A finite dimensional proof of the Verlinde formula

Xiaotao Sun
School of Mathematics, Tianjin University

Motivation: Jacobian variety and theta functions

- Let C be a smooth projective curve of genus g,

$$
J_{C}=\{\text { vector bundles } E \text { of } \operatorname{rk}(E)=1, \operatorname{deg}(E)=0 \text { on } C\}
$$

- Fix a $\kappa_{0} \in \operatorname{Pic}^{g-1}(C)$, we have theta divisor

$$
\theta_{\kappa_{0}}=\left\{E \in J_{C} \mid \mathrm{H}^{0}\left(C, E \otimes \kappa_{0}\right) \neq 0\right\} \subset J_{C}
$$

- Let \mathcal{E} be a universal line bundle on $C \times J_{C} \xrightarrow{\pi} J_{C}$, then

$$
\Theta_{J_{C}}:=\mathcal{O}\left(\theta_{\kappa_{0}}\right)^{k}=\operatorname{det} R \pi\left(\mathcal{E} \otimes \kappa_{0}\right)^{-k}
$$

- $\mathrm{H}^{0}\left(J_{C}, \Theta_{J_{C}}\right)$ is the so called space of theta functions of order k

$$
\operatorname{dim} \mathrm{H}^{0}\left(J_{C}, \Theta_{J_{C}}\right)=k^{g}
$$

Motivation: Moduli spaces and generalized theta functions

- A. Weil observed: $J_{C} \cong \operatorname{Hom}\left(\pi_{1}(C), U(1)\right)$, suggested to study

$$
\operatorname{Hom}\left(\pi_{1}(C), U(r)\right)
$$

- (Mumford, Narasimhan-Seshadri): On $\operatorname{Hom}\left(\pi_{1}(C), U(r)\right)$, there is a natural structure of projective variety \mathcal{U}_{C}, which is the moduli spaces of semi-stable vector bundles of rank r and degree 0 .

$$
\begin{gathered}
\theta_{\kappa_{0}}=\left\{E \in \mathcal{U}_{C} \mid \mathrm{H}^{0}\left(C, E \otimes \kappa_{0}\right) \neq 0\right\} \subset \mathcal{U}_{C} \\
\Theta_{\mathcal{U}_{C}}:=\mathcal{O}\left(\theta_{\kappa_{0}}\right)^{k}=\operatorname{det} R \pi\left(\mathcal{E} \otimes \kappa_{0}\right)^{-k}
\end{gathered}
$$

- A formula was predicted by Conformal Field Theory, when $r=2$,

$$
\operatorname{dim} \mathrm{H}^{0}\left(\mathcal{U}_{C}, \Theta_{\mathcal{U}_{C}}\right)=\left(\frac{k}{2}\right)^{g}\left(\frac{k+2}{2}\right)^{g-1} \sum_{i=0}^{k} \frac{1}{\left(\sin \frac{(i+1) \pi}{k+2}\right)^{2 g-2}}
$$

The moduli spaces: $\mathcal{U}_{C, \omega}=\mathcal{U}_{C}(r, d, \omega)$

- C : projective curve of genus $g \geq 0$ with at most one node
- $\omega=\left(k,\{\vec{n}(x), \vec{a}(x)\}_{x \in I}\right):$ a finite set $I \subset C$ of smooth points,

$$
\begin{aligned}
\vec{n}(x) & :=\left(n_{1}(x), n_{2}(x), \cdots, n_{l_{x}+1}(x)\right) \\
\vec{a}(x) & :=\left(a_{1}(x), a_{2}(x), \cdots, a_{l_{x}+1}(x)\right)
\end{aligned}
$$

and an integer $k>0$ such that

$$
0 \leq a_{1}(x)<a_{2}(x)<\cdots<a_{l_{x}+1}(x) \leq k .
$$

- $\mathcal{U}_{C, \omega}$: moduli space of semistable parabolic sheaves of rank r and degree d on C with parabolic structures determined by ω

The moduli spaces: Parabolic sheaves

- A torsion free sheaf E has a parabolic structure of type $\vec{n}(x)$ and weights $\vec{a}(x)$ at a smooth point $x \in C$, we mean a choice of

$$
E_{x}=Q_{l_{x}+1}(E)_{x} \rightarrow \cdots \cdots \rightarrow Q_{1}(E)_{x} \rightarrow Q_{0}(E)_{x}=0
$$

of fibre E_{x} with $n_{i}(x)=\operatorname{dim}\left(\operatorname{ker}\left\{Q_{i}(E)_{x} \rightarrow Q_{i-1}(E)_{x}\right\}\right)$ and a sequence of integers

$$
0 \leq a_{1}(x)<a_{2}(x)<\cdots<a_{l_{x}+1}(x)<k
$$

- For any $F \subset E$, let $Q_{i}(E)_{x}^{F} \subset Q_{i}(E)_{x}$ be the image of F,

$$
\begin{aligned}
& n_{i}^{F}(x)=\operatorname{dim}\left(k e r\left\{Q_{i}(E)_{x}^{F} \rightarrow Q_{i-1}(E)_{x}^{F}\right\}\right) \\
& \operatorname{par} \chi(F):=\chi(F)+\frac{1}{k} \sum_{x \in I} \sum_{i=1}^{l_{x}+1} a_{i}(x) n_{i}^{F}(x) .
\end{aligned}
$$

The moduli spaces: Semi-stability

- E is called semistable (resp., stable) for $\frac{\vec{a}}{k}$ if for any nontrivial subsheaf $F \subset E$ such that E / F is torsion free, one has

$$
\operatorname{par} \chi(F) \leq \frac{\operatorname{par} \chi(E)}{r} \cdot r(F)(\text { resp., }<) .
$$

- There exists a seminormal projective variety

$$
\mathcal{U}_{C, \omega}=\mathcal{U}_{C}(r, d, \omega)
$$

which is the coarse moduli space of s-equivalence classes of semistable parabolic sheaves E of rank r and $\operatorname{deg}(E)=d$ with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ and weights $\{\vec{a}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$.

- If C is smooth, then it is normal, with only rational singularities.

Generalized theta functions on $\mathcal{U}_{C, \omega}$

- There is an algebraic family of ample line bundles $\Theta_{\mathcal{U}_{C, \omega}}$ on $\mathcal{U}_{C, \omega}$ (the so called Theta line bundles) when

$$
\ell:=\frac{k \chi-\sum_{x \in I} \sum_{i=1}^{l_{x}} d_{i}(x) r_{i}(x)}{r}
$$

is an integer, where

$$
\begin{gathered}
d_{i}(x)=a_{i+1}(x)-a_{i}(x) \\
r_{i}(x)=n_{1}(x)+\cdots+n_{i}(x)
\end{gathered}
$$

- $\mathrm{H}^{0}\left(\mathcal{U}_{C, \omega}, \Theta_{\mathcal{U}_{C, \omega}}\right)$: The space of generalized theta functions. An explicit formula of

$$
D_{g}(r, d, \omega)=\operatorname{dim} \mathrm{H}^{0}\left(\mathcal{U}_{C, \omega}, \Theta_{\mathcal{U}_{C, \omega}}\right)
$$

was predicted by Conformal Field Theory.

Verlinde formula: $\quad D_{g}(r, d, \omega)=$?

$$
\begin{gathered}
D_{g}(r, d, \omega)=(-1)^{d(r-1)}\left(\frac{k}{r}\right)^{g}\left(r(r+k)^{r-1}\right)^{g-1} \\
\sum_{\vec{v}} \frac{\exp \left(2 \pi i\left(\frac{d}{r}-\frac{|\omega|}{r(r+k)}\right) \sum_{i=1}^{r} v_{i}\right) S_{\omega}\left(\exp 2 \pi i \frac{\vec{v}}{r+k}\right)}{\prod_{i<j}\left(2 \sin \pi \frac{v_{i}-v_{j}}{r+k}\right)^{2(g-1)}}
\end{gathered}
$$

where $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ runs through the integers

$$
0=v_{r}<v_{r-1}<\cdots<v_{2}<v_{1}<r+k
$$

- For given $\omega=\left(k,\{\vec{n}(x), \vec{a}(x)\}_{x \in I}\right)$, let $\lambda_{i}=k-a_{i}(x)$

$$
\lambda_{x}=(\overbrace{\lambda_{1}, \ldots, \lambda_{1}}^{n_{1}(x)}, \overbrace{\lambda_{2}, \ldots, \lambda_{2}}^{n_{2}(x)}, \ldots, \overbrace{\lambda_{l_{x}+1}, \ldots, \lambda_{l_{x}+1}}^{n_{l_{x+1}}(x)})
$$

- Let $S_{\lambda_{x}}\left(z_{1}, \ldots, z_{r}\right)$ be Schur polynomial, $\left|\lambda_{x}\right|=\sum \lambda_{i} n_{i}(x)$,

$$
S_{\omega}\left(z_{1}, \ldots, z_{r}\right)=\prod_{x \in I} S_{\lambda_{x}}\left(z_{1}, \ldots, z_{r}\right), \quad|\omega|=\sum_{x \in I}\left|\lambda_{x}\right| .
$$

Rational Conformal Field Theory (RCFT)

- Let Λ be a finite set with an involution $\lambda \mapsto \lambda^{*}$, a RCFT is a functor:

$$
(C, \vec{p} ; \vec{\lambda}) \mapsto V_{C}(\vec{p} ; \vec{\lambda})
$$

where $\vec{p}=\left(p_{1}, \ldots, p_{n}\right), p_{i} \in C, \vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, satisfies axioms:

- A0: $V_{\mathbb{P}^{1}}(\emptyset)=\mathbb{C}, \quad \mathbf{A 1}: V_{C}(\vec{p} ; \vec{\lambda}) \cong V_{C}\left(\vec{p} ; \vec{\lambda}^{*}\right)$
- A2: Let $(C, \vec{p} ; \vec{\lambda})=\left(C^{\prime}, \vec{p}^{\prime} ; \vec{\lambda}^{\prime}\right) \sqcup\left(C^{\prime \prime}, \vec{p}^{\prime \prime} ; \overrightarrow{\lambda^{\prime \prime}}\right)$. Then

$$
V_{C}(\vec{p} ; \vec{\lambda})=V_{C^{\prime}}\left(\vec{p}^{\prime} ; \vec{\lambda}^{\prime}\right) \otimes V_{C^{\prime \prime}}\left(\vec{p}^{\prime \prime} ; \vec{\lambda}^{\prime \prime}\right)
$$

- A3: For a family $\left\{C_{t}, \overrightarrow{p_{t}} ; \vec{\lambda}\right\}_{t \in \triangle}$, there are canonical isomorphisms

$$
V_{C_{t}}\left(\overrightarrow{p_{t}} ; \vec{\lambda}\right) \cong V_{C_{0}}\left(\overrightarrow{p_{0}} ; \vec{\lambda}\right)
$$

- A4: If C_{0} has a node $x, \pi^{-1}(x)=\left\{x_{1}, x_{2}\right\}, \pi: \widetilde{C_{0}} \rightarrow C_{0}$. Then

$$
V_{C_{t}}\left(\overrightarrow{p_{t}} ; \vec{\lambda}\right) \cong \bigoplus_{\nu} V_{\widetilde{C_{0}}}\left(\overrightarrow{p_{0}}, x_{1}, x_{2} ; \vec{\lambda}, \nu, \nu^{*}\right)
$$

The fusion rules

- $\operatorname{dim} V_{C}(\vec{p} ; \vec{\lambda})$ depends only on $g=g(C)$ and

$$
\left(\lambda_{1}, \ldots, \lambda_{n}\right):=\lambda_{1}+\cdots+\lambda_{n}
$$

- $\mathbb{N}^{(\Lambda)}:=\left\{x=\lambda_{1}+\cdots+\lambda_{n} \mid n \geq 0, \lambda_{i} \in \Lambda\right\}$,

$$
N_{g}: \mathbb{N}^{(\Lambda)} \rightarrow \mathbb{N}, \quad N_{g}(x):=\operatorname{dim}_{\mathbb{C}} V_{C}(\vec{p} ; \vec{\lambda})
$$

- $N_{g}(x)=\sum_{\lambda \in \Lambda} N_{g-1}\left(x+\lambda+\lambda^{*}\right)$
- $N_{0}(0)=1$
- $N_{0}(x)=N_{0}\left(x^{*}\right)\left(\forall x \in \mathbb{N}^{(\Lambda)}\right)$
- $N_{0}(x+y)=\sum_{\lambda \in \Lambda} N_{0}(x+\lambda) N_{0}\left(y+\lambda^{*}\right)\left(\forall x, y \in \mathbb{N}^{(\Lambda)}\right)$.

The fusion ring \mathcal{F} and Verlinde formula

- Let $\mathcal{F}=\mathbb{Z}^{(\Lambda)}$ be the free abelian group generated by Λ, define

$$
\lambda \cdot \mu=\sum_{\nu \in \Lambda} N_{0}\left(\lambda+\mu+\nu^{*}\right) \cdot \nu
$$

- \mathcal{F} is called the fusion ring associated to the RCFT,
- Let $\Sigma=\{\chi: \mathcal{F} \rightarrow \mathbb{C}\}$ be the set of characters of \mathcal{F}. Then

$$
\operatorname{dim} V_{C}(\vec{p} ; \vec{\lambda})=\sum_{\chi \in \Sigma} \chi\left(\lambda_{1}\right) \cdots \chi\left(\lambda_{n}\right)\left(\sum_{\lambda \in \Lambda}|\chi(\lambda)|^{2}\right)^{g-1}
$$

Tsuchiya-Ueno-Yamada (1989): WZW model

- Wess-Zumino-Witten (WZW) model is associated to a simple complex Lie algebra \mathfrak{g} and integer $k>0$.
- Given a simple Lie algebra \mathfrak{g} and integer $k>0$, let P_{k} be the set of dominant weight of level $\leq k, V_{\vec{\lambda}}:=V_{\lambda_{1}} \otimes \cdots \otimes V_{\lambda_{n}}\left(\lambda_{i} \in P_{k}\right)$ and

$$
V_{C}(\vec{p} ; \vec{\lambda}):=\operatorname{Hom}_{\mathfrak{g} \otimes A_{C}}\left(\mathcal{H}_{k}, V_{\vec{\lambda}}\right), \quad A_{C}=\mathcal{O}_{C}(C-\{q\})
$$

where \mathcal{H}_{k} is the basic representation of level k of affine Lie algebra $\widehat{\mathfrak{g}}$, and $\mathfrak{g} \otimes A_{C} \hookrightarrow \mathfrak{g} \otimes \mathbb{C}((z)) \subset \widehat{\mathfrak{g}}$ is a Lie subalgebra of $\widehat{\mathfrak{g}}$.

- Tsuchiya-Ueno-Yamada (1989): Functor: $(C, \vec{p} ; \vec{\lambda}) \mapsto V_{C}(\vec{p} ; \vec{\lambda})$ satisfies the axioms A0 to A4.
- The characters of its fusion ring $R_{k}(\mathfrak{g})$ are determined by Beauville (for $\mathfrak{s l}_{r}$) and Faltings (for all the classical algebras and G_{2}).

Moduli stack of G-bundles and double quotient

- Let $\mathfrak{g}=\operatorname{Lie}(G), \dot{C}=C \backslash\{q\}, D=\operatorname{Spec}\left(\hat{\mathcal{O}}_{q}\right), \dot{D}=D \cap \dot{C}$. Then there is a bijective map of sets

$$
G(\mathcal{O}(\dot{C})) \backslash G(\mathcal{O}(\dot{D})) / G\left(\hat{\mathcal{O}}_{q}\right) \xrightarrow{\bar{\phi}} \mathrm{Bund}_{G}
$$

$X:=G(\mathcal{O}(\dot{D})) / G\left(\hat{\mathcal{O}}_{q}\right)$ is called affine Grassmannian, which is a inductive limit of generalized Schubert varieties $\left\{X_{w} \mid w \in \widetilde{\mathcal{W}} / \mathcal{W}\right\}$.

- There is an algebraic G-bundle $\mathcal{P} \rightarrow C \times X$, which defines the morphism of stacks:

$$
X=G(\mathcal{O}(\dot{D})) / G\left(\hat{\mathcal{O}}_{q}\right) \xrightarrow{\phi} \operatorname{Bund}_{G}
$$

- $\mathrm{H}^{0}\left(\operatorname{Bun}_{G}, \Theta_{\operatorname{Bun}_{G}}\right)=\mathrm{H}^{0}\left(X, \phi^{*} \Theta_{\operatorname{Bun}_{G}}\right)^{\Gamma}, \quad \Gamma:=G(\mathcal{O}(\dot{C}))$.

WZW model and generalized theta functions

- Beauville- Laszlo (1994): For $\mathfrak{g}=\mathfrak{s l}_{r}(\mathbb{C})$, we have

$$
V_{C}(\emptyset) \cong \mathrm{H}^{0}\left(\operatorname{Bun}_{\mathrm{SL}(\mathrm{r})}, \Theta_{\mathrm{Bun}_{\mathrm{SL}(\mathrm{r})}}\right)
$$

- Faltings (1994): It is true for arbitrary simple Lie algebra \mathfrak{g} !

$$
V_{C}(\emptyset) \cong \mathrm{H}^{0}\left(\operatorname{Bun}_{G}, \Theta_{\operatorname{Bun}_{G}}\right)
$$

Bun_{G} is the moduli stack of G-bundles on C.

- Pauly (1996): For $\mathfrak{g}=\mathfrak{s l}_{r}(\mathbb{C})$, when $g \geq 2$, we have

$$
V_{C}(\vec{p} ; \vec{\lambda}) \cong \mathrm{H}^{0}\left(\mathcal{U}_{C, \omega}^{\mathcal{O}_{C}}, \Theta_{\mathcal{U}_{C, \omega}^{\mathcal{O}_{C}}}\right)
$$

where $\mathcal{U}_{C, \omega}^{\mathcal{O}_{C}}$ is the moduli spaces of semi-stable parabolic bundles on C with trivial determinant.

Faltings: A proof for the Verlinde formula

- The referee has asked me to remark that there are several interpretations of the term "Verlinde formula".
- One is equality of dimensions for spaces of global sections and their analogues in conformal field theory, and this is proved here.
- Another version is an explicit formula for these numbers. It follows from the previous and from certain facts about integrable representations of Kac-Moody Lie algebras.
- According to experts these facts (Conjecture 5.1) are "true" and " known", but I have not found any written proof.
- D. Kazhdan has suggested to use the methods from [GK] (Gelfand-Kazhdan: Examples of tensor categories, Invent. Math. 109 (1992), but I have not understood his argument.

Faltings's conjecture 5.1

- Let $T \subset G$ be maximal torus, $\mathfrak{g}=\operatorname{Lie}(G) . \quad \forall \gamma \in T$,

$$
\chi_{\gamma}: R_{k}(\mathfrak{g}) \rightarrow \mathbb{C}, \quad E \mapsto \chi_{\gamma}(E):=\operatorname{Tr}_{E}(\gamma)
$$

- Let W be the Weyl group, $T^{r e g} \subset T$ be the set of elements where W-action is free.

Conjecture 1 (Faltings)

All characters $\chi: R_{k}(\mathfrak{g}) \rightarrow \mathbb{C}$ are of the form

$$
\chi_{\gamma}: R_{k}(\mathfrak{g}) \rightarrow \mathbb{C}, \quad E \mapsto \chi_{\gamma}(E):=\operatorname{Tr}_{E}(\gamma)
$$

where $\gamma \in T^{r e g} / W$.

Finite-dimensional proofs: $r=2$

- Beauville: The basic distinction between the proofs using standard algebraic geometry, which up to now work only in the case $r=2$, and proofs that use infinite-dimensional algebraic geometry to mimic the heuristic approach of the physicists-these work for all r.
- Compute $\chi\left(\Theta_{\mathcal{U}_{C}}^{k}\right)$: Bertram-Szenes, Zagier, Donaldson-Witten.
- Thaddeus (1994): Stable pairs, linear systems and Verlinde formula (Invent. Math. 117, 317-353).
- Narasimhan-Ramadas (1993-1996): Factorization of generalized theta functions I, II (Invent. Math., Topology): $|I|>0$.
- Daskalopoulos-Wentworth (1993-1996): An analytic proof when $g \geq 2$ (Math. Ann. (1993), (1996)): $|I|>0$.

Finite-dimensional proofs: $r>2$

- Jeffrey-Kirwan (1998): Intersection theory on $\mathcal{S U}_{C}(r, \mathcal{L})$ (Ann. of Math.): $(r, d)=1,|I|=0$.
- Marian-Oprea (2007): Counts of maps to Grassmannians and intersections on the moduli space of bundles (J. Diff. Geom.): $(r, d)=1,|I|=0$.
- Jeffrey (2001): The Verlinde formula for parabolic bundles (J. of the LMS $):(r, d)=1,|I|>0$, weights $\{\vec{a}(x)\}_{x \in I}$ are very small !
- Bismut-Labourie (1999): $\chi\left(\Theta_{\mathcal{U}_{C, \omega}}\right)$ equals to the index of a Dirac operator when $k \gg 0$ (Surv. Differ. Geom. 5, 97-311).
- E. Meinrenken: This result combined with recent vanishing results of (C. Teleman, Ann.of Math.) gives a new proof of the Verlinde formula when k is sufficiently large.

Degeneration method

- Degenerate $C_{t} \rightsquigarrow C_{0}=X$ to a curve X with one node $x_{0} \in X$.
- Need to prove: $\operatorname{dim} H^{0}\left(\mathcal{U}_{C_{t}, \omega_{t}}, \Theta_{\mathcal{U}_{C_{t}, \omega_{t}}}\right)=\operatorname{dim} H^{0}\left(\mathcal{U}_{X, \omega}, \Theta_{\mathcal{U}_{X, \omega}}\right)$.
- Let $\pi: \widetilde{X} \rightarrow X$ be the normalization, $\pi^{-1}\left(x_{0}\right)=\left\{x_{1}, x_{2}\right\}$.

Theorem 1 (Sun, 2000-2003, JAG and Ark. Mat.)

$$
\begin{gathered}
H^{0}\left(\mathcal{U}_{X, \omega}, \Theta_{\mathcal{U}_{X, \omega}}\right) \cong \bigoplus_{\mu} H^{0}\left(\mathcal{U}_{\tilde{X}, \omega^{\mu}}, \Theta_{\mathcal{U}_{\tilde{X}, \omega^{\mu}}}\right) \\
H^{0}\left(\mathcal{U}_{X_{1} \cup X_{2}, \omega_{1} \cup \omega_{2}}, \Theta_{\mathcal{U}_{X_{1} \cup X_{2}, \omega_{1} \cup \omega_{2}}}\right) \\
\cong \bigoplus_{\mu} H^{0}\left(\mathcal{U}_{X_{1}, \omega_{1}^{\mu}}, \Theta_{\mathcal{U}_{X_{1}, \omega_{1}^{\mu}}}\right) \otimes H^{0}\left(\mathcal{U}_{X_{2}, \omega_{2}^{\mu}}, \Theta_{\mathcal{U}_{X_{2}, \omega_{2}^{\mu}}}\right) \\
\text { where } \mu=\left(\mu_{1}, \cdots, \mu_{r}\right) \text { runs through } 0 \leq \mu_{r} \leq \cdots \leq \mu_{1}<k .
\end{gathered}
$$

Vanishing Theorems

Theorem 2 (Sun, 2000, JAG)

- If $g\left(C_{t}\right) \geq 2$, then $H^{1}\left(\mathcal{U}_{C_{t}, \omega_{t}}, \Theta_{\mathcal{U}_{C_{t}, \omega_{t}}}\right)=0$.
- If $g(X) \geq 3$, then $H^{1}\left(\mathcal{U}_{X, \omega}, \Theta_{\mathcal{U}_{X, \omega}}\right)=0$.

Theorem 3 (Sun-Zhou, 2020, SCi. China)

- For any ample line bundle \mathcal{L} on $\mathcal{U}_{C_{t}, \omega_{t}}$, one has

$$
H^{i}\left(\mathcal{U}_{C_{t}, \omega_{t}}, \mathcal{L}\right)=0 \quad \forall i>0
$$

- If X is irreducible, $H^{1}\left(\mathcal{U}_{X, \omega}, \Theta_{\mathcal{U}_{X, \omega}}\right)=0$.
- If X is reducible, $H^{1}\left(\mathcal{U}_{X, \omega}, \mathcal{L}\right)=0$ for any ample line bundle \mathcal{L} on $\mathcal{U}_{X, \omega}$.

Recurrence relations of $D_{g}(r, d, \omega)$

Theorem 4 (Sun-Zhou, 2020, Sci. China)

Let $W_{k}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \mid 0=\lambda_{r} \leq \lambda_{r-1} \leq \cdots \leq \lambda_{1} \leq k\right\}$ and

$$
W_{k}^{\prime}=\left\{\lambda \in W_{k} \mid\left(\sum_{x \in I_{1}} \sum_{i=1}^{l_{x}} d_{i}(x) r_{i}(x)+\sum_{i=1}^{r} \lambda_{i}\right) \equiv 0(\bmod r)\right\} .
$$

Then we have the following recurrence relation

$$
\begin{gathered}
D_{g}(r, d, \omega)=\sum_{\mu} D_{g-1}\left(r, d, \omega^{\mu}\right) \\
D_{g}(r, d, \omega)=\sum_{\lambda \in W_{k}^{\prime}} D_{g_{1}}\left(r, 0, \omega_{1}^{\lambda}\right) \cdot D_{g_{2}}\left(r, d, \omega_{2}^{\lambda}\right)
\end{gathered}
$$

where $\mu=\left(\mu_{1}, \cdots, \mu_{r}\right)$ runs through $0 \leq \mu_{r} \leq \cdots \leq \mu_{1}<k$ and $\omega^{\mu}, \omega_{1}^{\lambda}$, ω_{2}^{λ} are explicitly determined by μ and λ.

Proof of $D_{g}(r, d, \omega)=V_{g}(r, d, \omega)$

$$
\begin{gathered}
V_{g}(r, d, \omega):=(-1)^{d(r-1)}\left(\frac{k}{r}\right)^{g}\left(r(r+k)^{r-1}\right)^{g-1} \\
\sum_{\vec{v}} \frac{\exp \left(2 \pi i\left(\frac{d}{r}-\frac{|\omega|}{r(r+k)}\right) \sum_{i=1}^{r} v_{i}\right) S_{\omega}\left(\exp 2 \pi i \frac{\vec{v}}{r+k}\right)}{\prod_{i<j}\left(2 \sin \pi \frac{v_{i}-v_{j}}{r+k}\right)^{2(g-1)}}
\end{gathered}
$$

where $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ runs through the integers

$$
0=v_{r}<v_{r-1}<\cdots<v_{2}<v_{1}<r+k
$$

Lemma 1

If $D_{0}(r, d, \omega)=V_{0}(r, d, \omega)$ holds, then

$$
D_{g}(r, d, \omega)=V_{g}(r, d, \omega)
$$

holds.

Proof of $D_{g}(r, d, \omega)=V_{g}(r, d, \omega)$

Proof.

$$
D_{g}(r, d, \omega)=\sum_{\mu} D_{g-1}\left(r, d, \omega^{\mu}\right)=\sum_{\mu} V_{g-1}\left(r, d, \omega^{\mu}\right)
$$

where $\left|\omega^{\mu}\right|=|\omega|+k \cdot r, S_{\omega^{\mu}}=S_{\omega} \cdot S_{\mu} \cdot S_{\mu^{*}}$ and $\mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$ runs through the integers $0 \leq \mu_{r} \leq \cdots \leq \mu_{1}<k$. Then it is enough to show

$$
\begin{aligned}
& \sum_{\mu} S_{\mu}\left(\exp 2 \pi i \frac{\vec{v}}{r+k}\right) \cdot S_{\mu^{*}}\left(\exp 2 \pi i \frac{\vec{v}}{r+k}\right) \\
& =\exp \left(2 \pi i \frac{k}{r+k} \sum_{i=1}^{r} v_{i}\right) \frac{k(r+k)^{r-1}}{\prod_{i<j}\left(2 \sin \pi \frac{v_{i}-v_{j}}{r+k}\right)^{2}}
\end{aligned}
$$

To prove it, we essentially use the fact:

$$
\sum_{g \in G} \chi_{V}(g) \overline{\chi_{V}(g)}=|G|
$$

Proof of $D_{0}(r, d, \omega)=V_{0}(r, d, \omega)$

Lemma 2

If $D_{0}(r, d, \omega)=V_{0}(r, d, \omega)$ when $|I| \leq 3$, then $D_{0}(r, d, \omega)=V_{0}(r, d, \omega)$.
Let $I=I_{1} \cup I_{2}$ with $\left|I_{1}\right|=2$, we have

$$
\begin{aligned}
& D_{0}(r, d, \omega)=\sum_{\mu \in W_{k}} V_{0}\left(r, 0, \omega_{1}^{\mu}\right) \cdot V_{0}\left(r, d, \omega_{2}^{\mu}\right)=\frac{(-1)^{d(r-1)}}{\left(r(r+k)^{r-1}\right)^{2}} \\
& \sum_{\vec{v}, \overrightarrow{v^{\prime}}} \frac{\exp \left(2 \pi i\left(-\frac{\left|\omega_{1}\right|}{r(r+k)}\right)|\vec{v}|\right)}{\prod_{i<j}\left(2 \sin \pi \frac{v_{i}-v_{j}}{r+k}\right)^{-2}} \cdot \frac{\exp \left(2 \pi i\left(\frac{d}{r}-\frac{\left|\omega_{2}\right|}{r(r+k)}\right)\left|\overrightarrow{v^{\prime}}\right|\right)}{\prod_{i<j}\left(2 \sin \pi \frac{v_{i}^{\prime}-v_{j}^{\prime}}{r+k}\right)^{-2}} \\
& S_{\omega_{1}}\left(\exp 2 \pi i \frac{\vec{v}}{r+k}\right) \cdot S_{\omega_{2}}\left(\exp 2 \pi i \frac{\overrightarrow{v^{\prime}}}{r+k}\right) \cdot \sum_{\mu \in W_{k}} \exp 2 \pi i \frac{-|\mu| \cdot|\vec{v}|}{r(r+k)} \\
& \exp 2 \pi i \frac{-\left|\mu^{*}\right| \cdot\left|\overrightarrow{v^{\prime}}\right|}{r(r+k)} \cdot S_{\mu}\left(\exp 2 \pi i \frac{\vec{v}}{r+k}\right) \cdot S_{\mu^{*}}\left(\exp 2 \pi i \frac{\overrightarrow{v^{\prime}}}{r+k}\right)
\end{aligned}
$$

Proof of $D_{0}(r, d, \omega)=V_{0}(r, d, \omega)$

When $\vec{v}=\overrightarrow{v^{\prime}}$, we have

$$
\begin{aligned}
& \sum_{\mu \in W_{k}} S_{\mu}\left(\exp 2 \pi i \frac{\vec{v}}{r+k}\right) \cdot S_{\mu^{*}}\left(\exp 2 \pi i \frac{\vec{v}}{r+k}\right) \\
& =\exp \left(2 \pi i \frac{k}{r+k}|\vec{v}|\right) \cdot \frac{r(r+k)^{r-1}}{\prod_{i<j}\left(2 \sin \pi \frac{v_{i}-v_{j}}{r+k}\right)^{2}}
\end{aligned}
$$

when $\vec{v} \neq \overrightarrow{v^{\prime}}$, by using $\sum_{g \in G} \chi_{V}(g) \overline{\chi_{W}(g)}=0$, we have

$$
\begin{aligned}
& \sum_{\mu \in W_{k}} \exp 2 \pi i \frac{-|\mu| \cdot|\vec{v}|}{r(r+k)} \cdot \exp 2 \pi i \frac{-\left|\mu^{*}\right| \cdot\left|\overrightarrow{v^{\prime}}\right|}{r(r+k)} \\
& \quad S_{\mu}\left(\exp 2 \pi i \frac{\vec{v}}{r+k}\right) \cdot S_{\mu^{*}}\left(\exp 2 \pi i \frac{\overrightarrow{v^{\prime}}}{r+k}\right)=0
\end{aligned}
$$

Computation of of $V_{0}\left(r, 0,\left\{\omega_{s}, \lambda_{y}, \lambda_{z}\right\}\right)$

Lemma 3

(1) When $|I|=0, V_{0}\left(r, 0,\left\{\lambda_{x}\right\}_{x \in I}\right)=1$;
(2) $V_{0}\left(r, 0, \lambda_{x}\right)=1$ if $\lambda_{x}=\lambda_{r}(x) \omega_{r}$ and zero otherwise;
(3) $V_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}\right\}\right)=1$ if $\lambda_{x}=\lambda_{y}^{*}$ and zero otherwise;
(4) Let $Y\left(\lambda_{y}, \omega_{s}\right)$ be the set of partitions its Young diagrams are obtained from λ by adding s boxes with no two in the same row. Then

$$
V_{0}\left(r, 0,\left\{\omega_{s}, \lambda_{y}, \lambda_{z}\right\}\right)= \begin{cases}1 & \text { when } \lambda_{z}^{*} \in Y\left(\lambda_{y}, \omega_{s}\right) \\ 0 & \text { when } \lambda_{z}^{*} \notin Y\left(\lambda_{y}, \omega_{s}\right)\end{cases}
$$

where $\omega_{s}:=(\overbrace{1, \ldots, 1}^{s}, \overbrace{0, \ldots, 0}^{r-s}) \quad(1 \leq s \leq r)$.

Computation of of $D_{0}\left(r, 0,\left\{\omega_{s}, \lambda_{y}, \lambda_{z}\right\}\right)$

Lemma 4

(1) When $|I|=0, \mathcal{U}_{\mathbb{P}^{1}}\left(r, 0,\left\{\lambda_{x}\right\}_{x \in I}\right)$ consists one point;
(2) When $|I|=1, \mathcal{U}_{\mathbb{P}^{1}}\left(r, 0, \lambda_{x}\right)$ consists one point if $\lambda_{x}=\lambda_{r}(x) \omega_{r}$ and is empty otherwise;
(3) When $|I|=2, \mathcal{U}_{\mathbb{P}^{1}}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}\right\}\right)$ consists one point if $\lambda_{x}=\lambda_{y}^{*}$ and is empty otherwise;
(4) When $|I|=3, \mathcal{U}_{\mathbb{P}^{1}}\left(r, 0,\left\{\omega_{s}, \lambda_{y}, \lambda_{z}\right\}\right)(1 \leq s \leq r-1)$ consists one point if $\lambda_{z}^{*} \in Y\left(\lambda_{y}, \omega_{s}\right)$ and is empty otherwise.

Corollary 1

$D_{0}\left(r, 0,\left\{\lambda_{x}\right\}_{x \in I}\right)=V_{0}\left(r, 0,\left\{\lambda_{x}\right\}_{x \in I}\right)$ when $|I| \leq 2$, and

$$
D_{0}\left(r, 0,\left\{\omega_{s}, \lambda_{y}, \lambda_{z}\right\}\right)=V_{0}\left(r, 0,\left\{\omega_{s}, \lambda_{y}, \lambda_{z}\right\}\right)
$$

Proof of of $D_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)=V_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)$

- For any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}$, let

$$
s(\lambda)=\max \left\{i \mid \lambda_{i}-\lambda_{i+1}>0\right\}, \quad m(\lambda)=\sum_{i=1}^{s(\lambda)} \lambda_{i}
$$

and $s(\lambda)=0$ if $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{r}$.

- When $s\left(\lambda_{x}\right)=0, \lambda_{x}$ defines trivial parabolic structure at $x \in I$ and the proof reduces to the case of $|I|=2$.
- Thus we can assume $s\left(\lambda_{x}\right)>0$ and will prove

$$
D_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)=V_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)
$$

by induction of $m\left(\lambda_{x}\right)-s\left(\lambda_{x}\right)$.

Proof of of $D_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)=V_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)$

- When $m\left(\lambda_{x}\right)-s\left(\lambda_{x}\right)=0, \lambda_{x}$ must be $\omega_{s\left(\lambda_{x}\right)}$ and we are done by Corollary 1.
- Assume $D_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)=V_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)$ holds for any λ_{y} and λ_{z} when $m\left(\lambda_{x}\right)-s\left(\lambda_{x}\right)<N$
- For any λ_{x} with $m\left(\lambda_{x}\right)-s\left(\lambda_{x}\right)=N$, let $\lambda_{x}^{\prime}=\lambda_{x}-\omega_{s\left(\lambda_{x}\right)}$

$$
\begin{aligned}
& D_{0}\left(r, 0,\left\{\omega_{s\left(\lambda_{x}\right)}, \lambda_{x}^{\prime}, \lambda_{y}, \lambda_{z}\right\}\right) \\
& =\sum_{\mu^{*} \in W_{k}^{\prime}} D_{0}\left(r, 0,\left\{\omega_{s\left(\lambda_{x}\right)}, \lambda_{x}^{\prime}, \mu^{*}\right\}\right) \cdot D_{0}\left(r, 0,\left\{\mu, \lambda_{y}, \lambda_{z}\right\}\right) \\
& =\sum_{\mu \in Y\left(\lambda_{x}^{\prime}, \omega_{s\left(\lambda_{x}\right)}\right)} D_{0}\left(r, 0,\left\{\mu, \lambda_{y}, \lambda_{z}\right\}\right) \\
& =D_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)+\sum_{\mu \in Y\left(\lambda_{x}^{\prime}, \omega_{s\left(\lambda_{x}\right)}\right) \backslash\left\{\lambda_{x}\right\}} V_{0}\left(r, 0,\left\{\mu, \lambda_{y}, \lambda_{z}\right\}\right) .
\end{aligned}
$$

Proof of of $D_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)=V_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)$

$$
\begin{aligned}
& D_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)+\sum_{\mu \in Y\left(\lambda_{x}^{\prime}, \omega_{s\left(\lambda_{x}\right)}\right) \backslash\left\{\lambda_{x}\right\}} V_{0}\left(r, 0,\left\{\mu, \lambda_{y}, \lambda_{z}\right\}\right) \\
& =D_{0}\left(r, 0,\left\{\omega_{s\left(\lambda_{x}\right)}, \lambda_{x}^{\prime}, \lambda_{y}, \lambda_{z}\right\}\right) \\
& =\sum_{\mu \in W_{k}^{\prime}} D_{0}\left(r, 0,\left\{\omega_{s\left(\lambda_{x}\right)}, \lambda_{y}, \mu\right\}\right) \cdot D_{0}\left(r, 0,\left\{\lambda_{x}^{\prime}, \lambda_{z}, \mu^{*}\right\}\right) \\
& =\sum_{\mu \in W_{k}^{\prime}} V_{0}\left(r, 0,\left\{\omega_{s\left(\lambda_{x}\right)}, \lambda_{y}, \mu\right\}\right) \cdot V_{0}\left(r, 0,\left\{\lambda_{x}^{\prime}, \lambda_{z}, \mu^{*}\right\}\right) \\
& =V_{0}\left(r, 0,\left\{\omega_{s\left(\lambda_{x}\right)}, \lambda_{x}^{\prime}, \lambda_{y}, \lambda_{z}\right\}\right) \\
& ==V_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)+\sum_{\mu \in Y\left(\lambda_{x}^{\prime}, \omega_{s\left(\lambda_{x}\right)}\right) \backslash\left\{\lambda_{x}\right\}} V_{0}\left(r, 0,\left\{\mu, \lambda_{y}, \lambda_{z}\right\}\right)
\end{aligned}
$$

Thus we have

$$
D_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right)=V_{0}\left(r, 0,\left\{\lambda_{x}, \lambda_{y}, \lambda_{z}\right\}\right) .
$$

Globally F-regular varieties

- Let M be a variety over a perfect field k of $\operatorname{char}(k)=p>0$,

$$
F: M \rightarrow M
$$

be the (absolute) Frobenius map and $F^{e}: M \rightarrow M$ be the e-th iterate of Frobenius map.

- When M is normal, for any (weil) divisor $D \in \operatorname{Div}(M)$,

$$
\mathcal{O}_{M}(D)(V)=\left\{f \in K(M)\left|\operatorname{div}_{V}(f)+D\right|_{V} \geq 0\right\}, \quad \forall V \subset M
$$

is a reflexive subsheaf of constant sheaf $K=k(M)$

Definition 1

A normal variety M over a perfect field is called stably Frobenius D-split if

$$
\mathcal{O}_{M} \rightarrow F_{*}^{e} \mathcal{O}_{M}(D)
$$

is split for some $e>0$.

Globally F-regular varieties: Projective case

Definition 2

A normal variety M over a perfect field is called globally F-regular if M is stably Frobenius D-split for any effective divisor D.

Proposition 1

Let M be a projective variety over a perfect field. Then the following statements are equivalent.
(1) M is normal and is stably Frobenius D-split for any effective D;
(2) M is stably Frobenius D-split for any effective Cartier D;
(3) For any ample line bundle \mathcal{L}, the section ring of M

$$
R(M, \mathcal{L})=\bigoplus_{n=0}^{\infty} H^{0}\left(M, \mathcal{L}^{n}\right)
$$

is strongly F-regular.

Globally F-regular varieties: Theory of Characteristic 0

Definition 3

A variety M over a field of characteristic zero is said to be of globally F-regular type if its "modulo p reduction of M " are globally F-regular for a dense set of p.

Proposition 2 (K. E. Smith)

Let M be a projective variety over a field of characteristic zero. If M is of globally F-regular type, then we have
(1) M is normal, Cohen-Macaulay with rational singularities. If M is
\mathbb{Q}-Gorenstein, then M has log terminal singularities.
(2) For any nef line bundle \mathcal{L} on M, we have $H^{i}(M, \mathcal{L})=0$ when $i>0$. In particular, $H^{i}\left(M, \mathcal{O}_{M}\right)=0$ whenever $i>0$.

Moduli spaces: globally F-regular type

Definition 4

Let C be a smooth projective curve, $\omega=\left(k,\{\vec{n}(x), \vec{a}(x)\}_{x \in I}\right)$ and

$$
\operatorname{det}: \mathcal{U}_{C, \omega} \rightarrow J_{C}^{d}, \quad E \mapsto \operatorname{det}(E) .
$$

For any $L \in J_{C}^{d}$, the fiber $\mathcal{U}_{C, \omega}^{L}:=\operatorname{det}^{-1}(L)$ is called moduli spaces of semi-stable parabolic bundles with fixed determinant, which is normal with at most rational singularities.

Theorem 5 (Sun-Zhou, 2020, Math. Ann.)
For any data ω, the moduli spaces $\mathcal{U}_{C, \omega}^{L}$ is of globally F-regular type.

Corollary 2

For any ample line bundle \mathcal{L} on $\mathcal{U}_{C, \omega}$, we have $H^{i}\left(\mathcal{U}_{C, \omega}, \mathcal{L}\right)=0, \forall i>0$.

Vanishing Theorem for node curve X

Definition 5

Let $\pi: \widetilde{X} \rightarrow X$ be the normalization of $X, \pi^{-1}\left(x_{0}\right)=\left\{x_{1}, x_{2}\right\}$. A generalized parabolic sheaf (GPS) (E, Q) consist:

- A parabolic sheaf E determined by $\omega=\left(r, d,\{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k\right)$,
- Ar-dimensional quotient $E_{x_{1}} \oplus E_{x_{2}} \xrightarrow{q} Q \rightarrow 0$.
- (E, Q) is semi-stable if $\forall E^{\prime} \subset E, E / E^{\prime}$ torsion free outside $\left\{x_{1}, x_{2}\right\}$

$$
\operatorname{pardeg}\left(E^{\prime}\right)-\operatorname{dim}\left(Q^{E^{\prime}}\right) \leq r k\left(E^{\prime}\right) \frac{\operatorname{pardeg}(E)-\operatorname{dim}(Q)}{r}
$$

Normalization of $\mathcal{U}_{X, \omega}$: The moduli space \mathcal{P}

- $\mathcal{P}=\left\{\right.$ semi-stable GPS $\left.(E, Q)=\left(E, E_{x_{1}} \oplus E_{x_{2}} \rightarrow Q \rightarrow 0\right)\right\}$, which is called moduli space of GPS (generalized parabolic sheaf).
- $\phi: \mathcal{P} \rightarrow \mathcal{U}_{X, \omega}$ is defined by $\phi(E, Q)=F$, where F is given by

$$
0 \rightarrow F \rightarrow \pi_{*} E \rightarrow_{x_{0}} Q \rightarrow 0
$$

- $\phi: \mathcal{P} \rightarrow \mathcal{U}_{X, \omega}$ is the normalization of $\mathcal{U}_{X, \omega}$ such that

$$
\phi^{*}: \mathrm{H}^{1}\left(\mathcal{U}_{X}, \Theta_{\mathcal{U}_{X}}\right) \hookrightarrow \mathrm{H}^{1}\left(\mathcal{P}, \Theta_{\mathcal{P}}\right)
$$

- There exist a flat morphism $\operatorname{Det}: \mathcal{P} \rightarrow J_{\widetilde{X}}^{d}$, let

$$
\mathcal{P}^{L}=\operatorname{Det}^{-1}(L) .
$$

Globally F-regular type of \mathcal{P}^{L}

Theorem 6 (Sun-Zhou, 2020, Math. Ann.)

The moduli space \mathcal{P}^{L} of semi-stable generalized parabolic sheaves with fixed determinant L is of globally F-regular type.

Corollary 3

$H^{i}\left(\mathcal{P}^{L}, \mathcal{L}\right)=0$ for any $i>0$ and nef line bundles \mathcal{L} on \mathcal{P}^{L} and

$$
H^{i}\left(\mathcal{P}, \Theta_{\mathcal{P}}\right)=0 \quad \forall i>0 .
$$

Corollary 4

Let X be a projective curve with at most one node and $\mathcal{U}_{X, \omega}$ be the moduli space of parabolic sheaves on X with any given data ω. Then

$$
H^{1}\left(\mathcal{U}_{X, \omega}, \Theta_{\mathcal{U}_{X, \omega}}\right)=0
$$

Sketch of Proof: When $|I|$ is large enough

- Recall $\widetilde{\mathcal{R}}_{I}^{\prime}:=\widetilde{\mathcal{R}}^{\prime}=\operatorname{Grass}_{r}\left(\widetilde{\mathcal{F}}_{x_{1}} \oplus \widetilde{\mathcal{F}}_{x_{2}}\right) \rightarrow \widetilde{\mathcal{R}}_{I}=\times_{x \in I} \operatorname{Flag}_{\vec{n}(x)}\left(\widetilde{\mathcal{F}}_{x}\right)$, $\mathcal{P}^{L}=\widetilde{\mathcal{R}}_{I, \omega}^{s s} / / S L(V)$ is determined by $\omega=\left(r, d,\{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k\right)$.

Proposition 3 (Sun, 2000, JAG)

There is ω_{c} such that $\mathcal{P}_{\omega_{c}}^{L}=\widetilde{\mathcal{R}}_{I, \omega_{c}}^{s s} / / S L(V)$ is a Fano variety with only rational singularities (thus F-split type) if $(r-1)(g-1)+\frac{|I|}{2 r} \geq 2$.

Proposition 4 (Sun, 2000, JAG)

For any $\omega=\left(r, d, I,\{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k\right)$, we have
(1) $\operatorname{codim}\left(\widetilde{\mathcal{R}}_{I}^{\prime} \backslash \widetilde{\mathcal{R}}_{I, \omega}^{\prime s s}\right)>(r-1)(g-1)+\frac{|I|}{k}$,
(2) $\operatorname{codim}\left(\widetilde{\mathcal{R}}_{I, \omega}^{\prime s s} \backslash\left\{\mathcal{D}_{1}^{f} \cup \mathcal{D}_{2}^{f}\right\} \backslash \widetilde{\mathcal{R}}_{I, \omega}^{\prime s}\right) \geq(r-1)(g-1)+\frac{|I|}{k}$.

- Let $\widetilde{U}=\mathcal{R}_{I, \omega}^{\prime s s} \cap \widetilde{\mathcal{R}}_{I, \omega_{c}}^{\prime s s}$, then $\operatorname{codim}\left(\widetilde{\mathcal{R}}_{I, \omega}^{\prime s} \backslash \widetilde{U}\right) \geq 2$.

Sketch of Proof: Increase the number $|I|$

- Add extra parabolic points $x \in J \subset \widetilde{X}$, the projection

$$
p_{I}: \widetilde{\mathcal{R}}_{I \cup J}^{\prime} \rightarrow \widetilde{\mathcal{R}}_{I}^{\prime}
$$

is $\mathrm{SL}(V)$-invariant. Choose $|J|$ such that $(r-1)(g-1)+\frac{|I \cup J|}{k+2 r} \geq 2$.

- Choose the canonical weight ω_{c} on $\widetilde{\mathcal{R}}_{I \cup J}^{\prime}$, consider

$$
p_{I}^{-1}\left(\widetilde{\mathcal{R}}_{I, \omega}^{\prime s s}\right) \supset \widetilde{U}=p_{I}^{-1}\left(\widetilde{\mathcal{R}}_{I, \omega}^{\prime s s}\right) \cap \widetilde{\mathcal{R}}_{I \cup J, \omega_{c}}^{\prime s s} \rightarrow \mathcal{P}_{\omega_{c}}^{L} .
$$

Then $p_{I}^{-1}\left(\widetilde{\mathcal{R}}_{I, \omega}^{\prime s s}\right) \backslash \widetilde{U}=p_{I}^{-1}\left(\widetilde{\mathcal{R}}_{I, \omega}^{\prime s s}\right) \cap\left(\widetilde{\mathcal{R}}_{I \cup J, \omega_{c}}^{\prime} \backslash \widetilde{\mathcal{R}}_{I \cup J, \omega_{c}}^{\prime s s}\right)$ has codimension at least $(r-1)(g-1)+\frac{|I \cup J|}{2 r} \geq 2$.

- Let $U \subset \mathcal{P}_{\omega_{c}}^{L}$ be the image of \widetilde{U}, then p_{I} induces a morphism $f: U \rightarrow \mathcal{P}^{L}$ such that $f_{*}\left(\mathcal{O}_{U}\right)=\mathcal{O}_{\mathcal{P} L}$.

Problem and discussions

Definition 6

Let X be a scheme and $Y \subset X$ a closed sub-scheme. The pair $(X, Y))$ is called of compatible Frobenius split type if

- X is of Frobenius split type
- For almost p, there is a F-split $\varphi: F_{*} \mathcal{O}_{X_{p}} \rightarrow \mathcal{O}_{X_{p}}$ such that

$$
\varphi\left(F_{*} \mathcal{I}_{Y_{p}}\right) \subset \mathcal{I}_{Y_{p}} .
$$

Problem 1

Are the pairs $\left(\mathcal{P}, \mathcal{D}_{j}(a)\right)(j=1,2),\left(\mathcal{D}_{1}(a), \mathcal{D}_{1}(a) \cap \mathcal{D}_{2} \cup \mathcal{D}_{1}(a-1)\right)$ of compatible Frobenius split type ?

- If the answer of above problem is Yes, then, for any ample line bundle \mathcal{L} on \mathcal{U}_{X},

$$
H^{i}\left(\mathcal{U}_{X}, \mathcal{L}\right)=0 \quad \forall i>0
$$

Thanks!

