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The goal of this note is to introduce Drinfeld modules and explain their application to explicitly

class field theory of function fields.

1 Analytic theory

1.1 Inspiration from characteristic zero

Let Λ be a discrete Z-submodule of C of finite rank r. We must have r ≤ 2. Write Λ = Zω1 +

· · ·+ Zωr.

r = 0,C/Λ ' Ga(C), additive group;

r = 1,C/Λ ' Gm(C) = C∗, z 7→ exp(2πiz/ω), multiplicative group;

r = 2,C/Λ ' E(C), z 7→ (P(z),P ′(z)), elliptic curve.

1.2 Characteristic p analogue

Throughout this note, we keep the following notations.

Fq: a finite field of q-elements of characteristic p;

X: a geometrically connected smooth projective curve over Fq;

K: the function field of X;

∞: a fix closed point of X with residue field F∞ and degree d∞ = dimFq (F∞);

A = Γ(X − {∞},OX);

K∞: the completion of K at the point ∞;
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C: the completion of an algebraic closure K∞ of K∞.

We have a one-to-one correspondence between the set of closed points of X and the set of discrete

valuations on K. For any x ∈ |X|, let vx be the corresponding discrete valuation on K. Then

A = {a ∈ K|vx(a) ≥ 0 for any x ∈ |X| − {∞}}.

There is a homomorphism deg : K∗ → Z such that deg(a) = dimFq (A/aA) for any 0 6= a ∈ A. By

the product formula, −d∞v∞(a) = deg(a) for any a ∈ K∗. Actually, we can define deg(I) to be

dimFq (A/I) for any nonzero ideal I of A.

Lemma 1.1. A is discrete in K∞ and the quotient K∞/A is compact.

Proof. For any n > 0, applying RΓ(X, •) to the short exact sequence

0→ OX → OX(n∞)→ OX(n∞)/OX → 0,

we have an exact sequence

0→ H0(X,OX)→ H0(X,OX(n∞))→ H0(X,OX(n∞)/OX)→ H1(X,OX)→ H1(X,OX(n∞))→ 0.

By taking direct limit and using the fact H1(X,OX(n∞)) = 0 for n� 0, we get an exact sequence

0→ H0(X,OX)→ A→ K∞/O∞ → H1(X,OX)→ 0,

where O∞ is the discrete valuation ring of K∞. Then

0→ H0(X,OX)→ O∞ → K∞/A→ H1(X,OX)→ 0

is also exact. Since Hi(X,OX) is finite dimensional over Fq, then K∞/A is compact.

Definition 1.2. A lattice in C is a discrete A-submodule of C of finite rank, where the rank of

an A-module M is defined to be dimK(K ⊗AM).

By the following lemma, we have rankA(Λ) = dimK∞(K∞Λ) for any lattice Λ in C.

Lemma 1.3. Let L be a local field and R a discrete subring of L such that L/R is compact. Let V

be a finitely dimensional L-vector space with the canonical topology and let M be an R-submodule

of V . If M is discrete, then the canonical homomorphism L⊗RM → LM is an isomorphism. The

converse also holds if M is projective over R. In both cases, M is finitely generated over R and

dimF (F ⊗RM) = dimL(LM), where F is the fraction field of R.
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Proof. Suppose M is discrete. Choose an L-basis m1, . . . ,mk of LM with mi ∈ M and set

M0 =
k∑
i=1

Rmi. Since M is discrete, we can choose a neighborhood U1 of 0 in V such that

U1 ∩M = 0. There is a neighborhood U of 0 in V such that U − U ⊂ U1. Then for any x, y ∈M ,

x − y ∈ U if and only if x = y. It followss that (U + M0)/M0 ∩M/M0 = 0 and hence M/M0

is discrete in V/M0 and LM/M0. Since L/R is compact, LM/Mo =
k∑
i=1

(L/R)mi is compact and

M/M0 is thus a finite set. We have

dimL(L⊗RM) = dimF (F ⊗RM) = dimF (F ⊗RM0) = k = dimL(LM).

Conversely, suppose M is projective over R and we have a canonical isomorphism L ⊗R M '

LM . Then M is finitely generated over R and we can find an R-module N such that M ⊕N is a

free R-module of finite rank. Hence M ⊕N is discrete in L⊗R (M ⊕N) and hence M is discrete

in L⊗RM ' LM .

Remark 1.4. The rank of a lattice in C can be arbitrary large since [C : K∞] = +∞.

Definition 1.5. Let R be a ring containing Fq. A polynomial f ∈ R[z] is called Fq-linear if

f(z + w) = f(z) + f(w) ∈ R[z, w] and f(az) = af(z) ∈ R[z] for any a ∈ Fq. We can also define

Fq-linear power series.

Lemma 1.6. Let f ∈ R[[z]]. Then f is Fq-linear if and only if f =
∞∑
i=0

aiz
qi for some ai ∈ R.

Proof. The if part is trivial. For the only if part, suppose f =
∞∑
n=0

anz
n is Fq-linear. The equality

f(z+w) = f(z) + f(w) means that anCin = 0 if 1 ≤ i ≤ n− 1. If n is not a power of p, we can find

1 ≤ i ≤ n − 1 such that p - Cin and hence an = 0. Now suppose n is a power of p. The equality

f(αz) = αf(z) means that an(αn − α) = 0 for any α ∈ Fq. If n is not a power of q, we can find

α ∈ Fq such that αn − α 6= 0 and hence an = 0. This prove the only if part.

Theorem 1.7. Let Λ be an A-lattice in C. There exists an Fq-linear entire power series eΛ(z) ∈

C[[z]] which defines an Fq-linear isomorphism C/Λ ' C.

Proof. Define

eΛ(z) = z
∏

06=λ∈Λ

(1− z

λ
).

Since Λ is discrete, then eΛ(z) is entire. Let’s prove eΛ(z) is Fq-linear.
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Write Λ =
⋃
i

Λi for some Fq-subspace of Λ of finite dimension and set ei(z) = z
∏

06=λ∈Λi

(1− z
λ ).

Then eΛ(z) = lim
i
ei(z). To prove eΛ(z) is Fq-linear, we need only to show this for ei(z). For

any a ∈ Fq, by comparing the degrees, roots and coefficients in z of ei(az) and aei(z), we have

ei(az) = aei(z). Let F (z, w) = ei(z + w)− ei(z)− ei(w) ∈ C[z]. We can write F (z, w) =
d−1∑
i=0

fiz
i

for some fi ∈ C[w] of degree < d, where d = #Λi. For any λ ∈ Λi, we have

F (z, λ) = ei(z + λ)− ei(z)− ei(λ) = 0.

This shows each λ ∈ Λi is a root of fi(z) for any i. But deg fi < d, we must have fi = 0 and hence

F (z, w) = 0. This show that ei(z) and hence eΛ(z) are Fq-linear.

The entire series eΛ(z) define an Fq-linear map C → C of analytic spaces with kernel Λ.

By Weistrass representation theorem, eΛ(z) : C → C is surjective. So we get an isomorphism

eΛ(z) : C/Λ ' C.

Corollary 1.8. For any a ∈ A, there exists a unique polynomial φa ∈ C[z] making the following

diagram commutes:

C/Λ

eΛ

��

a // C/Λ

eΛ

��
C

φa // C.

Moreover, φa is a Fq-linear polynomial of degree qr deg(a) where r is the rank of the lattice Λ. For

any a, b ∈ A, φa(φb(z)) = φab(z).

Proof. Define

φa(z) = az
∏

06=λ∈a−1Λ/Λ

(1− z/eΛ(λ)).

Then eΛ(az) and φa(eΛ(z)) are two entire series with the same root set a−1Λ and with the same

derivative a. So these two series only have simple roots and hence eΛ(az) = φa(eΛ(z)). Moreover,

φa(z) is Fq-linear. The equality φa(φb(z)) = φab(z) holds by the following commutative diagram

C/Λ

eΛ

��

a // C/Λ

eΛ

��

b //

eΛ

��

C/Λ

eΛ

��
C

φa // C
φb // C.
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For any Fq-algebra R, denote by τ the q-th power map on R and by R{τ} the twist polynomial

ring with relation τr = rqτ for any r ∈ R. We have a one-to-one correspondence

R{τ} ' {Fq-linear polynomials in R[z]}, f =
∑
i

aiτ
i 7→ f(z) =

∑
i

aiz
qi .

For any f =
∑
i

aiτ
i ∈ R{τ}, define w(f) = min{i|ai 6= 0}, deg(f) = max{i|ai 6= 0}, c.t.(f) = a0

and l.c.(f) = adeg(f).

Thus any lattice Λ in C defines a ring homomorphism φ : A → C{τ} sending a to φa whose

constant term is a. This leads the definition of Drinfeld modules in the next section.

2 Algebraic theory

In this section, fix a homomorphism ι from A to a field L. The characteristic charA(L) of the

A-field L is defined to be ker(ι).

2.1 Basic definitions

Definition 2.1. A Drinfeld module over L is a ring homomorphism

φ : A→ L{τ}, a 7→ φa,

such that c.t.(φa) = ι(a) for any a ∈ A and φa 6= ι(a) for some a ∈ A.

Equivalently, a Drinfeld A-module over L is an A-module scheme over L whose underlying

Fq-vector space scheme is isomorphic to Ga,L = Spec L[z] and the A-module action on Ga,L is

given by the ring homomorphism φ : A → EndFq (Ga,L) = L{τ} satisfying the above conditions.

So φ defines a functor

φ : AlgL → ModA, R 7→ φ(R),

where φ(R) = R as abelian groups and the A-module structure on φ(R) is given by a.r = φa(r)

for any a ∈ A and r ∈ R.

2.2 Rank and height

Proposition 2.2. Let φ be a Drinfeld module over L.

(1) There exists a positive rational number r such that deg(φa) = r deg(a) for any a ∈ A.

(2) Suppose p = charA(L) is nonzero. Then there exists a positive rational number h such that

w(φa) = hdeg(p)vp(a) for any a ∈ A.
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Proof. (1) Define µ(a) = −deg(φa) for any a ∈ A and µ(0) = +∞. Then µ(ab) = µ(a) + µ(b)

and µ(a + b) ≥ min{µ(a), µ(b)} for any a, b ∈ A. So we can extend µ to a nontrivial valuation

µ̄ : K → Z ∪ {+∞} on K. As µ̄(a) = − deg(φa) < 0 for some a ∈ A, µ̄ is the valuation on K

defined by ∞ ∈ X. Then there exists a positive rational number r such that deg(φa) = r deg(a)

for any a ∈ A.

(2) Define ν(a) = w(φa) for any a ∈ A and ν(0) = +∞. Then ν(ab) = ν(a) + ν(b) and

ν(a+ b) ≥ min{ν(a), ν(b)} for any a, b ∈ A. So we can extend ν to a valuation ν̄ : K → Z∪ {+∞}

on K. As ν̄(a) > 0 for any a ∈ p, ν̄ is the valuation on K corresponding to p. So there exists a

positive rational number h such that w(φa) = hdeg(p)vp(a) for any a ∈ A.

Definition 2.3. The numbers r and h in Proposition 2.2 are called the rank and height of φ,

respectively.

To show r and h are positive integers, we need to study the torsion points of Drinfeld modules.

2.3 Torsion points

Definition 2.4. Let φ be a Drinfeld module over L and let a ∈ A. For any L-algebra R, let

φ[a](R) = {r ∈ R|φa(r) = 0}

be the a-torsion submodule of the A-module φ(R). More generally, for any ideal I of A, let

φ[I](R) =
⋂
i∈I

φ[i](R).

Actually, the functor φ[a] : AlgL → ModA is the A-module scheme φ[a] = ker(φa : Ga,L → Ga,L)

which is represented by the finite scheme Spec L[z]/(φa(z)) over L of degree qr deg(a).

If I is a nonzero ideal of A, then the left ideal
∑
i∈I

L{τ}φi of L{τ} is generated by a unique

monic polynomial φI . Then the functor φ[I] : AlgL → ModA is represented by the finite scheme

Spec L[z]/(φI(z)) over L.

Lemma 2.5. Let R be a Dedkind domain and M an R-module.

(1) For any distinct maximal ideals p1, . . . , pn of R and any e1, . . . , en ∈ N, we have

M [pe11 · · · penn ] =

n⊕
i=1

M [peii ].
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(2) If M is a divisable R-module, then for any maximal ideal p of R and e ∈ N, M [pe] is a

free R/pe-module of some rank r independent of e. Moreover, M [p∞] :=
∞⋃
e=1

M [pe] is isomorphic

to (Kp/R̂p)r, where R̂p is the completion of R at p and Lp its fraction field.

Proof. (1) is obvious. The homomorphism M → Mp induces an isomorphism M [pe] ' Mp[peRp].

For (2), we may assume that R is a discrete valuation ring. Fix a uniformizer π of R and choose

a free R-module F of rank r and an isomorphism i1 : π−1F/F ' M [π] of R/p-modules. Let’s

construct an isomorphism ie : π−eF/F ' M [πe] of R/pe-modules by induction on e. Given

the isomorphism ie : π−eF/F ' M [πe], using divisablity of M , there is an isomorphism ie+1 :

π−e−1F/F 'M [πe+1] making the following diagram commutes:

0 // π−1F/F //

i1

��

π−e−1F/F
π //

ie+1

��

π−eF/F //

ie

��

0

0 // M [π] // M [πe+1]
π // M [πe] // 0.

So ie+1 is an isomorphism. The family {ie} is an isomorphism from the direct systems {π−eF/F}

to {M [πe]} and hence M [p∞] = lim−→
e

π−eF/F = (Lp/R̂p)r.

Proposition 2.6. Let φ be a Drinfeld module over an algebraically closed field L of rank r and

height h.

(1) If I is an ideal of A prime to charA(L), then φ(L)[I] is a free A/I-module of rank r. In

particular, r is a positive integer.

(2) Suppose p = charA(L) 6= 0. Then for any positive integer e ∈ N, φ(L)[pe] is a free A/pe-

module of rank r − h. In particular, h is a positive integer.

Proof. For any 0 6= a ∈ A, φa : L → L is surjective. Hence φ(L) is A-divisible. By Lemma 2.5,

we only need to show that for any maximal ideal p of A, there exists a positive integer e such

that #φ(L)[pe] = qer deg(p) if p 6= charA(L) and #φ(L)[pe] = qe(r−h) deg(p) if p = charA(L). Let

e be the class number of A. Then pe = (a) for some a ∈ A. We have deg(a) = edeg(p) and

deg(φa) = er deg(p). If p 6= charA(L), then a /∈ p and φa(z) is a separable polynomial of degree

qr deg(a), and thus #φ(L)[pe] = #φ(L)[a] = qr deg(a) = qer deg(p). If p = charA(L), then w(φa) =

hvp(a) deg(p) = eh deg(p). In this case, #φ(L)[pe] = #φ(L)[a] = qe(r−h) deg(a) = qe(r−h) deg(p).
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2.4 Drinfeld modules and lattices in C

Definition 2.7. A morphism f : φ → ψ of Drinfeld modules over L is a polynomial f ∈ L{τ}

such that ψaf = fφa for any a ∈ A. In other words, a morphism from φ to ψ is an endomorphism

f of the additive group scheme over L such that for any a ∈ A, the following diagram commutes:

Ga,L
f //

φa

��

Ga,L

ψa

��
Ga,L

f // Ga,L.

We denote by Hom(φ, ψ) the set of morphisms from φ to ψ. A nonzero morphism of Drinfeld

modules is called an isogeny.

Proposition 2.8. Isogenous Drinfeld modules have the same rank and height.

Proof. For any f ∈ Hom(φ, ψ), we have deg(ψa)+deg(f) = deg(f)+deg(φa) and hence deg(ψa) =

deg(φa) for any a ∈ A. Then φ and ψ have the same rank by definition. So is the height.

Definition 2.9. A morphism from an A-lattice Λ of C to another one Λ′ of the same rank is an

element c ∈ C such that cΛ ⊂ Λ′.

Theorem 2.10. The functor from the categories of lattices in C to the categories of Drinfeld

modules over C constructed in Corollary 1.8 defines an equivalence of categories. Moreover, any

lattice and its corresponding Drinfeld module have the same rank.

Proof. (1) Given a lattice Λ in C of rank r, define

eΛ(z) = z
∏

06=λ∈Λ

(1− z

λ
),

and for any 0 6= a ∈ A, define

φa(z) = az
∏

06=λ∈a−1Λ/Λ

(1− z/eΛ(λ)).

Then φa(z) is an Fq-linear polynomial of degree qr deg(a) which defines a polynomial φa ∈ C{τ} of

degree r deg(a). By Corollary 1.8, we get a Drinfeld module φ : A→ C{τ} over C of rank r.

(2) Let φ be a Drinfeld module over C of rank r. Choose a ∈ A\Fq and write φa =
d∑
i=0

aiτ
i.

There exists a unique series eφ =
∞∑
i=0

eiτ
i ∈ C{{τ}} with e0 = 1 and eφa = φaeφ by the equalites

en(aq
n

− a) = ade
qd

n−d + · · ·+ a1e
q
n−1 (n ≥ 0).
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As d∞v∞(a) = −deg(a) < 0, we have

v∞(en) ≥ min{v∞(ade
qd

n−d), . . . , v∞(a1e
q
n−1)} − qnv∞(a).

Thus there exists a positive real number c such that for n� 0,

v∞(en)

qn
≥ min{v∞(en−1)

qn−1
, . . . ,

v∞(en−d)

qn−d
}+ c.

This proves lim
n→∞

v∞(en)
qn = +∞ and hence eφ(z) is an entire function. For any b ∈ A, we have

(e−1
φ φbeφ)a = e−1

φ φbφaeφ = e−1
φ φaφbeφ = a(e−1

φ φbeφ) ∈ C{{τ}}.

If we write e−1
φ φbeφ =

∑
i

biτ
i for some bi ∈ C, then bi(a

qi − a) = 0 for any i ≥ 0 and hence

bi = 0 for any i ≥ 1. We must have e−1
φ φbeφ = b and eφb = φbeφ for any b ∈ A. Let Λ be

the kernel of the Fq-linear map eφ : C → C. Then Λ is a discrete A-submodule of C. The

isomorphism eφ : C/Λ ' C induces an isomorphism a−1Λ/Λ ' ker(eφ : C → C) which is a free

A/aA-module of rank r by Proposition 2.6. To show Λ is a lattice, we only need to show it is a

finitely generated A-module. By Lemma 1.3, it is sufficient to show dimK∞(K∞Λ) < +∞. If not,

we can find infinitely many elements λ1, λ2, . . . in Λ which are linearly independent over K∞. Set

Λr =
r∑
i=1

K∞λi ∩ Λ for each i. By Lemma 1.3, Λr is a finitely generated A-module of rank r. The

natural monomorphism a−1Λr/Λr → a−1Λ/Λ implies #(a−1Λ/Λ) > #(a−1Λr/Λr) = #(A/aA)r,

which contradicts to a−1Λ/Λ ' (A/aA)r. It follows that Λ is a lattice in C of rank r.

(3) Let Λ1 and Λ2 be two lattices in C of the same rank r, and let c be a nonzero element in

C such that cΛ1 ⊂ Λ2. As Λ1 ⊂ c−1Λ2, consider

f(z) = cz
∏

06=λ∈c−1Λ2/Λ1

(1− z/eΛ1
(λ)).

Then f(z) is an Fq-linear polynomial. Comparing the roots and coefficients of the entire series

eΛ2
(cz) and f(eΛ1

(z)), they must be equal. Let φ and ψ be the Drinfeld modules over C corre-

sponding to Λ1 and Λ2, respectively. Then f ∈ Hom(φ, ψ).

(4) Given a nonzero morphism f : φ → ψ of Drinfeld modules over C. Let Λ and W be their

corresponding lattices. We have eΛa = φaeΛ, eWa = ψaeW and fφa = ψaf for any a ∈ A. Then

(e−1
w feΛ)a = a(e−1

W feΛ) ∈ C{{τ}}. We must have e−1
w feΛ = c ∈ C× and then cΛ ⊂W .
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2.5 Endomorphism ring of Drinfeld modules

Given a Drinfeld module φ over L of rank r, denote by End(φ) the ring of endomorphisms of φ.

More precisely,

End(φ) = {P ∈ L{τ}|Pφa = φaP for any a ∈ A}.

The ring homomorphism A→ End(φ) by sending a to φa gives an A-module structure on End(φ).

Proposition 2.11. (1) End(φ) is a projective A-module of rank ≤ r2.

(2) If r = 1, the above ring homomorphism A→ End(φ) is an isomorphism.

Proof. Fix some a ∈ A\Fq and a /∈ charA(L). Claim that End(φ) ⊗A A/(a) → EndA(φ[a](L)) is

injective.

Indeed, suppose that P ∈ End(φ) give rise to the trivial endomorphism on φ[a](L). Write

P = Qφa+R for some Q,R ∈ L{τ} with deg(R) < deg(φa). Hence R acts trivial on φ[a](L). Since

a /∈ charA(L), by Proposition 2.6 #φ[a](L) = qr deg(a). As deg(R(z)) < deg(φa(z)) = qr deg(a), we

must have R = 0 and hence P = Qφa. One can easily check that Q ∈ End(φ). This proves the

claim.

Define δ : End(φ)→ Z ∪ {+∞} by δ(P ) = −deg(P ). The mapping δ satisfies

1. δ(P ) =∞ if and only if P = 0.

2. δ(PQ) = δ(P ) + δ(Q) for any P,Q ∈ End(φ).

3. δ(P +Q) ≥ min{δ(P ), δ(Q)} for any P,Q ∈ End(φ).

4. δ(a.P ) = rd∞v∞(a) + δ(P ) for any a ∈ A and P ∈ End(φ).

DenoteM = End(φ). The mapping δ thus gives rise to a norm on the K∞-vector space K∞⊗AM .

Note that End(φ) is discrete in K∞ ⊗AM .

Suppose dimK(K ⊗A M) = ∞. Choose infinitely many P1, P2, . . . ∈ End(φ) which are lin-

early independent over K. Let Vn =
n∑
i=1

K∞Pi and Mn = Vn ∩ M . By Lemma 1.3, Mn is a

projective A-module of rank n. The canonical monomorpshim a−1Mn/Mn → a−1M/M implies

that #(a−1M/M) ≥ #(a−1Mn/Mn) = qn deg(a) for each n. This contradicts to the claim that

#(a−1M/M) ≤ qr2 deg(a). Hence dimK(K ⊗AM)A ≤ r2 and (1) holds.
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If r = 1, End(φ) is an invertible A-module. The monomorphism A → End(φ) induces an

isomorphism K ' K⊗AEnd(φ). So End(φ) can be viewed as a subring of K which is integral over

A. But A is integrally closed in K, we must have A = End(φ).

3 Carlitz module and cyclotomic function fields

In this section, we will construct the cyclotomic extensions of the rational function field Fq(t) by

the Carlitz module.

Let φ be a Drinfeld module over an A-field L of rank r. Fix an algebraic closure L of L. Recall

that φ[I](L) = {x ∈ L|φi(x) = 0 for any i ∈ I} for any nonzero ideal I of A. Let LI be the field

extension of L by adding φ[I](L). For any σ ∈ Gal(L/L), σ preserves φ[I](L) and LI/L is thus a

finite normal extension.

Suppose I is prime to charA(L). Then Ie = (a) for some positive integer e and some a ∈ A

with ι(a) 6= 0. In other words, φa(z) ∈ L[z] is separable and L(a)/L is separable. So LI/L is Galois

and we also have a canonical monomorphism

χ : Gal(LI/L) ↪→ AutA(φ[I]) ' GLr(A/I). (3.1)

In particular, LI/L is an abelian extension if r = 1.

In the remainder of this section, suppose A = Fq[t] and consider the Carlitz module

C : A→ K{τ}, t 7→ t+ τ

over K = Fq(t). For any 0 6= a ∈ A, let C[a] = {λ ∈ C|Ca(λ) = 0} and Ka = K(C[a]). Then C[a]

is a free A/aA-module of rank one.

Theorem 3.1. (1) Ka/K is an abelian Galois extension of Galois group (A/aA)×.

(2) For any maximal ideal p of A, Ka/K is ramified at p if and only if a ∈ p.

(3) Let Oa be the integral closure of A in Ka and let λ be a generator of the A-module C[a].

We have Oa = A[λ].

Proof. First suppose a = pe for some positive integer e and some monic irreducible polynomial p(z)

of degree d. The composition A C−→ A{τ} → A/pA{τ} defines a Drinfeld module C : A→ A/pA{τ}

over A/pA of rank 1 and height 1. So Cpe = τde ∈ A/pA{τ} and hence Cpe − τde ∈ pA{τ}. Define
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φpe(z) = Cpe(z)/Cpe−1(z). Then φpe(z) = Cp(Cpe−1(z))/Cpe−1(z) ∈ A[z] and φpe(z) ≡ zq
de−qd(e−1)

(mod pA[z]). The constant term of φpe(z) is p. In other words, φpe(z) is an Eisenstein polynomial

over A with respect to the prime ideal pA and so it is irreducible over K. For any generator λ of

the A-module C[pe], we have Cpe(λ) = 0 but Cpe−1(λ) 6= 0. Thus φpe(z) is the minimal polynomial

over K of any generator of C[pe] and Kpe = K(λ). So for any 0 6= b ∈ A prime to p, we have an

isomorphism of fields

σb : Kpe ' Kpe by σb(λ) = Cb(λ).

This proves that

χ : Gal(Kpe/K) ' AutA(C[pe]) ' (A/(pe))×.

Moreover, Kpe/K is totally ramified at pA.

Let’s compute the discriminant δ = d(1, λ, . . . , λφ(pe)−1) where φ(b) = #(A/bA)× for any b ∈ A.

By the definition of discriminant,

±δ = ±det(σλi)σ∈Gal(Kpe/K)
0≤i<φ(pe)

=
∏

x 6=y∈(A/peA)×

(Cx(λ)− Cy(λ)).

Differenting both sides of Cpe(z) = Cpe−1(z)φpe(z) and substituting z = λ, we have pe = Cpe−1(λ)φ′pe(λ).

Differenting φpe(z) =
∏

y∈(A/peA)×
(z − Cy(λ)) and substituting z = Cx(λ), we have

φ′pe(Cx(λ)) =
∏

y∈(A/peA)×, y 6=x

(Cx(λ)− Cy(λ)).

Then

±δ =
∏

x∈(A/pA)×

φ′pe(Cx(λ))

=
∏

σ∈Gal(Kpe/K)

σ(φ′pe(λ)) = NKpe/K(φ′pe(λ))

= NKpe/K(pe)/NKpe/K(Cpe−1(λ))

= NKpe/K(pe)/NKpe/Kp(NKp/K(Cpe−1(λ)))

= ±pq
(e−1)d(eqd−e−1).

Let w ∈ Ope . Then w =
φ(pe)−1∑
i=0

aiλ
i for some ai ∈ K. Hence

TrKpe/K(wλj) =

φ(pe)−1∑
i=0

aiTrKpe/Kλ
i+j) ∈ A for any 0 ≤ j < φ(pe).

12



Set T = (TrKpe/K(λi+j))0≤i,j<φ(pe), a = (a0, . . . , aφ(pe)−1) and b = (Trw, . . . ,Tr(wλφ(pe)−1)). We

have b = aT and bT ∗ = δa. This shows δai ∈ A. Since δ is a power of p, we have pnw =
φ(pe)−1∑
i=0

biλ
i

for some n ∈ N and bi ∈ A such that at least one bi not divided by p. Let i0 be the smallest integer

such that vp(bi0) = 0. Since vp(λ) = 1/φ(pe), we have vp(bi0λi0) < vp(biλ
i) for any i 6= i0. So

n ≤ vp(pnw) = v(

φ(pe)−1∑
i=0

biλ
i) = vp(bi0λ

i0) = i0/φ(pe) < 1.

We must have n = 0 and then w ∈ A[λ]. So Ope = A[λ] and 1, λ, . . . , λφ(pe)−1 is an integral basis

of Ope/A. Hence δOpe/A is a power of p. As a consequence, Kpe/K is unramified at any prime

ideal of A not equal to pA. We prove the theorem for a = pe.

For general a, write a = pe11 · · · p
et
t for some pairwise different irreducible polynomials pi and

some ei ∈ N. We prove our theorem by induction on t. Let b = pe11 · · · p
et−1

t−1 and λ a generator

of C[a]. Then Cb(λ) is a generator of C[pett ] and Cpett (λ) is a generator of C[b]. By induction,

our theorem holds for b and pett . Choose f, g ∈ A such that fb + gpett = 1. We have λ =

Cf (Cb(λ)) +Cg(Cpett (λ)) and thus Ka = Kb ·Kp
et
t
. Now Kb ∩Kp

et
t

= K, because Kb is unramified

at ptA and Kp
et
t

is totally ramified at ptA. As a consequence,

[Ka : K] = [Kb : K] · [Kp
et
t

: K] = φ(b)φ(pett ) = φ(a).

So the monomorphism χ : Gal(Ka/K) ↪→ (A/aA)× given in (3.1) is an isomorphism.

Corollary 3.2. For any b ∈ A prime to a, there exists a unique σb ∈ Gal(Ka/K) such that

σb(λ) = Cb(λ) for any generator λ of C[a]. In particular, if b is a monic irreducible polynomial

furthermore, σb = (bA,Ka/K).

4 Reduction theory

4.1 Drinfeld modules over rings

We can also define Drinfeld modules over arbitrary A-algebras or even A-schemes. In such gener-

alizing, the underlying Fq-vector space scheme need only be locally isomorphic to Ga, so it should

be the Fq-vector space scheme associated to a line bundle on the base scheme.

For simplicity, let R be an A-algebra with PicR = 0. This holds if R is a principle ideal domain.

Then a Drinfeld module over R is a ring homomorphism

φ : A→ R{τ}, a→ φa
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such that c.t.(φa) = a ∈ R and l.c.(φa) ∈ R× for any 0 6= a ∈ A and φa 6= a for some a ∈ A. Then

for any maximal ideal m of R, φ mod m yields a Drinfeld module over R/m of the same rank.

4.2 Reduction theory of Drinfeld modules

Let R be a discrete valuation ring with fraction field L, maximal ideal m and residue field F. Let

v : K× → Z be the discrete valuation.

Definition 4.1. Let φ be a Drinfeld module over L of rank r.

(1) We say φ has integral coefficients if φ(A) ⊂ R{τ} and the composition A φ−→ R{τ} → F{τ}

defines a Drinfeld module over F of rank 0 < r1 ≤ r.

(2) We say φ has stable reduction if it is isomorphic to a Drinfeld module ψ over L which has

integral coefficients.

(3) We say φ has good reduction if φ is isomorphic to a Drinfeld module ψ over L such that

ψ(A) ⊂ R{τ} and l.c.(ψa) ∈ R× for any 0 6= a ∈ A.

(4) We say φ has potentially stable (resp. good) reduction if there exists a finite extension

(L′, v′) of (L, v) such that φ has stable (resp. good) reduction on L′.

Lemma 4.2. Let φ and ψ be two Drinfeld modules over L of the same rank. If φ and ψ have

integral coefficients, then for any isomorphism c : φ ' ψ, we have c ∈ R×.

Proof. Choose a ∈ A\Fq such that deg(φa mod m) > 0. Write φa =
∑
i

aiτ
i for some ai ∈ R.

There exists n > 0 such that an ∈ R× and ai ∈ m for any i > m. As ψa = cφac
−1 ∈ R{τ}, we have

c1−q
n

an ∈ R. This implies c−1 ∈ R. Similarly, ψ = c−1φc implies c ∈ R. This proves c ∈ R×.

Corollary 4.3. If φ has stable reduction which is isomorphic to a Drinfeld module ψ having integral

coefficients, then the isomorphic class of ψ mod m does not depend on the choice of ψ.

Lemma 4.4. Let φ be a Drinfeld module over K. Then φ has stable reduction on some finite

extension L′ of K.

Proof. Choose a1, . . . , an ∈ A which generates A as an Fq-algebra. Write each φai =
∑
j

aijτ
j for

some aij ∈ L and set c = min
i,j≥1

v(aij)
qj−1 . Let n be the denominator of the rational number c. Let L′

be a totally ramifeld extension of L of index n and let α ∈ L′ with v(α) = c. Put ψa = αφaα
−1

for any a ∈ A. Then ψai =
∑
j

aijα
1−qjτ j ∈ R′{τ} for any 1 ≤ i ≤ n and aijα1−qj ∈ R′× for some
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1 ≤ i ≤ n and j ≥ 1 where R′ is the valuation ring of L′. This shows that ψ : A → L′{τ} has

integral coefficients. In other words, φ has stable reduction over L′.

Corollary 4.5. Let φ be a Drinfeld module over L of rank 1. If there exists a ∈ A\Fq such that

l.c.(φa) ∈ R×, then φ is a Drinfeld module over R. In particular, φ has good reduction.

Proof. By Lemma 4.4, there exists a finite ramifield extension L′ of L and α ∈ L′ such that

αφα−1(A) ⊂ R′{τ} and the composition A αφα−1

−−−−→ R′{τ} → R′/m′{τ} defines a rank one Drinfeld

module over R′/m′, where R′ is the discrete valuation ring of L′ and m′ is the maximal ideal of R′.

So deg(αφbα
−1) = deg(αφbα

−1 mod m′) = deg(b) and hence l.c.(αφbα
−1) = l.c.(φb)α

1−qdeg a ∈ R′×

for any b ∈ A. In particular, l.c.(φa)α1−qdeg(a) ∈ R′×. Since l.c.(φa) ∈ R×, we have α ∈ R′×. So

φb ∈ R{τ} and l.c.(φb) ∈ R× for any b ∈ R. In other words, φ is a Drinfeld module over R.

5 Class field theory

Let I be the group of fractional A-ideals in K, P the group of principle fractional A-ideals in K,

and PicA = I/P the ideal class group of A. In this section, fix an A-field L.

5.1 Rank one Drinfeld modules over C

Proposition 5.1. We have bijections

PicA ' {rank 1 lattices in C}/homothety ' {rank 1 Drinfeld modules over C}/isomorphism.

Proof. We need only to consider the first map. For injectivity, let I and I ′ be two fractional ideals

of K such that they are homothety in C. That is I = cI ′ for some c ∈ C. We must have c ∈ K×.

For surjectivity, take a lattice Λ in C of rank 1 and 0 6= λ ∈ Λ. Replacing Λ by λ−1Λ, we may

assume that 1 ∈ Λ. The injective homomorphism Λ→ K ⊗A Λ = K implies that Λ is a fractional

ideal of K.

Proposition 5.2. Every rank 1 Drinfeld module φ over C is isomorphic to one defined over K∞.

Proof. Let Λ be the corresponding lattice in C to φ. By Proposition 5.1, we may assume Λ ⊂

K ⊂ K∞. By the construction of eΛ(z) in Theorem 1.7 and φa(z) in Corollary 1.8, we have

eΛ(z) ∈ K∞[[z]] and φa ∈ K∞{τ} for any a ∈ A.
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5.2 The action of ideals on Drinfeld modules

Let φ be a Drinfeld module over L of rank r and height h. For any nonzero ideal I of A, the left ideal∑
i∈I

L{τ}φi of L{τ} is generated by a unique monic polynomial φI . The scheme Spec L[z]/(φI(z))

represents the functor

φ[I] : AlgL → ModA, R 7→ φ(R)[I].

We have #φ[I](L) = qdeg(φI)−w(φI).

Lemma 5.3. (1) deg(φI) = r deg(I).

(2) w(φI) = 0 if 0 = charA(L) and w(φI) = hvp(I) deg(p) if 0 6= p = charA(L).

Proof. First claim that there exists an ideal J of A prime to I such that J * p and IJ = (a) for

some a ∈ A.

Indeed, choose aq ∈ qvp(I)\qvq(I)+1 for each maximal ideal q of A dividing I or q = p. By

strong approximation theorem, there exists a ∈ K× such that vq(a− aq) > vq(I) for any maximal

ideal q of A dividing I or q = p and vq(a) ≥ 0 otherwise. Thus a ∈ I and vq(a) = vq(I) when q|I

or q = p. Take J = aI−1. Then J is an ideal of A satisfying the required conditions.

So we have an isomorphism φ[a] ' φ[I]⊕ φ[J ] : AlgL → ModA of functors and hence

Spec L[z]/(φa(z)) = Spec L[z]/(φI(z))×L Spec L[z]/(φJ(z)) = Spec L[z]/(φI(z))⊗L L[z]/(φJ(z)).

So deg(φa(z)) = deg(φI(z)) · deg(φJ(z)) and deg(φa) = deg(φI) + deg(φJ). By counting elements

of both sides of φ[a](L) = φ[I](L)⊕φ[J ](L), we have qdeg(φa)−w(φa) = qdeg(φI)−w(φI)qdeg(φJ )−w(φJ )

and hence deg(φa)−w(φa) = deg(φI)−w(φI) + deg(φJ)−w(φJ). So w(φa) = w(φI) +w(φJ). By

deg(a) = deg(I) + deg(J) and vp(a) = vp(I) + vp(J), it suffices to prove the lemma for (a) and J .

As l.c.(φa)φ(a) = φa, the lemma holds for (a) by the definitions of rank and height. By

Proposition 2.6, we have #φ[J ](L) = qr deg(J). Choose positive integer n such that Jn = (b) for

some b ∈ A. T ι(b) 6= 0 and φb(z) is a separable polynomial over L and so is φI(z). This implies

that #φ[J ](L) = deg(φJ(z)) and hence deg(φJ) = r deg(J) and w(φJ) = 0 = hvp(J) deg(p).

Lemma 5.4. Let I be a nonzero ideal of A. For any a ∈ A, φIφa ∈ L{τ}φI and φIφa = (I ∗φ)aφI

for a unique (I ∗ φ)a ∈ L{τ}. Then

I ∗ φ : A→ L{τ}, a 7→ (I ∗ φ)a
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is a Drinfeld module over L and φI : φ→ I ∗ φ is a isogeny.

Proof. Since φI is a generator of
∑
i∈I

L{τ}φi, then φI =
∑
i∈I

fiφi for some fi ∈ L{τ}. Hence

φIφa =
∑
i∈I

fiφiφa =
∑
i∈I

fiφaφi and hence φIφa = (I ∗ φ)aφI for a unique (I ∗ φ)a ∈ L{τ}.

Obviously, I ∗ φ : A → L{τ}, a 7→ (I ∗ φ)a is a ring homomorphism. By φIφa = (I ∗ φ)aφI , the

constant term of (I ∗ φ)a is ι(a)q
w(φa)

. To show I ∗ φ is a Drinfeld module, we need only to show

that ι(a)q
w(φa)

= ι(a). If w(φa) = 0, there is nothing to prove. Otherwise, by Lemma 5.3 we have

charA(L) = 0 and p = charA(L) 6= 0 and w(φa) = hvp(a) deg(p) > 0. In this case, ι(a)q
deg(p)

= ι(a)

and hence ι(a)q
w(φa)

= ι(a).

Lemma 5.5. (1) For any two nonzero ideals I and J of A, we have (IJ) ∗ φ = J ∗ (I ∗ φ).

(2) For any 0 6= a ∈ A, we have (a) ∗ φ = u−1φu where u = l.c.(φa).

Proof. We have

L{τ}φIJ =
∑

i∈I,j∈J
L{τ}φiφj =

∑
j∈J

L{τ}φIφj =
∑
j∈J

(I ∗ φ)jφI = L{τ}(I ∗ φ)JφI

and then φIJ = (I ∗ φ)JφI . For any b ∈ A, we have

((IJ)∗φ)bφIJ = φIJφb = (I∗φ)JφIφb = (I∗φ)J(I∗φ)bφI = (J∗(I∗φ))b(I∗φ)JφI = (J∗(I∗φ))bφIJ

So ((IJ) ∗ φ)b = (J ∗ (I ∗ φ))b for any b ∈ A and hence (IJ) ∗ φ = J ∗ (I ∗ φ).

If I = (a) for some a ∈ A, then φa = uφI . For any b ∈ A,

(I ∗ φ)bu
−1φa = (I ∗ φ)bφI = φIφb = u−1φaφb = u−1φbφa

and I ∗ φb = u−1φbu. Then u−1 defines an isomorphism φ→ I ∗ φ.

If l.c.(φa) has an qr deg(a)-th root v in L, define the action of the fractional ideal (a−1) on φ to

be (a−1) ∗ φ := vφv−1. Then (a) ∗ (a−1) ∗ φ = φ. For any nonzero ideal I of A, the action of the

fractional idea a−1I on φ is given by (a−1I) ∗ φ := I ∗ ((a−1) ∗ φ).

Corollary 5.6. Fix a perfect subfield L0 of L. Let X be the set of Drinfeld modules φ over L

such that l.c.(φa) ∈ L0 for each a ∈ A. The operation ∗ defines an action of the group I on X. It

induces an action of PicA on the set of isomorphic classes of Drinfeld modules in X.

Proposition 5.7. Let X(C) be the set of isomorphic classes of Drinfeld modules over C of rank

one. Then X(C) is a principle homogeneous space under the action of PicA.
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Proof. Suppose φ is a Drinfeld module over C of rank one. Let Λ and I ∗ Λ be the corresponding

lattices of φ and I ∗ φ, respectively. By Theorem 5.4, we have a commutative diagram

C/Λ //

eΛ

��

C/(I ∗ Λ)

eI∗Λ

��
φ(C)

φI // (I ∗ φ)(C)

of A-modules whose vertical arrows are isomorpshims. Since ker(φI) is the I-torsion submodule of

φ(C), we have I ∗ Λ = I−1Λ and our assertion holds.

5.3 Sgn-normalized Drinfeld modules

Recall that F∞ is the residue field of ∞ ∈ X and d∞ = dimFq (F∞).

Definition 5.8. A sgn function onK×∞ is a homomorphism sgn : K× → F×∞ such that sgn|F×∞ = id.

There are exactly qd∞−1 sgn functions onK×∞. From now on, fix a sgn function sgn : K×∞ → F×∞

and a uniformizer π ∈ K∞ with sgn(π) = 1.

Let U1 = {x ∈ K∞|v∞(x − 1) > 0}. Then sgn(U1) = 1 because U1 is a pro-p-group. The

uniformizer π ∈ K∞ defines an isomorphism K∞ ' F∞((π)). Any a ∈ K×∞ can be uniquely

written as a = ζπnu for some ζ ∈ F×∞, n ∈ Z and u ∈ U1, then sgn(a) = ζ.

Definition 5.9. A rank one Drinfeld module φ over L is called sgn-normalized if there exists an

Fq-algebra homomorphism η : F∞ → L such that l.c.(φa) = η(sgn(a)) for any 0 6= a ∈ A.

Example 5.10. Suppose A = Fq[t] and sgn(t) = 1. The sgn-normalized Drinfeld module over L

is just the Carlitz module given by C : A→ L{τ}, t 7→ t+ τ.

Theorem 5.11. (1) Every rank one Drinfeld module φ over C is isomorphic to a sgn-normalized

Drinfeld module.

(2) The set of sgn-normalized Drinfeld modules over C isomorphic to φ is a principle homoge-

neous space under F×∞/F×q .

Proof. (1) Extend φ : A→ C{τ} to a ring homomorphism from K to the ring C{{τ−1}} of twist

Laurent series which is still denoted by φ. For any a ∈ A, we have −deg(φa) = vτ−1(φa) =

d∞v∞(a). So we can extend φ : K → C{{τ−1}} to a continuous homomorphism K∞ → C{{τ−1}}

denoted by φ again. Choose α ∈ C such that α1−qd∞ = l.c.(φπ−1). Replacing φ by α−1φα, we
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may assume l.c.(φπ−1) = 1. Define η : F∞ → L by η(c) = l.c.(φc) for any c ∈ F×∞ and η(0) = 0. If

we write any 0 6= a ∈ A as a = cπnu for some c ∈ F×∞, n ∈ Z and u ∈ U1, then we have

l.c.(φa) = l.c.(φcφ
n
πφu) = l.c.(φc) = η(c) = η(sgn(a)).

So φ is sgn-normalized.

(2) We may assume that φ is sgn-normalized. Let α ∈ C×. Then α−1φα is sgn-normalized

if and only if 1 = l.c.(α−1φπ−1α) = αq
deg(F∞)−1 if and only if α ∈ F×∞. By Proposition 5.20,

Aut(φ) = A× = F×q and then α−1φα = φ implies α ∈ F×q . This proves (2).

Definition 5.12. Let X+(L) be the set of sgn-normalized Drinfeld modules over L. Let P+ be

the subgroup of I generated by (c) for those c ∈ K× such that sgn(c) = 1 and let Pic+A = I/P+.

Proposition 5.13. The set X+(L) is stable under I. For any φ ∈ X+(L), StabI(φ) = P+.

Proof. By definition, there exists η : F∞ → L such that l.c.(φa) = η(sgn(a)) for any a ∈ A. For

any nonzero ideal I of A, (I ∗φ)aφI = φIφa implies l.c.((I ∗φ)a) = l.c.(φa)q
deg(φI )

= l.c.(φa)q
deg(I)

=

η(sgn(a))q
deg(I)

. This shows I ∗ φ ∈ X+(L). By Corollary 5.6, X+(L) is stable under I.

Now let I ∈ I such that I ∗φ = φ. Then I = b−1J for some b ∈ A and some ideal J of A. Hence

φ = I ∗φ = (b−1)∗ (J ∗φ) and (b)∗φ = J ∗φ. The composition φ φJ−−→ J ∗φ = (b)∗φ l.c.(φb)−−−−→ φ is an

endomorphism of φ. By Proposition 5.20, End(φ) = A and hence l.c.(φb)φJ = φc for some c ∈ A.

Set J ′ = J+(c). Then φJ′ = φJ = l.c.(φc)
−1φc and by Lemma 5.3, we have deg J = deg J ′ = deg c

and hence J = (c). By l.c.(φb)φJ = φc, we have η(sgn(b)) = l.c.(φc) = l.c.(φb) = η(sgn(b)) and

hence sgn(b−1c) = 1. So I = (b−1c) ∈ P+.

Theorem 5.14. The action of I on Drinfeld modules makes X+(C) a principle homogeneous

space under Pic+A.

Proof. By Proposition 5.13, X+(C) is a disjoint union of principle homogeneous spaces under

Pic+A. So we need only to check that #X+(C) = #PicA. By Proposition 5.1 and Theorem 5.11,

we have #X+(C) = #PicA ·#F×∞/F×q . On the other hand, the short exact sequence

1→ P/P+ → I/P+ = Pic+A→ I/P = PicA→ 1

and the isomorphism P/P+ ' F×∞/F×q induced by sgn show that #Pic+A = #PicA ·#F×∞/F×q .
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5.4 The narrow Hilbert class field

Fix φ ∈ X+(C). Define

H+ = K(all coefficients of φa for any a ∈ A).

Then φ is a Drinfeld module over H+, so is I ∗φ for any I ∈ I. By Theorem 5.14, these are objects

in X+(C). So H+ is independent of the choice of φ, which is called the narrow Hilbert class field

of (A, sgn).

Theorem 5.15. (1) The field H+ is a finite abelian extension of K.

(2) The extension H+/K is unramified outside ∞ ∈ X.

(3) We have Gal(H+/K) ' Pic+A.

Proof. (1) The group Aut(C/K) of automorphisms of C fixing K acts on X+(C), so it maps

H+ to itself. Also, H+ is finitely generated over K. These imply that H+ is a finite normal

extension of K. By Proposition 5.2, φ is isomorphic to Drinfeld module ψ over K∞. Extend

ψ : A → K∞{{τ−1}} to ψ : K∞ → K∞{{τ−1}} as in the proof of Theorem 5.11 and let c ∈ C

such that c1−q
d∞

= l.c.(ψπ−1) ∈ K∞. Then c−1ψc is a sgn-normalized Drinfeld module over a

finite separable extension K∞(c) of K∞ isomorphic to φ. The completion K∞ of a global field K

is a separable extension of K, hence H+ is separable over K. The automorphism group of X+(C)

as a principal homogeneous space under Pic+A is equal to Pic+A, so we have a monomorphism

χ : Gal(H+/K)→ AutX+(C) ' Pic+A. So Gal(H+/K) is a finite abelian group.

(2) Let B+ be the integral closure of A in H+. Let P be a nonzero prime ideal of B+ lying

above p of A. Let FP = B+/P. By Corollary 4.5, each φ ∈ X+(H+) = X+(C) is a Drinfeld module

over the localization B+
P, so there is a reduction map ρ : X+(H+) → X+(FP). By Proposition

5.13, Pic+A acts faithfully on the source and target. Moreover, the map ρ is Pic+A-equivariant,

and by Theorem 5.14 X+(H+) is a principal homogeneous space under Pic+A, so ρ is injective. If

some σ ∈ Gal(H+/K) belongs to the inertia group at P, then σ acts trivially on X+(FP), so σ

acts trivially on X+(H+) and σ = 1. Thus H+/K is unramified at P.

(3) Let DP = {σ ∈ Gal(H+/K)|σ(P) = P}. By (2), DP ' Gal(FP/Fp). The Frobenius

element in Gal(FP/Fp) defines an elment Frobp ∈ Gal(H+/K). For any φ̄ ∈ X+(FP), we have

φ̄p = τdeg p by Lemma 5.3. For any a ∈ A, the equality (p ∗ φ̄)aφ̄p = φ̄pφ̄a implies that (p ∗ φ̄)a =

Frobpφ̄a and hence p ∗ φ̄ = Frobpφ̄.
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Since ρ : X+(H+)→ X+(FP) is injective and Pic+A-equivariant, then the action of Frobp and

p on X+(H+) coincide. Thus χ : Gal(H+/K) → Pic+A maps Frobp to the class of p in Pic+A.

Such class generates Pic+A, so χ is surjective.

5.5 Hilbert class field

By the short exact sequence

1→ P/P+ → Pic+A→ PicA→ 1,

the extension K ⊂ H+ decomposes into two abelian extensions K PicA−−−→ H
P/P+

−−−−→ H+ with Galois

group as shown. The surjective map X+(C)→ X(C) is compatible with the epimorphism of groups

Pic+A→ PicA. By Proposition 5.2, each element of X(C) is represented by a Drinfeld module over

K∞, so the decomposition group D∞ of H+/K at∞ ∈ X acts trivially on X(C). So D∞ ⊂ P/P+.

In other words, ∞ splits completely in H/K. The Hilbert class field HA of A is defined as the

maximal unramified extension of K in which ∞ splits completely. Thus H ⊂ HA. Class field

theory shows that PicA ' Gal(HA/K). So HA = H.

5.6 Ray class fields

In this section, we generalize the construction to obtain all the abelian extensions of K, even the

ramified ones. Fix notations as follows.

m: a nonzero ideal of A.

Im: the subgroup of I generated by maximal ideals of A not dividing m.

Pm: the subgroup of I generated by (c) for those c ∈ K× with c ≡ 1 (mod m).

P+
m : the subgroup of I generated by (c) for those c ∈ K× with c ≡ 1 (mod m) and sgn(c) = 1.

PicmA := Im/Pm, the ray class group modulo m of A.

Pic+
mA := Im/P+

m , the narrow ray class group modulo m of A.

X+
m(C) := {(φ, λ)|φ ∈ X+(C) and λ generates the A/m-module φ[m](C)}.

Here c ≡ 1 (mod m) means that c is quotient b/c of two elements of A relative prime to m such

that a ≡ b (mod m).
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Lemma 5.16. We have the following commutative diagram

0

��

0

��
0 //

��

(Im ∩ P+)/P+
m

��

// (Im ∩ P)/Pm

��

// 0

0 // Pm/P+
m

��

// Im/P+
m

��

// Im/Pm

��

// 0

0 // P/P+

��

// I/P+ //

��

I/P //

��

0

0 0 0

with exact rows and lines. Moreover, we have canonical isomorphisms Pm/P+
m ' P/P+ ' F×∞/F×q

and (Im ∩ P+)/P+
m ' (Im ∩ P)/Pm ' (A/m)×.

Proof. The second and third lines are obviously exact. By the snake lemma, to prove exactness of

lines and rows in the above diagram, we need only to show that Pm/P+
m → P/P+ is an isomorphism

and Im/Pm → I/P is surjective.

(1) Recall in Theorem 5.14 that the sgn function induces an isomorphism P/P+ ' F×∞/F×q .

Obviously, the sgn function induces a monomorphism Pm/P+
m → F×∞/F×q . To show it is surjective,

we need find c ∈ 1 + m such that sgn(c) = α for any α ∈ F×∞. Choose x ∈ K×∞ with sgn(x) = α.

Then v∞(x− a/b) > v∞(x) for some a, b ∈ A. We have a/bx ∈ U1 and hence

sgn(abq
d∞−2

) = sgn(a/b)sgn(b)q
d∞−1

= sgn(a/b) = sgn(x)sgn(a/bx) = sgn(x) = α.

Take 0 6= y ∈ m and set c = 1 + abq
d∞−2

yq
d∞−1. Then c ≡ 1 (mod m) and sgn(c) = α.

(2) The surjectivity of Im/Pm → I/P is equivalent to I = ImP. Let I be a nonzero ideal of A.

For each maximal ideal p of A dividing Im, choose ap ∈ pvp(I)\pvp(I)+1. By strong approximation

theorem, there exists a ∈ K× such that vp(a−ap) > vp(I) for any maximal ideal p dividing Im and

vp(a) ≥ 0 for any p - Im. Take J = aI−1. Then J is an ideal of A prime to m and I = aJ−1 ∈ ImP.

(3) It remains to show (A/m)× ' (Im ∩ P)/Pm. Define a map µ : Im ∩ P+ → (A/m)×

as follows. Any element of Im ∩ P+ is of the form (c) for some c ∈ K× with sgn(c) = 1 and

(c) ∈ Im. So there exist ideals I and J of A prime to m such that (c) = IJ−1. Then In = (a)

for some positive integer n and some a ∈ A prime to m. As (c) = In(In−1J)−1 = (a)(In−1J)−1,
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we have (ac−1) = In−1J and then ac−1 ∈ A prime to m. Define µ((c)) = (a mod m) · (ac−1

mod m)−1 ∈ (A/m)×. Obviously, µ is a well defined homomorphism of groups. If µ((c)) = 1, then

a ≡ ac−1 (mod m) and hence (c) = P+
m . It follows that ker(µ) = P+

m . Given x ∈ A prime to m,

we can find y ∈ m such that deg(y) > deg(x) and sgn(y) = 1. Then sgn(x + y) = sgn(y) = 1,

(x+ y) ∈ P+
m and µ((x+ y)) = x mod m ∈ (A/m)×. This shows that µ is surjective and hence it

induces an isomorphism (Im ∩ P+)/P+
m ' (A/m)×.

Lemma 5.17. If m is prime to charA(L), let

X+
m(L) = {(φ, λ)|φ ∈ X+(L) and λ generates the A/m-module φ[m](L)}.

Then we have an action of Im on X+
m(L) such that the stabilizer of each (φ, λ) is P+

m .

Proof. Let (φ, λ) ∈ X+
m(L) and let I be an ideal of A prime to m. The isogeny φI : φ → I ∗ φ

induces an A-linear map φ∗I : φ[m](L)→ (I ∗φ)[m](L) with source and target are free A/m-modules

of rank one. As I is prime to m, φ∗I is injective and hence bijective. So φ∗I(λ) is a generator of

(I ∗φ)[m](L). Define I ∗(φ, λ) = (I ∗φ, φ∗I(λ)), which can be extended to an action of Im on X+
m(L).

Suppose I ∗ (φ, λ) = (φ, λ) for some I ∈ Im. By Theorem 5.14, I = (c) for some c ∈ K× with

sgn(c) = 1. As (c) ∈ Im, then (c) ∩ A is an ideal of A prime to m. Choose x ∈ (1 + m) ∩ (c) ∩ A

and take a = xq
d∞−1. Then a ∈ A and sgn(a) = 1 and a = cb for some b ∈ A. Hence a ∈ 1 + m

and sgn(b) = 1. The equality φ∗(c)(λ) = λ means that φa(λ) = φb(λ), and hence a − b ∈ m. This

shows that I = (c) ∈ P+
m and StabIm(φ, λ) = P+

m .

Theorem 5.18. Fix (φ, λ) ∈ X+(C). Define the narrow ray class field H+
m modulo m of (A, sgn)

to be H+(λ).

(1) The action of Im on X+
m(C) makes it to be a principle homogeneous space under Pic+

mA.

(2) The field H+
m is independent of the choice of (φ, λ), and the extension H+

m/K is finite

abelian, unramified at each prime of A not dividing m.

(3) We have Gal(H+
m/K) ' Pic+

mA.

(4) Let Hm be the subfield of H+
m fixed by Pm/P+

m . Then Hm/K splits at ∞ and Gal(Hm/K) =

PicmA.

Proof. By Lemma 5.17, X+
m(C) is a disjoint of principle homogeneous spaces under Pic+

mA. To prove

(1), we need only to show that #Pic+
mA = #X+

m(C). By Theorem 5.14, #X+
m(C) = #X+(C) ·
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#(A/m)× = #Pic+A ·#(A/m)×. By Lemma 5.16, #Pic+
mA = #Pic+A ·#(A/m)×. So (1) holds.

(2) For any I ∈ Im, I ∗(φ, λ) = (I ∗φ, φ∗I(λ)). So H+
m is independent of the choice of (φ, λ). The

group Aut(C/K) also acts on X+
m(C), so H+

m is stable under Aut(C/K). This shows that H+
m/K

is a finite Galois extension. The automorphism group of X+
m(C) as a principle homogeneous space

under Pic+
mA is equal to Pic+

mA. So we have a monomorphism

χ : Gal(H+
m/K)→ AutX+

m(C) ' Pic+
mA.

Thus H+
m/K is a finite abelian extension.

Let B be the integral closure of A in H+
m , and let P be a maximal ideal of B lying above a

maximal ideal p of A not dividing m. By Corollary 4.5, for each (φ, λ) ∈ X+
m(H+

m ) = X+
m(C), φ is

a Drinfeld module over the localization BP. So there is a reduction map ρ : X+
m(H+

m ) → X+
m(FP)

of principle homogeneous spaces under Pic+
mA. By (1), ρ is injective. If some σ ∈ Gal(H+

m/K)

belongs to the inertia group at P, then σ acts trivially on X+
m(FP). Hence σ acts trivially on

X+
m(H+

m ) and σ = 1. Thus H+
m/K is unramified at P.

(3) The Frobenius element in Gal(FP/Fp) defines an elment Frobp ∈ Gal(H+
m/K). For any

φ̄ ∈ X+
m(FP), we have φ̄p = τdeg p by Lemma 5.3. For any a ∈ A, the equality (p ∗ φ̄)aφ̄p = φ̄pφ̄a

implies that (p ∗ φ̄)a = Frobpφ̄a and hence p ∗ φ̄ = Frobpφ̄.

Since ρ : X+
m(H+)→ X+

m(FP) is injective and Pic+A-equivariant, it follows that the actions of

Frobp ∈ Gal(H+
m ) and p ∈ Im on X+

m(H+
m ) coincide. Thus χ : Gal(H+

m/K) → Pic+
mA sends Frobp

to the class of p in Pic+
mA. Such class generates Pic+

mA, so χ is surjective.

(4) Let Xm(C) be the set of isomorphic classes in X+
m(C). Then Xm(C) is a principle ho-

mogeneous space under PicmA. The surjective map X+
m(C) → Xm(C) is compatible with the

epimorphism of groups Pic+
mA→ PicmA. By Proposition 5.2, each element of X(C) is represented

by a Drinfeld module over K∞, so the decomposition group D∞ of H+
m/K at ∞ acts trivially

on Xm(C). So D∞ ⊂ Pm/P+
m . In other words, ∞ splits completely in Hm/K. The equality

Gal(Hm/K) = PicmA holds by Lemma 5.16.

5.7 The maximal abelian extension of K

In this subsection, we construct the maximal abelian extension Kab of K.
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Theorem 5.19. Let Kab,∞ =
⋃
m
Hm when m runs over all nonzero ideals of A = Γ(X−{∞},OX)

and let Kc :=
⋃
n≥1

FqnK be the constant extension of K.

(1) Then Kab,∞ is the maximal abelian extension of K in which ∞ splits completely.

(2) Choose another closed point∞′ of X. Then Kab is the compositum Kc, Kab,∞ and Kab,∞′ .

Before proving the theorem, first recall the class field theory for function fields.

For any closed point p of X, denote by Kp the completion of K at p, Op the discrete valuation

ring of Kp and vp the discrete valuation. Define the idèle group of K to be

A×K = {(ap) ∈
∏

p∈|X|

K×p | ap ∈ O×p for almost all p}.

For any effective divisor D =
∑

p∈|X|
npp of X, let UD =

∏
p∈|X|

U
(np)
p , where U (0)

p = O×p and U (np)
p =

{a ∈ Kp|vp(a − 1) ≥ np} if np > 0. Equip the idèle group a canonical topology by taking a basic

system of neighborhoods of 1 ∈ A×K to be the sets UD where D runs over all the effective divisors

of X. Therefore A×K is a locally compact group. The inclusion K ⊂ Kp defines the diagonal

embedding K× → A×K which makes K× to be a discrete subgroup of A×K . We call the quotient

group CK = A×K/K× the idèle class group of K. For any finite field extension L/K, we have the

norm map

NL/K : A×L → A×K , NL/K((aP))p =
∏
P|p

NLP/Kp
(aP).

The thrust of class field theory is that there exists a continuous homomorphism

(•,Kab/K) : A×K → Gal(Kab/K),

which satisfies the following properties:

(i) (•,Kab/K) has dense image and its kenel is K×.

(ii) For each p ∈ |X|, (•,Kab/K) is compatible with the local reciprocity map for Kp. In

particular, if πp ∈ Kp is a uniformizer, then (πp,K
ab/K) is a Frobenius element for p.

(iii) For any finite abelian extension L/K, (•,Kab/K) induces an isomorphism

A×K/K
×NL/K(A×L ) ' Gal(L/K).
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(iv) The map L 7→ NL := K×NL/K(A×L ) is a one-to-one correspondence between finite abelian

extensions of K and open subgroups of A×K of finite index containing K×. Moreover, NLL′ =

NL ∩NL′ and NL∩L′ = NLNL′ for any two finite abelian extensions L,L′ of K.

Observe that any open subgroup of A×K contains UD for some effective divisor D of X. To

specify an open subgroup of finite index in CK , it suffices to give an effective divisor D of X and

an open subgroup N of A×K of finite index containing K×UD. The corresponding abelian extension

KN/K should have these properties:

(a) KN/K is unramified outside Supp(D).

(b) There is an isomorphism A×K/N ' Gal(KN/K), which carries a uniformizer at p /∈ Supp(D)

to the Frobenius element Frobp ∈ Gal(KN/K).

The ray class field KD is the compositum of all finite extensions obtained this way. Then

Gal(KD/K) is isomorphic to the profinite completion of the ray class group CD := A×K/K×UD.

Suppose ∞ /∈ Supp(D). The divisor D =
∑
p
npp gives an ideal m of A such that vp(m) = np

for any p 6=∞. Let π∞ ∈ K∞ be a uniformizer.

Lemma 5.20. Suppose∞ /∈ Supp(D). We have A×K/K×UDπZ
∞ ' PicmA. In particular, K×UDπZ

∞

is a subgroup of A×K of finite index. Any open subgroup of A×K of finite index containing K×UD

must contains K×UDπnZ∞ for some positive integer n.

Proof. Let

U ′D = {(ap) ∈ A×K |vp(ap − 1) ≥ np for any p ∈ Supp(D)}.

By the weak approximation theorem, we have A×K = K×U ′D and hence

A×K/K
×UDπ

Z
∞ = K×U ′D/K

×UDπ
Z
∞ ' U ′D/(U ′D ∩K×UDπZ

∞) ' U ′D/((K× ∩ U ′D)UDπ
Z
∞).

Any p ∈ |X| − {∞} defines a maximal ideal of A which is still denoted by p. The canonical

homomorphism

U ′D → Im, (ap) 7→
∏
p6=∞

pvp(ap)

induces an isomorphism

U ′D/((K
× ∩ U ′D)UDπ

Z
∞) ' Im/Pm = PicmA.
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Let N be an open subgroup of A×K of finite index containing K×UD and let N = N/K×UD. So

N is a subgroup of CD of finite index. The short exact sequence

1→ πZ
∞ → CD → PicmA→ 1

shows that N ∩ πZ
∞ = πnZ∞ for some n > 0 and hence K×UDπnZ∞ ⊂ N .

Corollary 5.21. If ∞ /∈ Supp(D), then the subgroup K×UDπZ
∞ ⊂ A×K gives the extension Hm/K

defined in section 5.6.

Proof. By Theorem 5.18, Hm is unramified outside Supp(D) and splits at∞. The assertion follows

by the following commutative diagram

A×K
(•,Hm/K) //

��

Gal(Hm/K)

'
��

A×K/K×UDπZ
∞

' // PicmA.

Lemma 5.22. If ∞ /∈ Supp(D), then the ray class field KD is the compositum of Hm and Kc.

Proof. Consider the degree map

deg : A×K → Z, deg((ap)) =
∑
p∈|X|

vp(ap) deg(p).

Then deg(K×U0) = 1 and the inverse image of nZ in A×K gives the constant extensionKn := K ·Fqn

of K of degree n. Let L be a finite extension of K containing in KD. By Lemma 5.20, we may

assume NL = K×UDπ
nZ
∞ for some n ≥ 1. Then NL ⊃ K×UDπ

Z
∞ ∩ deg−1(nd∞Z) and hence

L ⊂ HmKnd∞ .

Lemma 5.23. For any two effective divisors D =
∑
p
npp and D′ =

∑
p
n′pp of X, let min(D,D′) =∑

p
min(np, n

′
p)p and max(D,D′) =

∑
p

max(np, n
′
p)p. Then

KD ∩KD′ = Kmin(D,D′) and KD ·KD′ = Kmax(D,D′).

Proof. We may assume ∞ /∈ Supp(D + D′). Obviously, KD ∩ KD′ ⊃ Kmin(D,D′). Let L be a

finite extension of K containing in KD ∩ KD′ . By Lemma 5.20, there exists n ≥ 1 such that
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NL ⊃ K×UDπ
nZ
∞ and NL ⊃ K×UD′π

nZ
∞ . Hence NL ⊃ K×Umin(D,D′)π

nZ
∞ and L ⊂ Kmin(D,D′).

This proves KD ∩KD′ ⊂ Kmin(D,D′). The proof of KD ·KD′ = Kmax(D,D′) is similar.

We are ready to prove Theorem 5.19.

Recall that Kab =
⋃
E

KE when E runs over all effective divisors of X. To prove Kab =

KcK
ab,∞Kab,∞′ , it suffices to show that KE ⊂ KcK

ab,∞Kab,∞′ for each E. Write E = D + D′

for some effective divisors D and D′ such that Supp(D) ∩ Supp(D′) = ∅, ∞ /∈ Supp(D) and

∞′ /∈ Supp(D′). By Lemma 5.23, KE = KDKD′ and by Lemma 5.22, KD ⊂ Kab,∞Kc and

KD′ ⊂ Kab,∞′Kc. This completes the proof of Theorem 5.19.
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