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Diffuse Interface / Phase Field Model

Phase field model

A very simple/popular tool

Long history, extensive literature

An approximation to the sharp interface
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Diffuse Interface / Phase Field Model

Allen-Can/ Cahn-Hilliard Eqns

Allen-Cahn Eqn: ut = δ∆u + f (u)

Cahn-Hilliard Eqn: ut = ∆(−δ∆u + f (u))

Molecular beam epitaxy (MBE) eqn

ut = −δ∆2u + ∇ · f (∇u),

Typical f : f (φ) = φ|φ|2 − φ. An important feature is that they can be
viewed as the gradient flow of the following energy functionals:

EMBE(u) =

∫
Ω

[
δ

2
|∆u|2 +

1
4

(|∇u|2 − 1)2
]

dx

ECH(u) =

∫
Ω

[
δ

2
|∇u|2 +

1
4

(|u|2 − 1)2
]

dx
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Diffuse Interface / Phase Field Model

Energy decay (the key for numerical stability)

For the energy functionals of phase field problems

E(u(t) ≤ E(u(s)), ∀t ≥ s.

Example: Cahn-Hilliard impainting

ut = ∆

(
−δ∆u −

1
δ

F′(u)
)

+ λ(f − u)

[Bertozzi etc. IEEE Tran. Imag. Proc. 2007, Commun. Math. Sci, 2011]
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Diffuse Interface / Phase Field Model

Numerical Challenge for Phase Field Computations

Difficulties:
Catch dynamics (small ∆t) & steady state (large ∆t)

Higher order methods vs. efficiency

Long-Time Integration

Different Approaches:
Energy decay methods (numerous efforts)

Adaptivity in time/space; Moving mesh spectral method etc
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Diffuse Interface / Phase Field Model

start from Allen-Cahn eqn

To demonstrate the main idea, we consider

ut = uxx + u(1 − u2), x ∈ (−1, 1),

u(±1, t) = 0,

u(x, 0) = f (x).

Define the energy function in L2- space

E(u) =

∫
Ω

(1
2
|∇u|2 + F(u)

)
dx

where F(u) = 1
4 (1 − u2)2.

Multiplying ut on both sides of the AC eqn, and then use integration
by parts gives

d
dt

E(u) ≤ 0, ∀t > 0.
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Diffuse Interface / Phase Field Model

Implicit scheme: Crank-Nicholson

The CN scheme

un+1
j − un

j

∆t
=

1
2∆x2

(
δ−δ+un+1

j + δ−δ+un
j

)
+

un+1
j + un

j

2

1 − (un+1
j )2 + (un

j )2

2

 .
where

δ+uj = uj+1 − uj, δ−uj = uj − uj−1.

For the CN scheme, the following gradient flow property is satisfied

Ê(un+1) ≤ Ê(un),

where

Ê(un+1) :=
∑

j

un+1
j+1 − un

j

∆x

2

∆x +
∑

j

1
4

(
1 − (un+1

j )2
)2
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Diffuse Interface / Phase Field Model

simple proof
Multiplying un+1

j − un
j on both sides of the CN scheme gives

(
un+1

j − un
j

)2
=
λ

2

(
un+1

j − un
j

) (
δ−δ+un+1

j + δ−δ+un
j

)
+

∆t
2

(
(un+1

j )2 − (un
j )2

) 1 − (un+1
j )2 + (un

j )2

2

 ,
where λ = ∆t/∆x2 .

Summing over j and using integration by parts give∑
j

(
un+1

j − un
j

)2
∆x

= −
λ

2

∑
j
δ+

(
un+1

j − un
j

) (
δ+un+1

j + δ+un
j

)
∆x (1)

+
∆t
2

∑
j

[
(un+1

j )2 − (un
j )2 −

1
2

(
(un+1

j )4 − (un
j )4

)]
∆x

= −
λ

2

∑
j

[(
δ+un+1

j

)2
−

(
δ+un

j

)2
]
∆x −

∆t
4

∑
j

[(
1 − (un+1

j )2
)2
−

(
1 − (un

j )2
)2]

∆x.

As the left-hand side of (1) is non-negative, we obtain

1
2

∑
j


 δ+un+1

j

∆x


2

−

 δ+un
j

∆x

2
 ∆x +

1
4

∑
j

[(
1 − (un+1

j )2
)2
−

(
1 − (un

j )2
)2

]
∆x ≤ 0.
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Diffuse Interface / Phase Field Model

Linear approximation

Note that CN scheme is nonlinear. Consider linear scheme:

un+1
j − un

j

∆t
=

1
∆x2 δ−δ+un+1

j + un+1
j

(
1 − (un

j )2
)
, 1 ≤ j ≤ J − 1

If ∆t < 1, then the following stability results hold: Assume the initial data
satisfies

L∞-stability:
‖un‖∞ ≤ e2tn‖u0‖∞, n ≥ 0;

L1-stability:
‖un‖1 ≤ e2tn‖u0‖1, n ≥ 0;

L2-stability:
‖un‖2 ≤ e2tn‖u0‖2, n ≥ 0.

)7 (H��E�Æ) Numerical Methods for Phase Field Eqns April 27, 2018 12 / 41



Diffuse Interface / Phase Field Model

Linear approximation

Note that CN scheme is nonlinear. Consider linear scheme:

un+1
j − un

j

∆t
=

1
∆x2 δ−δ+un+1

j + un+1
j

(
1 − (un

j )2
)
, 1 ≤ j ≤ J − 1

If ∆t < 1, then the following stability results hold: Assume the initial data
satisfies

L∞-stability:
‖un‖∞ ≤ e2tn‖u0‖∞, n ≥ 0;

L1-stability:
‖un‖1 ≤ e2tn‖u0‖1, n ≥ 0;

L2-stability:
‖un‖2 ≤ e2tn‖u0‖2, n ≥ 0.

)7 (H��E�Æ) Numerical Methods for Phase Field Eqns April 27, 2018 12 / 41



Diffuse Interface / Phase Field Model

Linear approximation

Note that CN scheme is nonlinear. Consider linear scheme:

un+1
j − un

j

∆t
=

1
∆x2 δ−δ+un+1

j + un+1
j

(
1 − (un

j )2
)
, 1 ≤ j ≤ J − 1

If ∆t < 1, then the following stability results hold: Assume the initial data
satisfies

L∞-stability:
‖un‖∞ ≤ e2tn‖u0‖∞, n ≥ 0;

L1-stability:
‖un‖1 ≤ e2tn‖u0‖1, n ≥ 0;

L2-stability:
‖un‖2 ≤ e2tn‖u0‖2, n ≥ 0.

)7 (H��E�Æ) Numerical Methods for Phase Field Eqns April 27, 2018 12 / 41



Diffuse Interface / Phase Field Model

Linear approximation

Note that CN scheme is nonlinear. Consider linear scheme:

un+1
j − un

j

∆t
=

1
∆x2 δ−δ+un+1

j + un+1
j

(
1 − (un

j )2
)
, 1 ≤ j ≤ J − 1

If ∆t < 1, then the following stability results hold: Assume the initial data
satisfies

L∞-stability:
‖un‖∞ ≤ e2tn‖u0‖∞, n ≥ 0;

L1-stability:
‖un‖1 ≤ e2tn‖u0‖1, n ≥ 0;

L2-stability:
‖un‖2 ≤ e2tn‖u0‖2, n ≥ 0.

)7 (H��E�Æ) Numerical Methods for Phase Field Eqns April 27, 2018 12 / 41



Diffuse Interface / Phase Field Model

Linear approximation

Note that CN scheme is nonlinear. Consider linear scheme:

un+1
j − un

j

∆t
=

1
∆x2 δ−δ+un+1

j + un+1
j

(
1 − (un

j )2
)
, 1 ≤ j ≤ J − 1

If ∆t < 1, then the following stability results hold: Assume the initial data
satisfies

L∞-stability:
‖un‖∞ ≤ e2tn‖u0‖∞, n ≥ 0;

L1-stability:
‖un‖1 ≤ e2tn‖u0‖1, n ≥ 0;

L2-stability:
‖un‖2 ≤ e2tn‖u0‖2, n ≥ 0.

)7 (H��E�Æ) Numerical Methods for Phase Field Eqns April 27, 2018 12 / 41



Diffuse Interface / Phase Field Model

Linear scheme satisfying gradient flow property

consider

un+1
j − un

j

∆t
=

1
∆x2 δ−δ+un+1

j +
un+1

j + un
j

2

(
1 − (un

j )2
)
, 1 ≤ j ≤ J − 1

If ∆t < 1 and
∆t‖u0‖∞ecT < 1,

then the following gradient flow property is satisfied

Ê(un+1) ≤ Ê(un),

where

Ê(un+1) :=
∑

j

un+1
j+1 − un

j

∆x

2

∆x +
∑

j

1
4

(
1 − (un+1

j )2
)2
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Ê(un+1) :=
∑

j

un+1
j+1 − un

j

∆x

2

∆x +
∑

j

1
4

(
1 − (un+1

j )2
)2

)7 (H��E�Æ) Numerical Methods for Phase Field Eqns April 27, 2018 13 / 41



Diffuse Interface / Phase Field Model

Convex splitting for Cahn-Hillard eqn

CH eqn:
∂u
∂t

= ∆(−δ∆u + f (u)), x ∈ Ω, t ∈ (0,T],

Eyre’s splitting scheme for ut = −∇E(u). We need energy stable
scheme dE(u)/dt ≤ 0.

Convexity splitting
E(u) = Ec(u) − Ee(u)

where Ec,Ee ∈ C2 and are strictly convex.
The semi-implicit discretization is given by

Un+1 − Un

∆t
= −

(
∇Ec(Un+1) − ∇Ee(Un)

)
.

Various Eyre.s type or various extension
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Diffuse Interface / Phase Field Model

Convex splitting for Cahn-Hillard eqn

Using the splitting form for CHE

Ec(u) =

∫
Ω

(
δ

2
|∇u|2 +

β

2
u2

)
dx, Ee(u) =

∫
Ω

(
β

2
u2 − F(u)

)
dx,

we have

un+1 − un

∆t
= ∆

(
δEc(un+1)

δu
−
δEe(un)
δu

)
= −δ∆2un+1 + β∆un+1 − β∆un + ∆f (un).

If the constant β is sufficiently large, then

E(un+1) ≤ E(un), n = 0, 1, · · · .
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Diffuse Interface / Phase Field Model

Lower order with p-adaptivity

In each time interval, compute |Eh(Un+1) − Eh(Un). If the difference is small,
then move to next time level;

If the difference is large, judge how many order-enhancements are needed.
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Figure: (a) direct energy convex splitting scheme without SDC and
∆t = 0.001; (b) direct energy convex splitting scheme with ∆t = 0.04; and (c)
adaptive p-enhancement with dt = 0.04.
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Figure: (a) direct energy convex splitting scheme without SDC and
∆t = 0.001; (b) direct energy convex splitting scheme with ∆t = 0.04; and (c)
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Uncertainty Quantification (UQ)

Uncertainty Quantification (UQ)
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Uncertainty Quantification (UQ)

Uncertainty propagation: non-intrusive

Non-intrusive methods: only require (multiple) solutions of the original
(deterministic) model

Simple extension of the ”conventional” simulation paradigm

Embarrassingly parallel: solutions are independent

Monte Carlo (low order), stochastic collocation (High order), ect.
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Uncertainty Quantification (UQ)

Non-intrusive approach: Monte Carlo

If you know how to sample
{
y(k)

}M

k=1
... it’s done

Approximation of statistic moments

E[u] ≈
1
M

M∑
k=1

u
(
y(k)

)
.

Slow convergence rate M−
1
2 , but independent of the dimension d.
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Uncertainty Quantification (UQ)

Uncertainty propagation: intrusive

Intrusive methods: require the formulation and solution of a stochastic
version of the original model

Exploit the mathematical structure of the problem

Leverage theoretical & algorithmic advancements

New codes are needed

Perturbation methods (low order), polynomial chaos (High order), ect.

Computational cost can be high for large-scale problems.
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Uncertainty Quantification (UQ)

Numerical Study for Uncertainties

Different Approaches:

Generalized Polynomial chaos expansions
Multi-level Monte Carlo method
Bayesian approach to SPDEs

Open Issues:

High Dimensions, curse-of-dimensionality
Parametric Discontinuities
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Uncertainty Quantification (UQ)

Subsurface flow in random media (Dagan ’89, Zhang ’02)


∇ · (K(x, ω)∇h(x)) + g(x) = 0, x ∈ Γ,

h(x) = H(x), x ∈ ΓD,

K(x, ω)∇h(x) · n(x) = −Q(x), x ∈ Γn.

Log-normal conductivity:

Y(x, ω) = ln K(x, ω),

Y(x, ω) ∼ Gaussian random field
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Uncertainty Quantification (UQ)

The elliptic model problem

Elliptic PDEs with random input:

−∇ · (κ(x, y)∇u) = f (x, y), u|∂D = 0

y = (y1, y2, ..., yd) : d independent parameters, d � 1.

Each parameter admits known density : yk ∈ Γk ⊂ R, yk ∼ ρk.

y ∈ Γ := ⊗d
k=1Γk ⊂ R

d, y ∼ ρ(y) = Πd
k=1ρk(yk).

The input-output operator (with respect to y) is smooth:

Babuska-Nobile et al ’07, Cohen-DeVore-Schwab ’10
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Uncertainty Quantification (UQ)

Generalized Polynomial Chaos (Xiu & Karniadakis ’03)

Multivariate polynomial expansions:

u(x, y) ≈
∑
α∈I

ĉα(x)φα(y), with
∫

ρ(y)φα(y)φβ(y)dy = δαβ.

Input Polynomial Density Support

Normal Hermite Hen(x) e−
x2
2 [−∞,+∞]

Uniform Legendre Ln(x) 1
2 [−1, 1]

Multi-index α = (α1, . . . , αd) ∈ Nd
0. Assign a single index:

uN(x, y) =
∑
α∈I

ĉα(x)φα(y) =

N∑
n=1

ĉn(x)φn(y), N = # {I}.

Total degree polynomial spaces with degree q:

I :=
{
α : ‖α‖1 ≤ q

}
⇒ N =

(q+d
d

)
=

(q + d)!
q!d!

.
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Uncertainty Quantification (UQ)

Advantages of gPC

Computation of statistic moments:

E[u] ≈ E[uN] = ĉ1(x), Var[u] ≈ Var[uN] =

N∑
n=2

ĉ 2
n (x)

High order rate of convergence for smooth problems

The goal: efficient recover the unknown coefficients { ĉn(x) }
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Uncertainty Quantification (UQ)

Intrusive Approach: Stochastic Galerkin

〈
φn(y), −∇ ·

(
κ(x, y)∇u

)〉
ρ(y)

=
〈
φn(y), f (x, y)

〉
ρ(y)

, n = 1, ...,N.

⇓

− ∇ · [A(x)∇c] = f Deterministic system

c =
(̂
c1(x), ..., ĉN(x)

)>, f =
(̂
f1(x), ..., f̂N(x)

)>, A(x) =
[
An,m(x)

]

The corresponding components:

f̂n(x) =

∫
Γ

ρ(y)f (x, y)φn(y)dy n = 1, ...,N.

An,m(x) =

∫
Γ

ρ(y)κ(x, y)φn(y)φm(y)dy, 1 ≤ n,m ≤ N.

Drawbacks: coupled system, hard to solve in general.
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Uncertainty Quantification (UQ)

Non-intrusive Approach: Stochastic Collocation

Sampling the parametric space:{
y(m)

}M

m=1
−−−−−→
PDE Solver

{
u
(
x, y(m)

)}M

m=1

Impose the collocation condition:

uN
(
x, y(m)

)
=

N∑
n=1

φn
(
y(m)

)
ĉn(x) ≈ u

(
x, y(m)

)
, m = 1, ...,M.

Consider the scalar case (drop x): approximation problem

Ac ≈ u, A ∈ RM×N , Am,n = φn
(
y(m)

)
The approximation ”≈” will be explained later.
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Uncertainty Quantification (UQ)

# of Sampling points M vs. polynomial degree N

Sparse approximation via `1 minimization

If less information is given M < N, we expect a sparse approximation

argmin
c∈RN

||c||1 subject to Ac = u.

The idea comes from the compressed sensing community ; care
should made for choosing samples: stability & efficiency

Discrete least-squares (e.g. Burkardt-Eldred ’2009)

If more information is available, i.e., M > N, we can consider the
least-squares approach

c = min
z∈RN
||Az − u||2.

Least-squares is preferred when data are polluted by noise

Various sampling methods can be adopted, again, stability & efficiency
are important
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Uncertainty Quantification (UQ)

Stability results for unbounded domain (Tang-Zhou, ’SISC14)

Stable with high probability:

Pr
{
|||Â − I||| ≥

5
8

}
≤ M−γ provided that

M
log M

> γN, L > 5
√

N.
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Figure: Condition number against polynomial order in 1D (Gaussian)
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UQ and stability

Allen-Cahn Eqn

Consider a simple stochastic ACE:

ut(x, t, z) = δ(z)uxx + u(1 − u2), x ∈ (−1, 1),
u(±1, t, z) = 0, u(x, 0) = u0(x, z).

... the input random vector z = (z1, · · ·, zd) ∈ Rd, where {zk}
d
k=1 are

independent random parameters.

... assume each zk ∈ Γk ⊂ R has an associated probability density
function ρk(zk). Due to the independence, z ∈ Γ := ⊗kΓk satisfies
ρ(z) =

∏d
k=1 ρk.

Mean value and variance function:

E[u](x, t) =

∫
Γ

ρ(z)u(x, t, z)dz, Var[u](x, t) =

∫
Γ

ρ(z)
(
u − E[u]

)2dz.

)7 (H��E�Æ) Numerical Methods for Phase Field Eqns April 27, 2018 30 / 41



UQ and stability

Allen-Cahn Eqn

Consider a simple stochastic ACE:

ut(x, t, z) = δ(z)uxx + u(1 − u2), x ∈ (−1, 1),
u(±1, t, z) = 0, u(x, 0) = u0(x, z).

... the input random vector z = (z1, · · ·, zd) ∈ Rd, where {zk}
d
k=1 are

independent random parameters.

... assume each zk ∈ Γk ⊂ R has an associated probability density
function ρk(zk). Due to the independence, z ∈ Γ := ⊗kΓk satisfies
ρ(z) =

∏d
k=1 ρk.

Mean value and variance function:

E[u](x, t) =

∫
Γ

ρ(z)u(x, t, z)dz, Var[u](x, t) =

∫
Γ

ρ(z)
(
u − E[u]

)2dz.

)7 (H��E�Æ) Numerical Methods for Phase Field Eqns April 27, 2018 30 / 41



UQ and stability

Allen-Cahn Eqn

Consider a simple stochastic ACE:

ut(x, t, z) = δ(z)uxx + u(1 − u2), x ∈ (−1, 1),
u(±1, t, z) = 0, u(x, 0) = u0(x, z).

... the input random vector z = (z1, · · ·, zd) ∈ Rd, where {zk}
d
k=1 are

independent random parameters.

... assume each zk ∈ Γk ⊂ R has an associated probability density
function ρk(zk). Due to the independence, z ∈ Γ := ⊗kΓk satisfies
ρ(z) =

∏d
k=1 ρk.

Mean value and variance function:

E[u](x, t) =

∫
Γ

ρ(z)u(x, t, z)dz, Var[u](x, t) =

∫
Γ

ρ(z)
(
u − E[u]

)2dz.

)7 (H��E�Æ) Numerical Methods for Phase Field Eqns April 27, 2018 30 / 41



UQ and stability

Free energy for ACE

Consider a new free energy in the expectation sense, i.e.

Ê(u) := E
[∫

Ω

(
δ

2
|∇u|2 + F(u)

)
dx

]
=

∫
Γ

∫
Ω

ρ(z)
(
δ

2
|∇u|2 + F(u)

)
dxdz.

It can be shown that
d
dt

Ê(u) ≤ 0.

... a new guide for designing numerical schemes
Another interesting problem is to investigate the following free energy:

E(u) :=
∫

Ω

(
δ

2
|∇ū|2 + F(ū)

)
dx with ū = E[u].

i.e.,consider the free energy with respect to the mean
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UQ and stability Stochastic Galerkin methods

Stochastic Galerkin methods

Expand the solution in the parametric space by polynomials

u(x, t, z) ≈ uM =

M∑
k=1

vk(x, t)φk(z),
∫

Γ

ρ(z)φk(z)Φj(z)dz = δkj.

... v = {v1, . . . , vM} are the expansion coefficients to be determined,
and {φk}

M
k=1 are orthogonal polynomials in Γ.

Note

E[u] ≈ E[uM] = v1(x, t), Var[u] ≈ Var[uM] =

M∑
k=2

v2
k .

To compute v, perform the stochastic Galerkin projection:〈
∂uM

∂t
, φk

〉
ρ(z)

=

〈
δ(z)

∂2uM

∂x2 , φk

〉
ρ(z)

+
〈
uM(1 − u2

M), φk

〉
ρ(z)
, k = 1, ...,M.

‖uM‖L2(Γ⊗D) ≤ e2t‖u0,M‖L2(Γ⊗D),
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UQ and stability Stochastic Galerkin methods
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〈
∂uM

∂t
, φk

〉
ρ(z)

=

〈
δ(z)

∂2uM

∂x2 , φk

〉
ρ(z)

+
〈
uM(1 − u2

M), φk

〉
ρ(z)
, 1 ≤ k ≤ M,

gives
vt = A∆v − f(v),

where

Akj =

∫
Γ

ρ(z)δ(z)φk(z)φj(z)dz, fk =

∫
Γ

ρ(z)f (v>Φ)φk(z)dz, 1 ≤ k ≤ M.

f (u) = u(1 − u2), uM = v>Φ with Φ = (φ1 , ..., φN )> .

A is positive definite
IC and BC are given by

v(x, 0) = v0(x), v(±1, t, z) = 0,
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UQ and stability Stochastic Galerkin methods

The energy law for the Galerkin system

Consider the Galerkin system

vt = Avxx − f(v). (2)

We define the associated free energy as

ÊP(v) :=
∫

Ω

v>x Avx + E
[
F(v>Φ)

]
dx

It can be shown that d
dt ÊP(v) ≤ 0.

Multiplying both sides of (2) by −v>t to obtain −v>t Avxx + v>t f(v) ≤ 0. Then∫
Ω

(
− v>t Avxx + v>t f(v)

)
dx

=

∫
Ω

v>txAvx +
∑

j

∂vj

∂t

∫
Γ
ρ(z)f (uM )φj(z)dz

 dx

=

∫
Ω

v>txAvx +
∑

j

∂vj

∂t

∫
Γ
ρ(z)f (uM )φj(z)dz

 dx

=

∫
Ω

(
v>txAvx +

∫
Γ
ρ(z)f (uM )

∂uM
∂t

dz
)

dx

=
d
dt

∫
Ω

(
v>x Avx +

∫
Γ
ρ(z)F(uM )dz

)
dx.
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Sample-based methods and stability

Monte Carlo method

First generates randomly a sample set {zl}
L
l=1 according to ρ(z), and

then solve the random ACE for each zl to obtain ul = u(x, t, zl).

Then any energy stable scheme can be used as the deterministic
solver. Computing the sample solutions can be done in a parallel way.

The MC approach gives approximation for the mean function

E[u] ≈
1
L

L∑
l=1

ul.

Good: the energy law is preserved

d
dt

ÊL(u) =:
1
L

L∑
l=1

d
dt

E(ul) ≤ 0,

Bad: the associated convergence rate is only one half :1/
√

L.
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Sample-based methods and stability

Stochastic collocation methods

In stochastic collocation methods, one generate special samples to obtain a
higher order convergence rate ... the points are chosen as the root of the
associated polynomials.

For example, if uniform density is considered, then one choose the
Legendre Gaussian points as samples; while if normal distribution is
considered, the Hermite Gaussian points will be used as samples.

Suppose the {zk}
K
k=1 are those samples (i.e., the tensor product of

Gaussian-type points), we solve the random ACE for each point zk

ut(x, t, zk) = δ(zk)uxx + u(1 − u2), x ∈ (−1, 1),
u(±1, t, zk) = 0, u(x, 0) = u0(x, zk).
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Sample-based methods and stability

Stochastic collocation methods

Again, any energy scheme for the above equation can be used.

The Lagrange interpolation can be used to construct a global approximation

uK(x, t, z) =

K∑
k=1

uk(x, t, zk)Tk(z).

Notice that the Lagrange bases {Tk}
K
k=1 are of tensor-product type. the Lagrange

interpolation is constructed by tensorize the one-dimensional interpolation.

We have
d
dt

ÊK
(
u(x, t, z)

)
=:

K∑
k=1

wk
d
dt

E
(
u(x, t, zk)

)
≤ 0.

Here {wk} are the quadrature weights associated with the Gaussian-type
points

wk =

∫
Γ

ρ(z)Tk(z)dz ≥ 0, k = 1, ...,K.
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Sample-based methods and stability

Some remarks

We can expect a high order convergence rate provided that the solution is
smooth in the parametric space.

However, for high dimensional parametric problems, the tensor-product rule
will results in a huge number of samples: suppose we have K points in each
dimension, then we shall have Kd points for the d-dimensional problem.

This number is huge when d is large (known as the curse of dimensionality).

To overcome this, one may resort to the so called sparse grid rule. However,
in sparse grid approach, the positivity of the weights are no longer
guaranteed, and the energy stability may not hold.
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Conclusions and references

Conclusions

UQ brings new research directions for phase field models
(Cahn-Hilliard, MBE, Thin Film etc)

Stochastic Galerkin/collocation methods, energy law;

UQ brings new challenges, e.g., high dimensionality

UQ introduces new analysis, e.g., probabilistic based analysis

UQ can be very interdisciplinary, and often involves subjects such as
scientific computing, approximation theory, probability, random matrix,
compressed sensing ect
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