Theorems

Theorem 2 (Sun, 2000, JAG)

If g(Ct) ≥ 2, then H1(UCt,ωt ,ΘUCt,ωt ) = 0.

If g(X) ≥ 3, then H1(UX,ω,ΘUX,ω) = 0.

Theorem 3 (Sun-Zhou, 2020, SCi. China)

For any ample line bundle L on UCt,ωt , one has

H i(UCt,ωt ,L) = 0 ∀ i > 0.

If X is irreducible, H1(UX,ω,ΘUX,ω) = 0.

If X is reducible, H1(UX,ω,L) = 0 for any ample line bundle L on
UX,ω.
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Recurrence relations of Dg(r, d, ω)

Theorem 4 (Sun–Zhou, 2020, Sci. China)

Let Wk = {λ = (λ1, ..., λr) | 0 = λr ≤ λr−1 ≤ · · · ≤ λ1 ≤ k } and

W ′k =

λ ∈Wk |

∑
x∈I1

lx∑
i=1

di(x)ri(x) +

r∑
i=1

λi

 ≡ 0(mod r)

 .

Then we have the following recurrence relation

Dg(r, d, ω) =
∑
µ

Dg−1(r, d, ωµ)

Dg(r, d, ω) =
∑
λ∈W ′k

Dg1(r, 0, ωλ1 ) ·Dg2(r, d, ωλ2 )

where µ = (µ1, · · · , µr) runs through 0 ≤ µr ≤ · · · ≤ µ1 < k and ωµ, ωλ1 ,
ωλ2 are explicitly determined by µ and λ.
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Proof of Dg(r, d, ω) = Vg(r, d, ω)

Vg(r, d, ω) := (−1)d(r−1)

(
k

r

)g
(r(r + k)r−1)g−1

∑
~v

exp
(

2πi
(
d
r −

|ω|
r(r+k)

)∑r
i=1 vi

)
Sω

(
exp 2πi ~v

r+k

)
∏
i<j

(
2 sin π

vi−vj
r+k

)2(g−1)

where ~v = (v1, v2, . . . , vr) runs through the integers

0 = vr < vr−1 < · · · < v2 < v1 < r + k.

Lemma 1

If D0(r, d, ω) = V0(r, d, ω) holds, then

Dg(r, d, ω) = Vg(r, d, ω)

holds.
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Proof of Dg(r, d, ω) = Vg(r, d, ω)

Proof.

Dg(r, d, ω) =
∑
µ

Dg−1(r, d, ωµ) =
∑
µ

Vg−1(r, d, ωµ)

where |ωµ| = |ω|+ k · r, Sωµ = Sω · Sµ · Sµ∗ and µ = (µ1, . . . , µr) runs
through the integers 0 ≤ µr ≤ · · · ≤ µ1 < k. Then it is enough to show∑

µ

Sµ

(
exp 2πi

~v

r + k

)
· Sµ∗

(
exp 2πi

~v

r + k

)

= exp

(
2πi

k

r + k

r∑
i=1

vi

)
k(r + k)r−1∏

i<j

(
2 sin π

vi−vj
r+k

)2 .

To prove it, we essentially use the fact:∑
g∈G

χV (g)χV (g) = |G|.
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Proof of D0(r, d, ω) = V0(r, d, ω)

Lemma 2

If D0(r, d, ω) = V0(r, d, ω) when |I| ≤ 3, then D0(r, d, ω) = V0(r, d, ω).

Let I = I1 ∪ I2 with |I1| = 2, we have

D0(r, d, ω) =
∑
µ∈Wk

V0(r, 0, ωµ1 ) · V0(r, d, ωµ2 ) =
(−1)d(r−1)

(r(r + k)r−1)2

∑
~v, ~v′

exp
(

2πi
(
− |ω1|
r(r+k)

)
|~v|
)

∏
i<j

(
2 sin π

vi−vj
r+k

)−2 ·
exp

(
2πi

(
d
r −

|ω2|
r(r+k)

)
|~v′|
)

∏
i<j

(
2 sin π

v′i−v′j
r+k

)−2 ·

Sω1

(
exp 2πi

~v

r + k

)
· Sω2

(
exp 2πi

~v′

r + k

)
·
∑
µ∈Wk

exp 2πi
−|µ| · |~v|
r(r + k)

exp 2πi
−|µ∗| · |~v′|
r(r + k)

· Sµ
(

exp 2πi
~v

r + k

)
· Sµ∗

(
exp 2πi

~v′

r + k

)
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Proof of D0(r, d, ω) = V0(r, d, ω)

When ~v = ~v′, we have∑
µ∈Wk

Sµ

(
exp 2πi

~v

r + k

)
· Sµ∗

(
exp 2πi

~v

r + k

)

= exp

(
2πi

k

r + k
|~v|
)
· r(r + k)r−1∏

i<j

(
2 sin π

vi−vj
r+k

)2

when ~v 6= ~v′, by using
∑

g∈G χV (g)χW (g) = 0, we have

∑
µ∈Wk

exp 2πi
−|µ| · |~v|
r(r + k)

· exp 2πi
−|µ∗| · |~v′|
r(r + k)

·

Sµ

(
exp 2πi

~v

r + k

)
· Sµ∗

(
exp 2πi

~v′

r + k

)
= 0.
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Computation of of V0(r, 0, {ωs, λy, λz})

Lemma 3

(1) When |I| = 0, V0(r, 0, {λx}x∈I) = 1;

(2) V0(r, 0, λx) = 1 if λx = λr(x)ωr and zero otherwise;

(3) V0(r, 0, {λx, λy}) = 1 if λx = λ∗y and zero otherwise;

(4) Let Y (λy, ωs) be the set of partitions its Young diagrams are obtained
from λ by adding s boxes with no two in the same row. Then

V0(r, 0, {ωs, λy, λz}) =

{
1 when λ∗z ∈ Y (λy, ωs)
0 when λ∗z /∈ Y (λy, ωs)

where ωs := (

s︷ ︸︸ ︷
1, . . . , 1 ,

r−s︷ ︸︸ ︷
0, . . . , 0 ) (1 ≤ s ≤ r).
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Computation of of D0(r, 0, {ωs, λy, λz})

Lemma 4

(1) When |I| = 0, UP1(r, 0, {λx}x∈I) consists one point;

(2) When |I| = 1, UP1(r, 0, λx) consists one point if λx = λr(x)ωr and is
empty otherwise;

(3) When |I| = 2, UP1(r, 0, {λx, λy}) consists one point if λx = λ∗y and is
empty otherwise;

(4) When |I| = 3, UP1(r, 0, {ωs, λy, λz}) (1 ≤ s ≤ r − 1) consists one
point if λ∗z ∈ Y (λy, ωs) and is empty otherwise.

Corollary 1

D0(r, 0, {λx}x∈I) = V0(r, 0, {λx}x∈I) when |I| ≤ 2, and

D0(r, 0, {ωs, λy, λz}) = V0(r, 0, {ωs, λy, λz}).
Xiaotao Sun (School of Mathematics, Tianjin University)A finite dimensional proof of the Verlinde formula 27 / 41



Proof of of D0(r, 0, {λx, λy, λz}) = V0(r, 0, {λx, λy, λz})

For any partition λ = (λ1, ..., λr), λ1 ≥ λ2 ≥ · · · ≥ λr, let

s(λ) = max{ i |λi − λi+1 > 0 }, m(λ) =

s(λ)∑
i=1

λi

and s(λ) = 0 if λ1 = λ2 = · · · = λr.

When s(λx) = 0, λx defines trivial parabolic structure at x ∈ I and
the proof reduces to the case of |I| = 2.

Thus we can assume s(λx) > 0 and will prove

D0(r, 0, {λx, λy, λz}) = V0(r, 0, {λx, λy, λz})

by induction of m(λx)− s(λx).
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Proof of of D0(r, 0, {λx, λy, λz}) = V0(r, 0, {λx, λy, λz})

When m(λx)− s(λx) = 0, λx must be ωs(λx) and we are done by
Corollary 1.

Assume D0(r, 0, {λx, λy, λz}) = V0(r, 0, {λx, λy, λz}) holds for any
λy and λz when m(λx)− s(λx) < N

For any λx with m(λx)− s(λx) = N , let λ′x = λx − ωs(λx)

D0(r, 0, {ωs(λx), λ
′
x, λy, λz})

=
∑

µ∗∈W ′k

D0(r, 0, {ωs(λx), λ
′
x, µ
∗}) ·D0(r, 0, {µ, λy, λz})

=
∑

µ∈Y (λ′x,ωs(λx))

D0(r, 0, {µ, λy, λz})

= D0(r, 0, {λx, λy, λz}) +
∑

µ∈Y (λ′x,ωs(λx))\{λx}

V0(r, 0, {µ, λy, λz}).
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Proof of of D0(r, 0, {λx, λy, λz}) = V0(r, 0, {λx, λy, λz})

D0(r, 0, {λx, λy, λz}) +
∑

µ∈Y (λ′x,ωs(λx))\{λx}

V0(r, 0, {µ, λy, λz})

= D0(r, 0, {ωs(λx), λ
′
x, λy, λz})

=
∑
µ∈W ′k

D0(r, 0, {ωs(λx), λy, µ}) ·D0(r, 0, {λ′x, λz, µ∗})

=
∑
µ∈W ′k

V0(r, 0, {ωs(λx), λy, µ}) · V0(r, 0, {λ′x, λz, µ∗})

= V0(r, 0, {ωs(λx), λ
′
x, λy, λz})

== V0(r, 0, {λx, λy, λz}) +
∑

µ∈Y (λ′x,ωs(λx))\{λx}

V0(r, 0, {µ, λy, λz}).

Thus we have

D0(r, 0, {λx, λy, λz}) = V0(r, 0, {λx, λy, λz}).
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Globally F-regular varieties

Let M be a variety over a perfect field k of char(k) = p > 0,

F : M →M

be the (absolute) Frobenius map and F e : M →M be the e-th
iterate of Frobenius map.

When M is normal, for any (weil) divisor D ∈ Div(M),

OM (D)(V ) = { f ∈ K(M) | divV (f) +D|V ≥ 0 }, ∀ V ⊂M

is a reflexive subsheaf of constant sheaf K = k(M)

Definition 1

A normal variety M over a perfect field is called stably Frobenius D-split if

OM → F e∗OM (D)

is split for some e > 0.
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Globally F-regular varieties: Projective case

Definition 2

A normal variety M over a perfect field is called globally F-regular if M is
stably Frobenius D-split for any effective divisor D.

Proposition 1

Let M be a projective variety over a perfect field. Then the following
statements are equivalent.

(1) M is normal and is stably Frobenius D-split for any effective D;

(2) M is stably Frobenius D-split for any effective Cartier D;

(3) For any ample line bundle L, the section ring of M

R(M,L) =

∞⊕
n=0

H0(M,Ln)

is strongly F-regular.
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Globally F-regular varieties: Theory of Characteristic 0

Definition 3

A variety M over a field of characteristic zero is said to be of globally
F-regular type if its ”modulo p reduction of M” are globally F-regular
for a dense set of p.

Proposition 2 (K. E. Smith)

Let M be a projective variety over a field of characteristic zero. If M is of
globally F-regular type, then we have

(1) M is normal, Cohen-Macaulay with rational singularities. If M is
Q-Gorenstein, then M has log terminal singularities.

(2) For any nef line bundle L on M , we have H i(M,L) = 0 when i > 0.
In particular, H i(M,OM ) = 0 whenever i > 0.
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Moduli spaces: globally F-regular type

Definition 4

Let C be a smooth projective curve, ω = (k, {~n(x),~a(x)}x∈I) and

det : UC,ω → JdC , E 7→ det(E).

For any L ∈ JdC , the fiber ULC, ω := det−1(L) is called moduli spaces of
semi-stable parabolic bundles with fixed determinant, which is normal
with at most rational singularities.

Theorem 5 (Sun-Zhou, 2020, Math. Ann.)

For any data ω, the moduli spaces ULC, ω is of globally F-regular type.

Corollary 2

For any ample line bundle L on UC,ω, we have H i(UC,ω,L) = 0, ∀ i > 0.
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Vanishing Theorem for node curve X

Definition 5

Let π : X̃ → X be the normalization of X, π−1(x0) = {x1, x2}. A
generalized parabolic sheaf (GPS) (E,Q) consist:

A parabolic sheaf E determined by ω = (r, d, {~n(x),~a(x)}x∈I , k),

A r-dimensional quotient Ex1 ⊕ Ex2
q−→ Q→ 0.

(E,Q) is semi-stable if ∀E′ ⊂ E, E/E′ torsion free outside {x1, x2}

pardeg(E′)− dim(QE
′
) ≤ rk(E′)

pardeg(E)− dim(Q)

r
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Normalization of UX,ω: The moduli space P

P = { semi-stable GPS (E,Q) = (E,Ex1 ⊕ Ex2 → Q→ 0) }, which
is called moduli space of GPS (generalized parabolic sheaf).

φ : P → UX,ω is defined by φ(E,Q) = F , where F is given by

0→ F → π∗E →x0 Q→ 0

φ : P → UX,ω is the normalization of UX,ω such that

φ∗ : H1(UX ,ΘUX ) ↪→ H1(P,ΘP).

There exist a flat morphism Det : P → Jd
X̃

, let

PL = Det−1(L).
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Globally F -regular type of PL

Theorem 6 (Sun-Zhou, 2020, Math. Ann.)

The moduli space PL of semi-stable generalized parabolic sheaves with
fixed determinant L is of globally F -regular type.

Corollary 3

H i(PL,L) = 0 for any i > 0 and nef line bundles L on PL and

H i(P,ΘP) = 0 ∀ i > 0.

Corollary 4

Let X be a projective curve with at most one node and UX,ω be the
moduli space of parabolic sheaves on X with any given data ω. Then

H1(UX,ω,ΘUX,ω) = 0.
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Sketch of Proof: When |I| is large enough

Recall R̃′I := R̃′ = Grassr(F̃x1 ⊕ F̃x2)→ R̃I = ×x∈IFlag~n(x)(F̃x),

PL = R̃ssI,ω//SL(V ) is determined by ω = (r, d, {~n(x),~a(x)}x∈I , k).

Proposition 3 (Sun, 2000, JAG)

There is ωc such that PLωc = R̃ssI,ωc//SL(V ) is a Fano variety with only

rational singularities (thus F-split type) if (r − 1)(g − 1) + |I|
2r ≥ 2.

Proposition 4 (Sun, 2000, JAG)

For any ω = (r, d, I, {~n(x),~a(x)}x∈I , k), we have

(1) codim(R̃′I \ R̃′ssI,ω) > (r − 1)(g − 1) + |I|
k ,

(2) codim(R̃′ssI,ω \ {D
f
1 ∪ D

f
2} \ R̃′sI,ω) ≥ (r − 1)(g − 1) + |I|

k .

Let Ũ = R′ssI,ω ∩ R̃′ssI,ωc , then codim(R̃′ssI,ω \ Ũ) ≥ 2.
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Sketch of Proof: Increase the number |I|

Add extra parabolic points x ∈ J ⊂ X̃, the projection

pI : R̃′I∪J → R̃′I

is SL(V )-invariant. Choose |J | such that (r − 1)(g − 1) + |I∪J |
k+2r ≥ 2.

Choose the canonical weight ωc on R̃′I∪J , consider

p−1
I (R̃′ssI, ω) ⊃ Ũ = p−1

I (R̃′ssI,ω) ∩ R̃′ssI∪J, ωc → P
L
ωc .

Then p−1
I (R̃′ssI, ω) \ Ũ = p−1

I (R̃′ssI, ω) ∩ (R̃′I∪J, ωc \ R̃
′ss
I∪J, ωc) has

codimension at least (r − 1)(g − 1) + |I∪J |
2r ≥ 2.

Let U ⊂ PLωc be the image of Ũ , then pI induces a morphism
f : U → PL such that f∗(OU ) = OPL .
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Problem and discussions

Definition 6

Let X be a scheme and Y ⊂ X a closed sub-scheme. The pair (X,Y )) is
called of compatible Frobenius split type if

X is of Frobenius split type

For almost p, there is a F-split ϕ : F∗OXp → OXp such that

ϕ(F∗IYp) ⊂ IYp .

Problem 1

Are the pairs (P,Dj(a)) (j = 1, 2), (D1(a),D1(a) ∩ D2 ∪ D1(a− 1)) of
compatible Frobenius split type ?

If the answer of above problem is Yes, then, for any ample line bundle
L on UX ,

H i(UX ,L) = 0 ∀ i > 0.
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Thanks �
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