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The goal of this note is to introduce Drinfeld modules and explain their application to explicitly

class field theory of function fields.
1 Analytic theory

1.1 Inspiration from characteristic zero

Let A be a discrete Z-submodule of C of finite rank ». We must have » < 2. Write A = Zw; +

o Doy,
r=0,C/A ~ G,(C), additive group;
r=1,C/A ~Gy(C) =C*, z — exp(2miz/w), multiplicative group;
r=2,C/A~E(C), z— (P(z2),P'(2)), elliptic curve.
1.2 Characteristic p analogue
Throughout this note, we keep the following notations.
F,: a finite field of g-elements of characteristic p;
X: a geometrically connected smooth projective curve over Fy;
K the function field of X;
oc: a fix closed point of X with residue field Fo, and degree do, = dimp, (Foo);
A =T(X — {00}, Ox);

K.: the completion of K at the point oo;



C: the completion of an algebraic closure K, of K.

We have a one-to-one correspondence between the set of closed points of X and the set of discrete

valuations on K. For any x € |X|, let v, be the corresponding discrete valuation on K. Then
A={a€ Klvy(a) >0 for any z € | X| — {o0}}.

There is a homomorphism deg : K* — Z such that deg(a) = dimp, (A/aA) for any 0 # a € A. By
the product formula, —dvs(a) = deg(a) for any a € K*. Actually, we can define deg(I) to be

dimp,(A/I) for any nonzero ideal I of A.
Lemma 1.1. A is discrete in Ko, and the quotient K, /A is compact.
Proof. For any n > 0, applying RT'(X, e) to the short exact sequence
0— Ox = Ox(noo) = Ox(no)/Ox — 0,
we have an exact sequence
0— H°(X,0x) = H(X,Ox(noo)) = H*(X, Ox(noo)/Ox) — H(X,0x) - HY(X,0x(nx)) — 0.
By taking direct limit and using the fact H(X, Ox(noo)) = 0 for n >> 0, we get an exact sequence
0— H'(X,0x) =+ A— Ky/Os — H(X,0x) = 0,
where O is the discrete valuation ring of K,. Then
0— HY(X,0x) = Os — Koo JA — H(X,0x) = 0
is also exact. Since H*(X,Ox) is finite dimensional over F,, then K., /A is compact. O

Definition 1.2. A lattice in C is a discrete A-submodule of C of finite rank, where the rank of

an A-module M is defined to be dimg (K ® 4 M).
By the following lemma, we have rank 4(A) = dimg__ (Koo A) for any lattice A in C.

Lemma 1.3. Let L be a local field and R a discrete subring of L such that L/R is compact. Let V
be a finitely dimensional L-vector space with the canonical topology and let M be an R-submodule
of V.. If M is discrete, then the canonical homomorphism L &g M — LM is an isomorphism. The
converse also holds if M s projective over R. In both cases, M is finitely generated over R and

dimp(F ®pr M) = dimp(LM), where F' is the fraction field of R.



Proof. Suppose M is discrete. Choose an L-basis mq,...,my of LM with m; € M and set
My = Xk: Rm;. Since M is discrete, we can choose a neighborhood U; of 0 in V such that
Ui n MilO. There is a neighborhood U of 0 in V' such that U — U C U;. Then for any =,y € M,
x—y € U if and only if z = y. Tt followss that (U + My)/My N M/My = 0 and hence M /M
is discrete in V/My and LM /M. Since L/R is compact, LM /M, = f:l(L/R)mi is compact and

M /My is thus a finite set. We have
dimp (L ®@r M) = dimp(F ®r M) = dimp(F @r My) = k = dimp (LM).

Conversely, suppose M is projective over R and we have a canonical isomorphism L ® g M =~
LM. Then M is finitely generated over R and we can find an R-module N such that M & N is a
free R-module of finite rank. Hence M & N is discrete in L ® g (M @ N) and hence M is discrete

in L®r M ~ LM. O
Remark 1.4. The rank of a lattice in C can be arbitrary large since [C : K] = +00.

Definition 1.5. Let R be a ring containing F,. A polynomial f € R]z] is called Fy-linear if
flz+w) = f(z) + f(w) € Rlz,w] and f(az) = af(z) € R[z| for any a € F,. We can also define

F,-linear power series.

Lemma 1.6. Let f € R[[z]]. Then f is F,-linear if and only if f = ;29 for some a; € R.

=0

oo
Proof. The if part is trivial. For the only if part, suppose f = > a,2" is Fy-linear. The equality
n=0
f(z+w) = f(2) + f(w) means that a,,C%, = 0if 1 <i <n—1. If n is not a power of p, we can find
1 <4 < n—1such that p{ C!, and hence a,, = 0. Now suppose n is a power of p. The equality

f(az) = af(z) means that a,(a™ —a) = 0 for any o € F,. If n is not a power of ¢, we can find

o € Py such that o™ — « # 0 and hence a,, = 0. This prove the only if part. O

Theorem 1.7. Let A be an A-lattice in C. There exists an Fq-linear entire power series ex(z) €

C[[z]] which defines an F,-linear isomorphism C/A ~ C.

Proof. Define
eaz)== [] (- i).

0£AEA

Since A is discrete, then ea(z) is entire. Let’s prove ex(z) is F4-linear.



Write A = [JA; for some F,-subspace of A of finite dimension and set e;(2) =2z ] (1—%).
% 0#£NEA;
Then ep(z) = lime;(z). To prove ex(z) is Fgy-linear, we need only to show this for e;(z). For
7
any a € Fy, by comparing the degrees, roots and coefficients in z of e;(az) and ae;(z), we have

ei(az) = ae;i(z). Let F(z,w) = e;(z + w) — e;(z) — e;(w) € C[z]. We can write F(z,w) = dijl fizt
=0

for some f; € Clw] of degree < d, where d = #A;. For any A € A;, we have
F(z,A) =e;(z+ A) —ei(z) —e;(A) =0.

This shows each A € A; is a root of f;(z) for any 7. But deg f; < d, we must have f; = 0 and hence
F(z,w) = 0. This show that e;(z) and hence e, (z) are F,-linear.

The entire series ej(z) define an Fy-linear map C — C of analytic spaces with kernel A.
By Weistrass representation theorem, ep(z) : C — C is surjective. So we get an isomorphism

ea(z) : C/A ~ C. O

Corollary 1.8. For any a € A, there exists a unique polynomial ¢, € C|z] making the following
diagram commutes:

C/A —“>C/A

Moreover, ¢q is a IFg-linear polynomial of degree q" deg(@) where 1 is the rank of the lattice A. For

any a7b € A; ¢a(¢b(2)) = (;Sab(z)'

Proof. Define
¢a(z)=az  J[ (1=z/ea(V)).

0#A€a—1A/A
Then e (az) and ¢,(ep(2)) are two entire series with the same root set a ' A and with the same
derivative a. So these two series only have simple roots and hence ep(az) = ¢q(ea(z)). Moreover,

¢a(z) is Fy-linear. The equality ¢o(¢p(2)) = ¢as(z) holds by the following commutative diagram

C/A —~C/A C/A
leA leA ieA
c— " .c—"_.c



For any F -algebra R, denote by 7 the ¢-th power map on R and by R{7} the twist polynomial

ring with relation 7r = r97 for any r € R. We have a one-to-one correspondence
R{71} ~ {F,-linear polynomials in R[z]}, f = Zaﬂi — f(z) = Zaizqi.
i i

For any f = Y. a;7° € R{r}, define w(f) = min{i|a; # 0}, deg(f) = max{ila; # 0}, c.t.(f) = ao
and L.c.(f) = aqeg(s)-
Thus any lattice A in C defines a ring homomorphism ¢ : A — C{7} sending a to ¢, whose

constant term is a. This leads the definition of Drinfeld modules in the next section.

2 Algebraic theory

In this section, fix a homomorphism ¢ from A to a field L. The characteristic char(L) of the

A-field L is defined to be ker(¢).

2.1 Basic definitions

Definition 2.1. A Drinfeld module over L is a ring homomorphism
61 A Lt} ars b,

such that c.t.(¢,) = ¢(a) for any a € A and ¢, # t(a) for some a € A.

Equivalently, a Drinfeld A-module over L is an A-module scheme over L whose underlying
F,-vector space scheme is isomorphic to G, = Spec L[z] and the A-module action on G, 1 is
given by the ring homomorphism ¢ : A — Endr, (Ga,r) = L{7} satisfying the above conditions.
So ¢ defines a functor

¢ : Alg; — Moda, R~ ¢(R),
where ¢(R) = R as abelian groups and the A-module structure on ¢(R) is given by a.r = ¢,(r)

for any a € A and r € R.

2.2 Rank and height

Proposition 2.2. Let ¢ be a Drinfeld module over L.
(1) There exists a positive rational number r such that deg(¢,) = rdeg(a) for any a € A.

(2) Suppose p = char 4 (L) is nonzero. Then there exists a positive rational number h such that

w(gq) = hdeg(p)vy(a) for any a € A.



Proof. (1) Define p(a) = —deg(¢,) for any a € A and u(0) = +oo. Then u(ab) = p(a) + p(d)
and p(a +b) > min{pu(a), u(b)} for any a,b € A. So we can extend p to a nontrivial valuation
g: K — ZU{+o} on K. As fi(a) = —deg(¢,) < 0 for some a € A, i is the valuation on K
defined by oo € X. Then there exists a positive rational number r such that deg(¢,) = rdeg(a)
for any a € A.

(2) Define v(a) = w(¢,) for any a € A and v(0) = +o0o. Then v(ab) = v(a) + v(b) and
v(a+b) > min{v(a),v(b)} for any a,b € A. So we can extend v to a valuation 7 : K — Z U {400}
on K. As (a) > 0 for any a € p, 7 is the valuation on K corresponding to p. So there exists a

positive rational number h such that w(¢,) = hdeg(p)vy(a) for any a € A. O

Definition 2.3. The numbers r and h in Proposition 2.2 are called the rank and height of ¢,

respectively.
To show r and h are positive integers, we need to study the torsion points of Drinfeld modules.

2.3 Torsion points

Definition 2.4. Let ¢ be a Drinfeld module over L and let a € A. For any L-algebra R, let

¢la](R) = {r € Rl|¢a(r) = 0}

be the a-torsion submodule of the A-module ¢(R). More generally, for any ideal I of A, let

oI(R) = ) ()

Actually, the functor ¢[a] : Alg; — Mod 4 is the A-module scheme ¢[a] = ker(¢, : Gar, = Ga1)
which is represented by the finite scheme Spec L[z]/(¢a(2)) over L of degree " 4°8(@).

If I is a nonzero ideal of A, then the left ideal Z L{t}¢; of L{r} is generated by a unique
mounic polynomial ¢;. Then the functor ¢[I] : Alg, Z:I Mod 4 is represented by the finite scheme

Spec L[z]/(¢1(2)) over L.

Lemma 2.5. Let R be a Dedkind domain and M an R-module.

(1) For any distinct mazimal ideals p1,...,pn of R and any ey, ..., e, € N, we have

MIp§t - pir] = €D Mpi).
=1



(2) If M is a divisable R-module, then for any mazimal ideal p of R and e € N, M[p®] is a
free R/p®-module of some rank r independent of e. Moreover, M[p>°] := |J M[p®] is isomorphic
e=1

to (Kp/ﬁp)’", where Ep is the completion of R at p and Ly, its fraction field.

Proof. (1) is obvious. The homomorphism M — M, induces an isomorphism M [p€] ~ M,[pR,].
For (2), we may assume that R is a discrete valuation ring. Fix a uniformizer = of R and choose
a free R-module F of rank r and an isomorphism i; : 7= 'F/F ~ M|[r] of R/p-modules. Let’s
construct an isomorphism i, : 7 ¢F/F ~ M[r¢] of R/p®-modules by induction on e. Given
the isomorphism i, : 7 ¢F/F ~ M|[rn®], using divisablity of M, there is an isomorphism 4., :

7 ¢ 1F/F ~ M[r°*!] making the following diagram commutes:

0——=naF/F—sg°F/F "7 ¢F/F ——=0

P e

0 M| Mimetl] =X M(m¢] 0.

S0 4c41 is an isomorphism. The family {i.} is an isomorphism from the direct systems {7 ¢F/F}

to {M[r°]} and hence M[p>] =lim7~“F/F = (Lp/ﬁp)“. O

Proposition 2.6. Let ¢ be a Drinfeld module over an algebraically closed field L of rank r and
height h.

(1) If I is an ideal of A prime to chara(L), then ¢(L)[I] is a free A/I-module of rank r. In
particular, r is a positive integer.

(2) Suppose p = chara(L) # 0. Then for any positive integer e € N, ¢(L)[p®] is a free A/p°-

module of rank r — h. In particular, h is a positive integer.

Proof. For any 0 # a € A, ¢, : L — L is surjective. Hence ¢(L) is A-divisible. By Lemma 2.5,
we only need to show that for any maximal ideal p of A, there exists a positive integer e such
that #6(L)[p¢] = ¢ 9°50) if p # chara (L) and #6(L)[p¢] = q*~M ) if p = chara(L). Let
e be the class number of A. Then p® = (a) for some a € A. We have deg(a) = edeg(p) and
deg(¢p,) = erdeg(p). If p # chara(L), then a ¢ p and ¢,(2) is a separable polynomial of degree
¢ 45@  and thus #6(L)p] = #6(L)[a] = g795@ = gerdes®) If p = chara(L), then w(d,) =
hup(a) deg(p) = eh deg(p). Tn this case, #6(L)[p°] = #6(L)[a] = ¢°—) des(@) = gelr—mdesv) [



2.4 Drinfeld modules and lattices in C

Definition 2.7. A morphism f : ¢ — v of Drinfeld modules over L is a polynomial f € L{r}
such that ¢, f = fp, for any a € A. In other words, a morphism from ¢ to 1 is an endomorphism
f of the additive group scheme over L such that for any a € A, the following diagram commutes:

Ga,L # (G’a,L

f
Ga,L — Ga,L'
We denote by Hom(¢, 1) the set of morphisms from ¢ to . A nonzero morphism of Drinfeld

modules is called an isogeny.
Proposition 2.8. Isogenous Drinfeld modules have the same rank and height.

Proof. For any f € Hom(¢, ), we have deg(v,) +deg(f) = deg(f)+deg(d,) and hence deg(v),) =
deg(¢,) for any a € A. Then ¢ and ¢ have the same rank by definition. So is the height. O

Definition 2.9. A morphism from an A-lattice A of C to another one A’ of the same rank is an

element ¢ € C such that cA C A'.

Theorem 2.10. The functor from the categories of lattices in C to the categories of Drinfeld
modules over C constructed in Corollary 1.8 defines an equivalence of categories. Moreover, any

lattice and its corresponding Drinfeld module have the same rank.

Proof. (1) Given a lattice A in C of rank r, define

er(z) ==z H (1—;),

0ANEA

and for any 0 # a € A, define
¢a(z) = az H (1—2z/ex(N)).
0#£A€a—1A/A
Then ¢,(2) is an Fy-linear polynomial of degree ¢" 4°8(?) which defines a polynomial ¢, € C{r} of
degree r deg(a). By Corollary 1.8, we get a Drinfeld module ¢ : A — C{7} over C of rank r.
(2) Let ¢ be a Drinfeld module over C of rank r. Choose a € A\F, and write ¢, = _ioaﬂi.

oo .
There exists a unique series e, = > ;7" € C{{7}} with eg =1 and eya = ¢qe4 by the equalites
i=0

n

d
en(a? —a)=aqgel _,+---+arel_; (n>0).



As doovoo(a) = —deg(a) < 0, we have

d
Voo (€n) > min{vs (agel ), ..., voo(arel 1)} — ¢"voo(a).

Thus there exists a positive real number ¢ such that for n > 0,

Uoo(en) Z mln{ ’Uoo(enfl) ’Uoo(enfd)

qn qn—l [ qn—d } +c

This proves lim %f") =

+o00 and hence e4(z) is an entire function. For any b € A, we have
n— oo

(e;ld)be(b)a = e;lgﬁbd)a% = e;lgﬁagbb% = a(e;lgébeqb) € C{{r}}.

If we write e;1¢be¢ = Zbﬂ'i for some b; € C, then bi(aqi —a) = 0 for any 7 > 0 and hence
b; = 0 for any ¢ > 1. \;Ve must have e;1¢be¢, = b and eyb = ¢pey for any b € A. Let A be
the kernel of the [F -linear map eg4 : C — C. Then A is a discrete A-submodule of C. The
isomorphism e4 : C/A ~ C induces an isomorphism a'A/A ~ ker(es : C — C) which is a free
A/aA-module of rank r by Proposition 2.6. To show A is a lattice, we only need to show it is a
finitely generated A-module. By Lemma 1.3, it is sufficient to show dimg__ (KooA) < +00. If not,
we can find infinitely many elements Aq, Ao, ... in A which are linearly independent over K. Set
A= i KoM N A for each i. By Lemma 1.3, A, is a finitely generated A-module of rank r. The
natur;Tlmonomorphism a A, /A, — a'A/A implies #(a"1A/A) > #(a" A /A,) = #(A/aA)",
which contradicts to a 'A/A ~ (A/aA)". It follows that A is a lattice in C of rank r.

(3) Let A; and Ay be two lattices in C of the same rank r, and let ¢ be a nonzero element in
C such that cA; C Ay. As A C ¢t Ay, consider

fEy=cz I (1=z/ea, (V).
0#NEC™ A2 /A1

Then f(z) is an F,-linear polynomial. Comparing the roots and coefficients of the entire series
en,(cz) and f(ea,(2)), they must be equal. Let ¢ and ¢ be the Drinfeld modules over C corre-
sponding to A and Asg, respectively. Then f € Hom(¢, ).

(4) Given a nonzero morphism f : ¢ — ¢ of Drinfeld modules over C. Let A and W be their
corresponding lattices. We have exa = ¢qen, ewa = Ve and fo, = ¥, f for any a € A. Then

(ex'fea)a = a(eyy) fea) € C{{7}}. We must have e;,' fe, = ¢ € C* and then cA C W. O



2.5 Endomorphism ring of Drinfeld modules

Given a Drinfeld module ¢ over L of rank r, denote by End(¢) the ring of endomorphisms of ¢.

More precisely,

End(¢) = {P € L{7}|P¢o = ¢o P for any a € A}.
The ring homomorphism A — End(¢) by sending a to ¢, gives an A-module structure on End(¢).

Proposition 2.11. (1) End(¢) is a projective A-module of rank < r2.

(2) If r = 1, the above ring homomorphism A — End(¢) is an isomorphism.

Proof. Fix some a € A\F, and a ¢ chars(L). Claim that End(¢) ®4 A/(a) — Enda(¢[a](L)) is
injective.

Indeed, suppose that P € End(¢) give rise to the trivial endomorphism on ¢[a](L). Write
P = Q¢,+ R for some Q, R € L{r} with deg(R) < deg(¢,). Hence R acts trivial on ¢[a](L). Since
a ¢ char 4 (L), by Proposition 2.6 #¢[a](L) = ¢"9°8(*). As deg(R(z)) < deg(pa(2)) = ¢" 8@ we
must have R = 0 and hence P = Q¢,. One can easily check that ) € End(¢). This proves the

claim.

Define § : End(¢) — Z U {00} by 6(P) = — deg(P). The mapping § satisfies
1. 5(P) = oo if and only if P = 0.

2. §(PQ) = §(P) + 6(Q) for any P,Q € End(¢).

3. 5(P + Q) > min{6(P),5(Q)} for any P,Q € End().

4. §(a.P) = rdeovos(a) 4+ 6(P) for any a € A and P € End(g).

Denote M = End(¢). The mapping § thus gives rise to a norm on the K.-vector space K, ® 4 M.
Note that End(¢) is discrete in Ko, ® 4 M.

Suppose dimg (K ®4 M) = co. Choose infinitely many Pi, Py, ... € End(¢) which are lin-
early independent over K. Let V,, = f: KoP; and M, = V, " M. By Lemma 1.3, M, is a
projective A-module of rank n. The catr?énical monomorpshim a~*M,, /M, — a~'M/M implies
that #(a=*M/M) > #(a"*M, /M,) = ¢"&® for each n. This contradicts to the claim that

#(a" M /M) < ¢"" 98 Hence dimg (K ®4 M)A < r? and (1) holds.

10



If » = 1, End(¢) is an invertible A-module. The monomorphism A — End(¢) induces an
isomorphism K ~ K ® 4 End(¢). So End(¢) can be viewed as a subring of K which is integral over
A. But A is integrally closed in K, we must have A = End(¢). O

3 Carlitz module and cyclotomic function fields

In this section, we will construct the cyclotomic extensions of the rational function field F,(t) by
the Carlitz module.

Let ¢ be a Drinfeld module over an A-field L of rank r. Fix an algebraic closure L of L. Recall
that ¢[I](L) = {x € L|¢;(z) = 0 for any i € I} for any nonzero ideal I of A. Let L; be the field
extension of L by adding ¢[I](L). For any o € Gal(L/L), o preserves ¢[I](L) and L;/L is thus a
finite normal extension.

Suppose [ is prime to chars(L). Then I¢ = (a) for some positive integer e and some a € A
with t(a) # 0. In other words, ¢4(2) € L[z] is separable and L,)/L is separable. So L;/L is Galois

and we also have a canonical monomorphism
X : Gal(L;/L) — Auta(¢[I]) ~ GL.(A/I). (3.1)

In particular, L;/L is an abelian extension if r = 1.

In the remainder of this section, suppose A = F,[t] and consider the Carlitz module
C:A—-K{r}, t—t+7

over K =TF,(t). For any 0 # a € A, let Cla] = {\ € C|C,()\) =0} and K, = K(Cla]). Then C|a]

is a free A/aA-module of rank one.

Theorem 3.1. (1) K,/K is an abelian Galois extension of Galois group (A/aA)*.

(2) For any maximal ideal p of A, K,/ K is ramified at p if and only if a € p.

(3) Let O, be the integral closure of A in K, and let A be a generator of the A-module C|a).
We have O, = A[\].

Proof. First suppose a = p© for some positive integer e and some monic irreducible polynomial p(z)
of degree d. The composition A < A{r} = A/pA{r} defines a Drinfeld module C : A — A/pA{r}

over A/pA of rank 1 and height 1. So Cpe = 7% € A/pA{7} and hence Cpe — 7% € pA{7}. Define

11



_gile=D)

¢pe(2) = Cpe(2)/Cpe-1(2). Then ¢pe(2) = Cp(Cpe-1(2))/Cpe-1(2) € Alz] and ¢pe(2) = 2%
(mod pAlz]). The constant term of ¢pe(z) is p. In other words, ¢pe(z) is an Eisenstein polynomial
over A with respect to the prime ideal pA and so it is irreducible over K. For any generator A of
the A-module C[p°], we have Cpe(X) = 0 but Cpe—1(A) # 0. Thus ¢pe(2) is the minimal polynomial
over K of any generator of Cp°| and K, = K(X). So for any 0 # b € A prime to p, we have an
isomorphism of fields
op : Kpe > Kpe by op(X) = Cp(N).
This proves that
X 1 Gal(Kpe /K) = Auta(C[p°]) = (4/(p°)) "

Moreover, K,./K is totally ramified at pA.
Let’s compute the discriminant § = d(1, \, ..., \?®)=1) where ¢(b) = #(A/bA)* for any b € A.

By the definition of discriminant,

+6 = £ det(oX)eqal(K e /K) = 11 (Cz(A) = Cy(N)).
0<i<a(p®) z£ye(A/peA)x
Differenting both sides of Cpe (2) = Cpe-1(2)¢pe (2) and substituting z = X, we have p® = Cpe—1(A)@pe (A).
Differenting ¢pe(2) = [T (2—Cy())) and substituting z = Cy()), we have
ye(A/peA)*

¢ (Cu(N)) = 11 (Ca(X) = Cy(N).

yE(A/peA)*, y#x

Then
5= I e
z€(A/pA)*
= IT o085 () = N, (0 (V)
ceGal(Kye /K)
= Ng,e/k(0°)/Nk,e /K (Cpe-1(N))
= Ng,./k(0°)/Nk,./k,(Nk, /K (Cpe-1(N)))
= gt et meD)
#(p®)—1 )
Let w € Ope. Thenw = )" a;\* for some a; € K. Hence
i=0
. P(p©)—1 o
Trg,e g (W) = Z aiTere/K)\"”) € A for any 0 < j < ¢(p°).

=0
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Set T = (Trgc,. /i (AN7))o<i,j<ope)s @ = (@0 - - -5 agpey—1) and b = (Trw, ..., Tr(wA?®)-1)), We
have b = aT and bT™* = da. This shows da; € A. Since § is a power of p, we have p"w = ¢(g71 b\
for some n € N and b; € A such that at least one b; not divided by p. Let ig be the smalle;tZ(i)nteger
such that v, (b;,) = 0. Since v,(A) = 1/¢(p®), we have v, (b, A?®) < v,(b;A?) for any i # ig. So
#(p)—1
n < v,(p"w) = v( Z bid") = v, (biy A) = i /p(p®) < 1.

i=0
We must have n = 0 and then w € A[\]. So Opc = A[A] and 1, ..., A?®)~1 is an integral basis
of Ope/A. Hence 00,./4 is a power of p. As a consequence, Kpe /K is unramified at any prime
ideal of A not equal to pA. We prove the theorem for a = p°.

For general a, write a = p{* ---p;* for some pairwise different irreducible polynomials p; and

' and X a generator

some e; € N. We prove our theorem by induction on ¢. Let b = p{* ---p;*
of Cla]. Then Cy(A) is a generator of C[pi*] and Cpe:(A) is a generator of C[b]. By induction,
our theorem holds for b and p;*. Choose f,g € A such that fb+ gp;* = 1. We have A\ =
Ct(Cp(N) +Cy(Cpee (V) and thus K, = Kjp - Keo. Now Ky N K e = K, because K is unramified

at p;A and K e is totally ramified at p;A. As a consequence,

(Kot K] = [Ky : K] - [,z : K] = 6(0)o(p*) = 6(a).
So the monomorphism y : Gal(K,/K) < (A/aA)* given in (3.1) is an isomorphism. O
Corollary 3.2. For any b € A prime to a, there exists a unique o, € Gal(K,/K) such that

ap(A) = Cp(N) for any generator X of Cla]. In particular, if b is a monic irreducible polynomial

furthermore, o, = (bA, K,/ K).

4 Reduction theory

4.1 Drinfeld modules over rings

We can also define Drinfeld modules over arbitrary A-algebras or even A-schemes. In such gener-
alizing, the underlying F,-vector space scheme need only be locally isomorphic to G, so it should
be the F,-vector space scheme associated to a line bundle on the base scheme.

For simplicity, let R be an A-algebra with PicR = 0. This holds if R is a principle ideal domain.

Then a Drinfeld module over R is a ring homomorphism

¢: A= R{t}, a = ¢,
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such that c.t.(¢,) = a € R and l.c.(¢,) € R* for any 0 # a € A and ¢, # a for some a € A. Then

for any maximal ideal m of R, ¢ mod m yields a Drinfeld module over R/m of the same rank.

4.2 Reduction theory of Drinfeld modules

Let R be a discrete valuation ring with fraction field L, maximal ideal m and residue field F. Let

v: K* — 7Z be the discrete valuation.

Definition 4.1. Let ¢ be a Drinfeld module over L of rank r.

(1) We say ¢ has integral coefficients if ¢(A) C R{r} and the composition A 2, R{r} — F{r}
defines a Drinfeld module over F of rank 0 < ry < 7.

(2) We say ¢ has stable reduction if it is isomorphic to a Drinfeld module v over L which has
integral coefficients.

(3) We say ¢ has good reduction if ¢ is isomorphic to a Drinfeld module ¢ over L such that
Y(A) C R{r} and l.c.(¢,) € R* for any 0 # a € A.

(4) We say ¢ has potentially stable (resp. good) reduction if there exists a finite extension

(L', v") of (L,v) such that ¢ has stable (resp. good) reduction on L'.

Lemma 4.2. Let ¢ and v be two Drinfeld modules over L of the same rank. If ¢ and v have

integral coefficients, then for any isomorphism c: ¢ ~ 1, we have c € R*.

Proof. Choose a € A\F, such that deg(¢, mod m) > 0. Write ¢, = > a;7° for some a; € R.
There exists n > 0 such that a,, € R* and a; € m for any i > m. As v, = cp,c~! € R{7}, we have

¢'=9"a, € R. This implies ¢~ € R. Similarly, 9 = ¢ '¢c implies ¢ € R. This proves ¢ € R*. [

Corollary 4.3. If ¢ has stable reduction which is isomorphic to a Drinfeld module 1 having integral

coefficients, then the isomorphic class of ¥ mod m does not depend on the choice of .

Lemma 4.4. Let ¢ be a Drinfeld module over K. Then ¢ has stable reduction on some finite

extension L' of K.

Proof. Choose ay,...,a, € A which generates A as an F,-algebra. Write each ¢,, = > a;;77 for
J

L vlans
some a;; € L and set ¢ = min oaiy)
J ij>1 ¢1

. Let m be the denominator of the rational number ¢. Let L'
be a totally ramifeld extension of L of index n and let o € L’ with v(a) = ¢. Put ¢, = ag,a™?

for any a € A. Then v,, = Zaijal_quj € R'{r} for any 1 <1i <n and aijal_qj € R’* for some
J
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1 <i<nandj>1where R is the valuation ring of L’. This shows that ¢ : A — L'{r} has

integral coefficients. In other words, ¢ has stable reduction over L’. O

Corollary 4.5. Let ¢ be a Drinfeld module over L of rank 1. If there exists a € A\F, such that

l.c.(¢q) € R*, then ¢ is a Drinfeld module over R. In particular, ¢ has good reduction.

Proof. By Lemma 4.4, there exists a finite ramifield extension L’ of L and o € L' such that
-1

apa~t(A) C R'{r} and the composition A o, R'{r} — R'/m'{7} defines a rank one Drinfeld

module over R'/m’, where R’ is the discrete valuation ring of L’ and m’ is the maximal ideal of R'.

deg a

So deg(agpat) = deg(adya™! mod m’) = deg(b) and hence L.c.(agpa™t) = Le.(¢p)at ™4 € R'*

deg(a)

for any b € A. In particular, l.c.(¢,)at ™4 € R'*. Since l.c.(¢,) € R*, we have a € R'*. So

o € R{7} and l.c.(¢p) € R* for any b € R. In other words, ¢ is a Drinfeld module over R. O

5 Class field theory

Let Z be the group of fractional A-ideals in K, P the group of principle fractional A-ideals in K,
and PicA = Z/P the ideal class group of A. In this section, fix an A-field L.

5.1 Rank one Drinfeld modules over C
Proposition 5.1. We have bijections

PicA ~ {rank 1 lattices in C}/homothety ~ {rank 1 Drinfeld modules over C}/isomorphism.

Proof. We need only to consider the first map. For injectivity, let I and I’ be two fractional ideals
of K such that they are homothety in C. That is I = cI’ for some ¢ € C. We must have c € K*.
For surjectivity, take a lattice A in C of rank 1 and 0 # A € A. Replacing A by A™'A, we may
assume that 1 € A. The injective homomorphism A — K ®4 A = K implies that A is a fractional

ideal of K. ]
Proposition 5.2. Every rank 1 Drinfeld module ¢ over C is isomorphic to one defined over K.

Proof. Let A be the corresponding lattice in C to ¢. By Proposition 5.1, we may assume A C
K C K. By the construction of ep(z) in Theorem 1.7 and ¢,(z) in Corollary 1.8, we have
ea(z) € Kxo[[2]] and ¢, € Ko{7} for any a € A. O
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5.2 The action of ideals on Drinfeld modules

Let ¢ be a Drinfeld module over L of rank r and height h. For any nonzero ideal I of A, the left ideal
>> L{7}¢; of L{r} is generated by a unique monic polynomial ¢;. The scheme Spec L[z]/(¢1(z))
iel

represents the functor

o[I] : Alg; — Moda, R+~ ¢(R)[I].
We have #¢[I](L) = qlesl¢r)—w(én),

Lemma 5.3. (1) deg(¢r) = rdeg(I).
(2) w(¢r) =0 if 0 = chara(L) and w(pr) = hvy(I) deg(p) if 0 # p = chars(L).

Proof. First claim that there exists an ideal J of A prime to I such that J ¢ p and IJ = (a) for
some a € A.

Indeed, choose aq € q”"(])\q”q(])“‘l for each maximal ideal q of A dividing I or ¢ = p. By
strong approximation theorem, there exists a € K* such that vq(a — aq) > v4(I) for any maximal
ideal q of A dividing I or q = p and v4(a) > 0 otherwise. Thus a € I and vq(a) = vq(I) when q|I
or q=p. Take J = al~'. Then J is an ideal of A satisfying the required conditions.

So we have an isomorphism ¢[a] ~ ¢[I] ® ¢[J] : Alg; — Mod 4 of functors and hence
Spec L[z]/(¢a(2)) = Spec Llz]/(¢1(2)) X1 Spec L[z]/(¢.(2)) = Spec L[z]/(¢1(2)) @1 L[]/ (¢.(2))-

So deg(6a(2)) = deg(61(2)) - deg(s(2)) and deg(6a) = deg(6r) + deg(6,). By counting elements
of both sides of ¢[a](L) = ¢[I](L) ® #[J](L), we have gice(®a)=w(de) = gdea(¢r)=w(er) gdeg(¢s)—w(¢s)
and hence deg(da) — w(6a) = deg(r) — w(er) +deg(6s) —w(bs). S0 w(da) = w(gr) +w(gy). By
deg(a) = deg(I) + deg(J) and vy(a) = vp(I) + v, (J), it suffices to prove the lemma for (a) and J.

As l.c.(¢a)b@a) = ¢a, the lemma holds for (a) by the definitions of rank and height. By
Proposition 2.6, we have #¢[J](L) = ¢"9°¢(/). Choose positive integer n such that J» = (b) for
some b € A. T (b) # 0 and ¢p(2) is a separable polynomial over L and so is ¢7(z). This implies
that #¢[J](L) = deg(¢,(z)) and hence deg(¢;) = rdeg(J) and w(¢;) = 0 = hvy(J) deg(p). O

Lemma 5.4. Let I be a nonzero ideal of A. For any a € A, ¢rod, € L{T}d1 and ¢roq = (Ix)a0r

for a unique (I x ¢), € L{r}. Then
Ix¢p:A— L{t}, a— (Ix¢),
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is a Drinfeld module over L and ¢r : ¢ — I x ¢ is a isogeny.

Proof. Since ¢; is a generator of > L{7}¢;, then ¢; = > fi¢; for some f; € L{r}. Hence
i€l i€l
100 = Y fidida = ) fidagpi and hence ¢pr¢, = (I x ¢)o¢pr for a unique (I x ¢), € L{T}.
i€l iel
Obviously, I x ¢ : A — L{r}, a — (I x ¢), is a ring homomorphism. By ¢;¢, = (I * ¢).¢r1, the

q*(%a

constant term of (I * @), is t(a) ' To show I * ¢ is a Drinfeld module, we need only to show

q©(%a)

that ¢(a) = (a). If w(¢,) = 0, there is nothing to prove. Otherwise, by Lemma 5.3 we have

char4(L) = 0 and p = chars(L) # 0 and w(¢p,) = hvp(a)deg(p) > 0. In this case, L(a)qdegm = 1(a)

and hence L(a)qw(%) = 1(a). O

Lemma 5.5. (1) For any two nonzero ideals I and J of A, we have (IJ)* ¢ = J * (I = ¢).
(2) For any 0 # a € A, we have (a) * ¢ = u~ pu where u = l.c.(¢,).

Proof. We have

Lit}ors = Y. L{rydit; = > L{r}ord; = (Ix¢)j61r = L{T}(I *¢) 01

iel,jeJ jed jeJ

and then ¢y; = (I * ¢)¢;. For any b € A, we have

((IT)x@)pdrs = drsde = (Ix@) 10100 = (Ix0) s (I*x@)pdor = (J*(I*®))p(I%p) 01 = (J*(I%0))pdrs

So ((IJ)* @)y = (J * (I * p))p for any b € A and hence (IJ)* ¢ = J (I x ).
If I = (a) for some a € A, then ¢, = u¢y. For any b € A,

(Ix@)pu""ba = (I % Q)odr = drop = u”"dadp = ' Ppa
and I * ¢, = u~'¢pu. Then u~! defines an isomorphism ¢ — I * ¢. O

If l.c.(¢,) has an ¢ 9°8(*)_th root v in L, define the action of the fractional ideal (a~') on ¢ to
be (a= 1) * ¢ :== vpv~L. Then (a) * (a=!) * ¢ = ¢. For any nonzero ideal I of A, the action of the

fractional idea a =11 on ¢ is given by (a=11) x ¢ := I % ((a™!) * ¢).

Corollary 5.6. Fiz a perfect subfield Ly of L. Let X be the set of Drinfeld modules ¢ over L
such that l.c.(¢q) € Lo for each a € A. The operation * defines an action of the group T on X. It

induces an action of PicA on the set of isomorphic classes of Drinfeld modules in X.

Proposition 5.7. Let X(C) be the set of isomorphic classes of Drinfeld modules over C of rank

one. Then X(C) is a principle homogeneous space under the action of PicA.
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Proof. Suppose ¢ is a Drinfeld module over C of rank one. Let A and I * A be the corresponding

lattices of ¢ and I x ¢, respectively. By Theorem 5.4, we have a commutative diagram

C/A——=C/(IxA)
6(C) —* (1+9)(C)
of A-modules whose vertical arrows are isomorpshims. Since ker(¢;) is the I-torsion submodule of

#(C), we have I x A = I"'A and our assertion holds. O
5.3 Sgn-normalized Drinfeld modules

Recall that Fo is the residue field of co € X and d, = dimp, (Fs).
Definition 5.8. A sgn function on K is a homomorphism sgn : K* — FX such that Sgn\moxc =id.

There are exactly g%~ —1 sgn functions on KX . From now on, fix a sgn function sgn : KX — FX
and a uniformizer T € K, with sgn(w) = 1.

Let Uy = {z € Ky|veo(x — 1) > 0}. Then sgn(U;) = 1 because U; is a pro-p-group. The
uniformizer m# € Ko, defines an isomorphism K., ~ Fo((7)). Any a € KX can be uniquely

written as a = (7"u for some ¢ € FX, n € Z and u € Uy, then sgn(a) = ¢.

Definition 5.9. A rank one Drinfeld module ¢ over L is called sgn-normalized if there exists an

F,-algebra homomorphism 7 : Foo — L such that l.c.(¢,) = n(sgn(a)) for any 0 # a € A.

Example 5.10. Suppose A = Fy[t] and sgn(t) = 1. The sgn-normalized Drinfeld module over L

is just the Carlitz module given by C : A — L{r}, t — t + 1.

Theorem 5.11. (1) Every rank one Drinfeld module ¢ over C is isomorphic to a sgn-normalized
Drinfeld module.
(2) The set of sgn-normalized Drinfeld modules over C isomorphic to ¢ is a principle homoge-

neous space under FX, /Fx.

Proof. (1) Extend ¢ : A — C{7} to a ring homomorphism from K to the ring C{{771}} of twist
Laurent series which is still denoted by ¢. For any a € A, we have —deg(¢,) = v,-1(¢d,) =
doVoo(a). So we can extend ¢ : K — C{{r~'}} to a continuous homomorphism K., — C{{r7'}}

d

denoted by ¢ again. Choose a € C such that o'~ = lL.c.(¢,-1). Replacing ¢ by a~1¢pa, we
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may assume l.c.(¢,-1) = 1. Define n : Foo — L by n(c) = l.c.(¢¢) for any ¢ € FX and 7(0) = 0. If

we write any 0 # a € A as a = cn"u for some ¢ € FX, n € Z and u € Uy, then we have

Le(¢a) = Le.(edrdu) = Le(de) = n(c) = n(sgn(a)).

So ¢ is sgn-normalized.
(2) We may assume that ¢ is sgn-normalized. Let o € C*. Then o~ !¢« is sgn-normalized
qdes(Foo) _q

if and only if 1 = Le.(a™l¢,-1a) = if and only if & € FX. By Proposition 5.20,
Aut(¢) = A* =F¥ and then o '¢a = ¢ implies a € F)*. This proves (2). O

Definition 5.12. Let X (L) be the set of sgn-normalized Drinfeld modules over L. Let P+ be

the subgroup of Z generated by (c) for those ¢ € K* such that sgn(c) = 1 and let Pict A = Z/PT.
Proposition 5.13. The set X (L) is stable under Z. For any ¢ € X (L), Stabz(¢) = P+.

Proof. By definition, there exists 1 : Foo — L such that l.c.(¢,) = n(sgn(a)) for any a € A. For

deg(¢r) o deg(I)

Le.(¢q)? =
. This shows I x ¢ € X7 (L). By Corollary 5.6, X1 (L) is stable under Z.

any nonzero ideal I of A, (I*¢),dr = ¢ré, implies Le.((Ix¢),) = Le.(¢q)?
n(sgn(a))*"

Now let I € T such that I+¢ = ¢. Then I = b~!J for some b € A and some ideal J of A. Hence
¢p=1Ix¢p=(b"1)x(Jx¢)and (b)*¢ = J*¢. The composition ¢ LZN Jxp = (b)*¢ Lol ¢ is an
endomorphism of ¢. By Proposition 5.20, End(¢) = A and hence l.c.(¢p)d; = ¢, for some ¢ € A.
Set J' = J+(c). Then ¢ = ¢; = lL.c.(¢.) "¢ and by Lemma 5.3, we have deg J = deg J’ = degc
and hence J = (¢). By Lc.(¢p)ps = b, we have n(sgn(b)) = Lc.(¢.) = l.c.(¢hp) = n(sgn(d)) and

hence sgn(b~'c) =1. So I = (b~ tc) € PT. O

Theorem 5.14. The action of T on Drinfeld modules makes X (C) a principle homogeneous

space under PicT A.

Proof. By Proposition 5.13, X7 (C) is a disjoint union of principle homogeneous spaces under
Pict A. So we need only to check that #X¥(C) = #PicA. By Proposition 5.1 and Theorem 5.11,
we have #X(C) = #PicA - #F% /F. On the other hand, the short exact sequence

1—=P/Pt = Z/Pt =PictA - I/P =PicA — 1

and the isomorphism P/P+ ~ F% /F; induced by sgn show that #Pict A = #PicA-#F3 [Fy. O
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5.4 The narrow Hilbert class field
Fix ¢ € X1 (C). Define
H" = K(all coefficients of ¢, for any a € A).

Then ¢ is a Drinfeld module over H™, so is I * ¢ for any I € Z. By Theorem 5.14, these are objects
in X*T(C). So H™ is independent of the choice of ¢, which is called the narrow Hilbert class field

of (A,sgn).

Theorem 5.15. (1) The field HT is a finite abelian extension of K.
(2) The extension H' /K is unramified outside co € X.

(3) We have Gal(HT /K) ~ Pic™ A.

Proof. (1) The group Aut(C/K) of automorphisms of C fixing K acts on X7 (C), so it maps
H7 to itself. Also, H' is finitely generated over K. These imply that H* is a finite normal
extension of K. By Proposition 5.2, ¢ is isomorphic to Drinfeld module ¢ over K,,. Extend
i A= Koo{{t71}} to ¥ : Koo — Koo{{77!}} as in the proof of Theorem 5.11 and let ¢ € C
such that ¢1=4" = lc.(¢r-1) € Koo. Then ¢~ c is a sgn-normalized Drinfeld module over a
finite separable extension K (c) of K isomorphic to ¢. The completion K, of a global field K
is a separable extension of K, hence H* is separable over K. The automorphism group of X*(C)
as a principal homogeneous space under Pic™ A is equal to Pic™ A, so we have a monomorphism
x:Gal(HT/K) — AutX*(C) ~ Pict A. So Gal(H*/K) is a finite abelian group.

(2) Let B* be the integral closure of A in HT. Let 8 be a nonzero prime ideal of BT lying
above p of A. Let Fg = B* /3. By Corollary 4.5, each ¢ € X (H*) = X (C) is a Drinfeld module
over the localization B;g, so there is a reduction map p : X*(H") — X*(Fyp). By Proposition
5.13, PicT™ A acts faithfully on the source and target. Moreover, the map p is Pict A-equivariant,
and by Theorem 5.14 XT(H™) is a principal homogeneous space under Pic™ A, so p is injective. If
some o € Gal(H'/K) belongs to the inertia group at 3, then o acts trivially on Xt (Fy), so o
acts trivially on XT(H ') and 0 = 1. Thus H" /K is unramified at *P.

(3) Let Dy = {0 € Gal(H"/K)|o(B) = PB}. By (2), Dy ~ Gal(Fy/Fp,). The Frobenius
element in Gal(Fg /F,) defines an elment Frob, € Gal(H*/K). For any ¢ € X*(Fy), we have
d_Jp = 798P by Lemma 5.3. For any a € A, the equality (p * (;_S)agz_ﬁp = d_)pq_ﬁa implies that (p * ¢), =

Frobpd_)a and hence p * ¢ = Frobpgz_ﬁ.

20



Since p: X*(H*) — X+ (Fy) is injective and Pict A-equivariant, then the action of Frob, and
p on XT(H*) coincide. Thus x : Gal(H*/K) — Pic™ A maps Frob,, to the class of p in Pict A.

Such class generates PicT A, so x is surjective. O
5.5 Hilbert class field
By the short exact sequence

1= P/PT = PicT A — PicA — 1,

. . . . i P/PT . .
the extension K C H™ decomposes into two abelian extensions K Lied g /—> H* with Galois

group as shown. The surjective map X (C) — X(C) is compatible with the epimorphism of groups
Pict A — PicA. By Proposition 5.2, each element of X(C) is represented by a Drinfeld module over
K, so the decomposition group D, of HT /K at co € X acts trivially on X(C). So Do, C P/PT.
In other words, oo splits completely in H/K. The Hilbert class field H4 of A is defined as the
maximal unramified extension of K in which oo splits completely. Thus H C H,4. Class field

theory shows that PicA ~ Gal(Ha/K). So Hy = H.
5.6 Ray class fields

In this section, we generalize the construction to obtain all the abelian extensions of K, even the

ramified ones. Fix notations as follows.
m: a nonzero ideal of A.
Tm: the subgroup of Z generated by maximal ideals of A not dividing m.
Pu: the subgroup of Z generated by (¢) for those ¢ € K* with ¢ =1 (mod m).
P the subgroup of Z generated by (c) for those ¢ € K* with ¢ =1 (mod m) and sgn(c) = 1.
Picm A := T /P, the ray class group modulo m of A.
Pict A := T, /P, the narrow ray class group modulo m of A.
XH(C):={(¢,)\)|¢ € XT(C) and X generates the A/m-module ¢[m](C)}.

Here ¢ = 1 (mod m) means that ¢ is quotient b/c of two elements of A relative prime to m such

that a = b (mod m).
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Lemma 5.16. We have the following commutative diagram

0—— (ZnNPH)/Pt —— (Za NP)/Pu —=0

0 — Pu/Pi: Tn/Pi T/ P 0
0——P/P+ I/P* I/P 0
0 0 0

with ezact rows and lines. Moreover, we have canonical isomorphisms Pe [Pl ~P/P+ ~FX /FX

and (Zw NPT /P =~ (T NP) /P = (A/m)*.

Proof. The second and third lines are obviously exact. By the snake lemma, to prove exactness of
lines and rows in the above diagram, we need only to show that Py /P — P/PT is an isomorphism
and Zp, /Pw — Z/P is surjective.

(1) Recall in Theorem 5.14 that the sgn function induces an isomorphism P/P+ ~ FX /FX.
Obviously, the sgn function induces a monomorphism Py, /Pl — FX /Fx. To show it is surjective,
we need find ¢ € 1 + m such that sgn(c) = « for any o € FX. Choose = € K2 with sgn(z) = a.

Then veo(x — a/b) > v () for some a,b € A. We have a/bx € U; and hence

sgn(ab?”™ ") = sgn(a/b)sgn(b)?"™ " = sgn(a/b) = sgn(z)sgn(a/bzr) = sgn(z) = a.

Take 0 # y € m and set ¢ = 1+ ab?"™ 32" =1 Then ¢ =1 (mod m) and sgn(c) = a.

(2) The surjectivity of Z /Pm — Z/P is equivalent to Z = Z,P. Let I be a nonzero ideal of A.
For each maximal ideal p of A dividing I'm, choose a, € p”P(I)\p”P(I)H. By strong approximation
theorem, there exists a € K> such that v,(a—a,) > v,(I) for any maximal ideal p dividing Jm and
vy(a) > 0 for any p f Im. Take J = al~'. Then J is an ideal of A prime tom and I = aJ ! € Z,,P.

(3) It remains to show (A/m)* =~ (Zy N P)/Pwm. Define a map pu : Iy NPT — (A/m)*
as follows. Any element of Z,, NPT is of the form (c) for some ¢ € K* with sgn(c) = 1 and
(¢) € Tm. So there exist ideals I and J of A prime to m such that (¢) = IJ~!. Then I" = (a)

for some positive integer n and some a € A prime to m. As (c) = ["(I""1J)"! = (a)(I" 1)L,
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we have (ac™!) = I"71J and then ac™! € A prime to m. Define u((c)) = (¢ mod m) - (ac™!

mod m)~! € (A/m)*. Obviously, u is a well defined homomorphism of groups. If u((c)) = 1, then
a = ac™! (mod m) and hence (¢) = P.. It follows that ker(u) = Pl. Given z € A prime to m,
we can find y € m such that deg(y) > deg(z) and sgn(y) = 1. Then sgn(z + y) = sgn(y) = 1,
(x+y) € Pt and pu((z +y)) =2 mod m € (A/m)*. This shows that u is surjective and hence it

induces an isomorphism (Z, N PT) /Pt ~ (A/m)*. O
Lemma 5.17. If m is prime to chara(L), let

XH(L) = {(¢,\)|¢p € XT(L) and X generates the A/m-module ¢p[m](L)}.
Then we have an action of I, on X} (L) such that the stabilizer of each (¢, \) is Pg.

Proof. Let (¢,\) € X} (L) and let I be an ideal of A prime to m. The isogeny ¢; : ¢ — I * ¢
induces an A-linear map ¢7 : p[m|(L) — (I *¢)[m](L) with source and target are free A/m-modules
of rank one. As [ is prime to m, ¢} is injective and hence bijective. So ¢5()) is a generator of
(Ix¢)m|(L). Define I« (p,\) = (Ix¢,¢5()\)), which can be extended to an action of Z,, on X (L).

Suppose I * (¢, \) = (¢, A) for some I € Z,,. By Theorem 5.14, I = (¢) for some ¢ € K* with
sgn(c) = 1. As (¢) € Iy, then (¢) N A is an ideal of A prime to m. Choose z € (1+m)N(c)NA
and take a = 29"~ ~1. Then a € A and sgn(a) = 1 and a = ¢b for some b € A. Hencea € 1 +m
and sgn(b) = 1. The equality ¢, (A) = A means that ¢a(A) = ¢3()), and hence a — b € m. This
shows that I = (¢) € P, and Stabz, (¢,\) = Py. O

Theorem 5.18. Fiz (¢, \) € XT(C). Define the narrow ray class field H,. modulo m of (A,sgn)
to be HT ().

(1) The action of T, on X} (C) makes it to be a principle homogeneous space under Pic A.

(2) The field H} is independent of the choice of (¢,)), and the extension H[ /K is finite
abelian, unramified at each prime of A not dividing m.

(8) We have Gal(HJ /K) ~ Pic/ A.

(4) Let Hy, be the subfield of HY fized by Pw /Py . Then Hy/K splits at oo and Gal(Hy /K) =
Pic, A.

Proof. By Lemma 5.17, X/ (C) is a disjoint of principle homogeneous spaces under PicéA. To prove

(1), we need only to show that #Pict A = #X£(C). By Theorem 5.14, #X(C) = #X(C) -
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#(A/m)* = #Pict A - #(A/m)*. By Lemma 5.16, #Pic A = #Pict A - #(A/m)*. So (1) holds.

(2) For any I € Ly, I* (¢, \) = (Ix¢, ¢5(N)). So Hy is independent of the choice of (¢, A). The
group Aut(C/K) also acts on X (C), so H} is stable under Aut(C/K). This shows that H /K
is a finite Galois extension. The automorphism group of X} (C) as a principle homogeneous space

under Pic/ A is equal to Pic}; A. So we have a monomorphism
x: Gal(H}/K) — AutX/ (C) ~ Pic/ A.

Thus H, /K is a finite abelian extension.

Let B be the integral closure of A in H,\, and let 9 be a maximal ideal of B lying above a
maximal ideal p of A not dividing m. By Corollary 4.5, for each (¢,\) € X} (H) = X} (C), ¢ is
a Drinfeld module over the localization Bgy. So there is a reduction map p : X} (Hy) — X (Fy)
of principle homogeneous spaces under PicjA. By (1), p is injective. If some o € Gal(H;/K)
belongs to the inertia group at 9, then o acts trivially on X (Fy). Hence o acts trivially on
Xt(HE) and o = 1. Thus H,;} /K is unramified at P.

(3) The Frobenius element in Gal(Fy/Fy) defines an elment Frob, € Gal(H} /K). For any
¢ € X (Fyp), we have ¢, = 798P by Lemma 5.3. For any a € A, the equality (p * ¢)adp = dpda
implies that (p * ¢), = Froby¢, and hence p * ¢ = Froby¢.

Since p : XH(HT) — X (Fyp) is injective and PicT A-equivariant, it follows that the actions of
Frob, € Gal(H;) and p € Zy, on X% (H,) coincide. Thus x : Gal(H,f/K) — Pic; A sends Frob,
to the class of p in Pic A. Such class generates Pict A, so x is surjective.

(4) Let X (C) be the set of isomorphic classes in X/ (C). Then X,(C) is a principle ho-
mogeneous space under PicyA. The surjective map X/ (C) — Xn(C) is compatible with the
epimorphism of groups Pic; A — Picy, A. By Proposition 5.2, each element of X(C) is represented
by a Drinfeld module over K, so the decomposition group D., of H} /K at co acts trivially
on Xpn(C). So Do C Pum/PE. In other words, oo splits completely in Hy,/K. The equality
Gal(Hy /K) = Picy A holds by Lemma 5.16. O

5.7 The maximal abelian extension of K

In this subsection, we construct the maximal abelian extension K2 of K.

24



Theorem 5.19. Let K**° = |J Hy, when m runs over all nonzero ideals of A = I'(X —{oc}, Ox)

m

and let K, := |J Fyn K be the constant extension of K.
n>1
(1) Then K is the mazimal abelian extension of K in which oo splits completely.

(2) Choose another closed point oo’ of X. Then K is the compositum K., K*> and Kaboo'

Before proving the theorem, first recall the class field theory for function fields.
For any closed point p of X, denote by K the completion of K at p, O, the discrete valuation
ring of K, and v, the discrete valuation. Define the idéle group of K to be

Ax ={(ap) € H K| ap € O, for almost all p}.
pelX|

For any effective divisor D= > nyp of X, let Up = ][] Uén"), where Uéo) =0, and Ur(,n*’) =
{a € Kplvp(a—1) > ny,}if in€>IX0|' Equip the idéle gr(;i)xalt canonical topology by taking a basic
system of neighborhoods of 1 € Aj to be the sets Up where D runs over all the effective divisors
of X. Therefore Ay is a locally compact group. The inclusion K C K, defines the diagonal
embedding K* — A} which makes K to be a discrete subgroup of Ax. We call the quotient
group Cx = Ay /K* the idéle class group of K. For any finite field extension L/K, we have the

norm map

NL/K : Az — A;;, NL/K((G‘B));J = HNL‘JS/K;:-(G"B)
Blp

The thrust of class field theory is that there exists a continuous homomorphism
(o, K?*/K) : A} — Gal(K™/K),
which satisfies the following properties:

(i) (e, K*/K) has dense image and its kenel is K*.

(ii) For each p € |X|, (o, K®?/K) is compatible with the local reciprocity map for K,. In

particular, if 7, € K, is a uniformizer, then (m,, K*"/K) is a Frobenius element for p.

(iii) For any finite abelian extension L/K, (e, K*"/K) induces an isomorphism

A%/K* Ny i(AY) = Cal(L/K).
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(iv) The map L — N := K*Npk(A}) is a one-to-one correspondence between finite abelian
extensions of K and open subgroups of A% of finite index containing K *. Moreover, N1, =

N NNy and Npnpr = N N1 for any two finite abelian extensions L, L’ of K.

Observe that any open subgroup of Aj contains Up for some effective divisor D of X. To
specify an open subgroup of finite index in Ck, it suffices to give an effective divisor D of X and
an open subgroup N of A% of finite index containing K *Up. The corresponding abelian extension

Ky /K should have these properties:
(a) Kn/K is unramified outside Supp(D).

(b) There is an isomorphism Ay /N ~ Gal(Ky/K), which carries a uniformizer at p ¢ Supp(D)
to the Frobenius element Frob, € Gal(Ky/K).

The ray class field Kp is the compositum of all finite extensions obtained this way. Then
Gal(Kp/K) is isomorphic to the profinite completion of the ray class group Cp := Ax/K*Up.
Suppose oo ¢ Supp(D). The divisor D = ) nyp gives an ideal m of A such that v,(m) = n,
p

for any p # oo. Let moo € K be a uniformizer.

Lemma 5.20. Suppose oo ¢ Supp(D). We have A} /K*Upr’, ~ PicwA. In particular, K*UprZ

is a subgroup of Ay of finite index. Any open subgroup of Ay of finite index containing K*Up

must contains K*UpnZ for some positive integer n.

Proof. Let

Up = {(ap) € A¥|vg(ap — 1) > ny for any p € Supp(D)}.
By the weak approximation theorem, we have A% = K*U}, and hence
AYX/K*Upth = K*Up /K Upr% ~ Uy, /(Up N K*Upn%) ~ Up /(KX NUpR)UprZ).

Any p € |X| — {oo} defines a maximal ideal of A which is still denoted by p. The canonical

homomorphism
Up = T, (ap) = [T o)
pFoo
induces an isomorphism

Up /(KX NUp)UpnZ) =~ I /Pw = Picy A.
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Let N be an open subgroup of A% of finite index containing K*Up and let N' = N/K*Up. So

N is a subgroup of Cp of finite index. The short exact sequence
1 =72 - Cp — PicyA — 1
shows that "N 7% = 7% for some n > 0 and hence K*Upm"Z C N. O

Corollary 5.21. If co ¢ Supp(D), then the subgroup K*UpnZ C A} gives the extension Huy/K

defined in section 5.6.

Proof. By Theorem 5.18, Hy, is unramified outside Supp(D) and splits at co. The assertion follows

by the following commutative diagram

AL /) Gal(H/K)
A% /K*UptZ = Picp A.

Lemma 5.22. If co ¢ Supp(D), then the ray class field Kp is the compositum of Hy and K.

Proof. Consider the degree map
deg: Al — Z, deg((ap)) = Z vp(ap) deg(p).
pelX|

Then deg(K *Up) = 1 and the inverse image of nZ in Aj; gives the constant extension K,, := K -Fgn
of K of degree n. Let L be a finite extension of K containing in Kp. By Lemma 5.20, we may
assume Ny = K*Upn"Z for some n > 1. Then Ny D K*UprZ N deg_l(ndooZ) and hence
L C HyKpa, .

O

Lemma 5.23. For any two effective divisors D = Zp:npp and D' = Zp:n;p of X, let min(D, D’") =

Xp:min(np, ny)p and max(D, D) = XP: max(ny,ny,)p. Then

Kp N Kpr = Kpin(p,pry and Kp - Kp' = Kyax(D,D1)-

Proof. We may assume oo ¢ Supp(D + D’). Obviously, Kp N Kp/ O Kpin(p,pr)- Let L be a

finite extension of K containing in Kp N Kp,. By Lemma 5.20, there exists n > 1 such that
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Ny D KXUDTFQOZ and N D KXUD/TFQOZ. Hence N D KXUmin(D’D/)ﬂ'"Z and L C Kmin(D,D’)'

oo

This proves Kp N Kp: C Kpyin(p,pr)- The proof of Kp - Kpr = Kyax(p,pr) is similar. [

We are ready to prove Theorem 5.19.

Recall that K*® = |JKg when E runs over all effective divisors of X. To prove K’ =
K Kb jaboo i suffices o show that Kp C KK K> for each E. Write E = D + D’
for some effective divisors D and D’ such that Supp(D) N Supp(D’) = 0, co ¢ Supp(D) and
oo’ ¢ Supp(D’). By Lemma 5.23, Kp = KpKp: and by Lemma 5.22, Kp C K*>K_ and

Kp C K*"K_. This completes the proof of Theorem 5.19.
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