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Riemann Zeta Function

» One of the most mysterious and important functions in the
modern Number Theory is

1
C(S) = F
n=1

> converges absolutely for Re(s) > 1.
> meromorphic continuation to the complex plane C.

» functional equation: (. (s) := F(%)ﬂ‘é

A(s) = Coo(5)¢(5) = Coo(1 = 5)C(1 = 5) = A(1 = s).

» Euler product decomposition: for Re(s) > 1,

=1 1
C(S):Z:;:]_‘[]__pfs'
n=1 P




Euler Product of Riemann Zeta Function

» Euler Product Decomposition:

(&=l

p

for Re(s) > 1 can be proved by using

Theorem (Foundamental Theorem of Arithmetic)

For any r € Q, there is prime numbers p1, p2,- -+ , p+ and integers
ei, e, - ,€e such that
r=+pi'py - pr

This is unique up to permutation.

» ((s) has a simple pole at s = 1 if and only if there exists
infinitely many primes.



Basic Structures of Numbers

» Foundamental Theorem of Arithmetic provides the
fundamental multiplicative structure of numbers in terms of
primes.

P and suggests the basic local-global principle in the modern
Number Theory.

> Frgm r=4p;tps? - pst, to know r is equivalent to know all
ps’, individually

» To measure r we use the usual absolute value; and to measure
pf" we use the so called p-adic absolute value.



p-adic Absolute Value

» Given a prime p, any r € Q*, we have r = p¢

(p.a)=(p,b) =1.
» Define the p-adic absolute value

p~¢, ifr#£0;
Irlp == ——
0, if r=0.

a
<5 where

v

| - |p defines a nontrivial metric on Q.

For r € Q*, the Artin product formula

I =1
v

v



Locally Compact Topological Fields

» Over Q, we have |- |« and |- |, for all p's.

» Take the completion, we have

(@7 | ’ |oo) =R; (Qv | ’ |P) = @P'

» They are only locally compact topological fields containing Q
as a dense set.

R Q2 Q3 Q -+ Q



Locally Compact Topological Fields

» The Euler product A(s) = TF_%I_(%)C(S) = TF_%F(%)HP =

1—-p—s
> We may put it into the following diagram:

R Q2 Qs Q - Q

—sr(s 1 1 1
m2l(3) 1-2-5 13 155 = TI-ps
» One of the fundamental properties of locally compact groups
is the existence of Haar measure, unique up to scalar.
» For v = oo or p, denote the Haar measure dx, on Q,.

» The Harmonic Analysis on (Q,, dx,) provides an important

interpretation of the local Euler factors (,(s) = 1_7}3,5 and
(o(s) =721 (5) =772 [7° x> Le *dx, following the

famous thesis of J Tate.



Adele Ring of Q

» One might consider [, Q,, but it is not locally compact.

€1 ..

» For each r = £p;'p;

€t

© Pt
The ring of adeles is defined to be

involves finitely many primes.

v

A={(x) € H@v : |xplp < 1, for almost all p}.

» A is a locally compact ring containing all Q,; and Q is
discrete in A such that A/Q is compact.

v

(A, Q) is a modern analogy of the classical pair (R, Z).



Tate's Thesis

» For each v, 3 a Schwartz function ¢,, s.t.

1 .
e ifv=p,
d»(x)!x\idxxvz{la vee

0z 730(E) i v =oo.

» 3 a Schwartz function ¢ = ®,¢, on A, s.t.

1

| o0l x = =ir(3). Ty = ot

» Functional Equation: (,(s){(s) = (x(1 —s)((1 —s)
follows from the Poisson Summation Formula for the
Fourier Transform on A/Q.

» Local-Global relation in Harmonic Analysis approaches the
Local-Global relation in Arithmetic!



Solutions of Polynormial Equations

» Find solutions for
P(X) :Xn+31Xn_1+"'+an71X+an:07

with a; € Q.

> It is well-known that for n < 4, one has a formula to express
all the solutions in complex numbers C.

» Classical Problem: Why is there no formula for the roots of
P(x) = 0 with n > 5 in terms of a;, using only addition,
subtraction, multiplication, division, square roots, cube roots,
etc?

» The Abel Impossibility Theorem (1824) confirms no
formula in general for n > 5.

» However, a more conceptual understanding of this classical
problem is not known until the work of E. Galois in 1830.



Galois Groups and Algebraic Number Theory

» According to Galois, the symmetric group of the roots of
P(x) = 0, which is called its Galois Group, is much more
fundamental than the explicit expression of the roots.

» This leads to the Galois Theory of P(x) = 0, which is to
study the finite field extension of Q.

» Algebraic Number Theory is to understand how the primes
p behaves under a finite field extension F over Q.

> Example:

Q(v-1) 1-v-1)A+v-1) 3

Q 2 3



Hilbert Ramification Theory

v

vvvyyypy

F is a Galois field extension of Q of degree m.
O is the ring of algebraic integers in F.
Take a prime p:

F p-O= pf . pg ..... pf

Q p
The Galois group I'r/q acts transitively on {p1,p2, - p,}.
The residue field x(p;) = O/p; = O/p; = k(p;) for any i, ;.
Let [k(p;) : Fp] = f with Fp, =Z/pZ. Then m=-e-r-f.

Decomposition group: I'(p;) == {x € Tr)q | x-p; = pi}.
Then one has ['(p;) = I'(p;).

1 =1, = (p) = Gal(k(p)/Fp) = 1



Galois

Group: Local-Global Structure

The Galois group I'r /g produces I'(p) for each prime p.

E. Artin studies the complex representation of the Galois
group l'r/q, in order to understand its structure and the
associated field extension F/Q.

p : Trg — GLA(C) is a goup homomorphism.

p also produces a family of representations
pp : T(p) = GLA(C)

The well-known Chebotarev Density Theorem:
The Local Symmetries carried by p,(I'(p)) for all primes p
recover the Global Symmetries of p(I'r/q).



Artin L-functions

>

| 4

>

For almost of primes p, the local represemtation p,, is trivial
on the inertia group .

Hence pp(I'(p)) =< p(Froby) > is a cyclic group generated by
the Frobenius Frob, at p.

It is known that the Galois representation p is of Frobenius
semi-simple, i.e. p(Froby) is conjugate to a diagonal element
in GL,(C).

The characteristic polynomial
det(I, — pp(Froby))

determines the semi-simple conjugate class p(Froby), which is
also called the Frobenius-Hecke class of p.



Artin L-functions

» Since there are infinitely manu primes p, it is better to
consider the Euler product

Mp det(I, — pp(Froby)).

» The Bad News is this Euler product will never be convergent!

> It is Artin who introduces the following object, called the
Artin L-function of p:

L(s,p, F/Q) := N, det(I, — pp(Froby)p—=) L.

» L(s,p, F/Q) converges absolutely for real part of s large, and
has meromorphic conitnuation to s € C.

» Artin Conjecture: If p is irreducible, then L(s, p, F/Q) has
analytic continuation to an entire function in s € C.



Local Langlands Recirocity Conjecture

Mo = Gal(Q/Q) the absolute Galois group and p : g — GL,(C)

poc(Frobss)  pa(Froby)  p3(Frobz) ---  pp(Froby)
R Q2 Q3 X Qp
Too 2 3 e Tp

» 7, is an irreducible admissible representation of GL,(Qp).
» The correspondence p, <+ pp(Frob,) <+ 7, is the local
Langlands reciprocity conjecture for GL,,.

» It was proved by R. Langlands for GL,(R) and by M. Harris
and R. Taylor, by G. Henniart, and by P. Scholze for GL,(Q)).



Global Langlands Reciprocity Conjecture

> Take 7 := 7o ® (®pmp), which is an irreducible admissible
unitary representation of GL,(A).

» Langlands Conjecture: There is a non-trivial
GL,(A)-equivariant embedding of the space V;: of 7 into the
following space of L2-automorphic functions

[?(GLp(Q)\GLn(A), w)

» |t consists of functions f : GL,(A) — C, such that
1. f(zg) = w(z)f(g) for z € Z(A) the center of GL,(A);
2. f(vg) = f(g) for any v € GL,(Q) and g € GL,(A);
3 Jor@ncr f(g)*dg < oo



Langlands Conjecture implies Artin Conjecture

» |t can be checked that if ™ corresponding to p occurs in the
space L2(GL,(Q)\GL,(A),w), then if p is irreducible, the
L-function L(s, ) is entire according the work of R.
Godement and H. Jacquet.

» Hence the Artin conjecture is true.
» It is highly non-trivial to prove that m := 7, ® (®,7,) do
occur in the space L?(GL,(Q)\GL,(A),w).

» For the moment, we only know some special cases for GL;
case.
» If someone knows this for n > 3 in general, he or she should

win a Fields Medal, if the person is younger than 40 years
old.



Langlands Automorphic L-functions

» An irreducible unitary representation (V;, 7) of GL,(A) is
called automorphic if

Homgr,,(a)( Ve, L(GLa(Q)\GLa(A),w)) # 0.

» For each automorphic representation m = ®,mp, there exists a
Frobenius-Hecke class c(7,) in GL,(C).

» Strong Multiplicity One Theorem of Jacquet-Shalika, the
famiy {c(7p)} determines 7 uniquely.

» For any r : GL,(C) — GLg,(C) with d, = dim V,, one
defines the general Langlands L-function:

L(s,m,r) =MNpL(s,mp,r)



Langlands Conjecture

» Langlands Theorem: For an irreducible admissible unitary
representation m = ®,m, of GL,(A), the Euler product

L(s,m,r) =MNpL(s,mp,r)

converges absolutely for Re(s) sufficiently large.

» Langlands Conjecture: If an irreducible admissible unitary
representation ™ = ®pmp of GL,(A) occurs in

[?(GLA(Q)\GLn(A), w),

then the L-function L(s, 7, r) enjoys the following analytic
properties:
1. L(s,m,r) has meromorphic continuation to s € C;
2. Functional Equation: L(s,m,r) =e(s,m, r)L(1 —s,m,r);
3. L(s,m,r) has finitely many poles at s > %



Langlands Conjecture: Analytic Properties

The Langlands Conjecture on analytic properties of automorphic
L-functions has been verified for many families of cases.
» Rankin-Selberg method, which traces back to the work of
Euler and Riemann.

» Langlands-Shahidi method, which is based on the
Langlands theory of Eisenstein series.

» Endoscopy Classification method, which is based on the
Arthur-Selberg trace formula.

» Braverman-Kazhdan proposal, which is based on theory of
invariant distributions and harmonic analysis.

> Beyond Endoscopy proposal, which is based on the
Langlands beyond endoscopy proposal for more general types
of functoriality.

» The Langlands conjecture can be stated for general reductive
algebraic groups defined over any number fields.



Langlands Conjecture: Poles and Functoriality

» If an irreducible automorphic representation 7 = 7 @ (®p7p)
of GL,(A) is of Ramanujan type, i.e. m, are tempered, then
there exists an algebraic subgroup *H, of GL,(C), such that
for any finite dimensional representation
r : GLp(C) = GLg4,(C), one has

—ords—1L(s,m, r) = dim Homxy _(r,1).

» Theorem: For an irreducible cuspidal automorphic
representations 7 of GLa,(A), the exterior square L-function
L(s, 7, A?) is holomorphic for Re(s) > 1, and TFAE:

1. L(s,7,A?) has a simple pole at s = 1.
2. 7 is the Langlands transfer from 7 € Acusp(SO2n41).

» This theorem is the final statement accomplished through the
work of Jacquet-Shalika, of Cogdell-Kim-PS-Shahidi, of
Ginzburg-Rallis-Soudry, and finally of Jiang-Soudry.



Langlands Conjecture: Poles and Functoriality

» As representations of Sp,,(C):
N(C?") = p2 @ 1sp,,

where p; is the second fundamental complex representation of
Sp,,(C), which is irreducible and has dimension 2n?> — n — 1,
and 1gp, is the trivial representation of Sp,,(C).

» Theorem [J.]: L(s, 7, p2) = L(%sgﬁ) converges absolutely for
Re(s) > 1, has meromorphic continuation to the whole
complex plane, satisfies the functional equation

L(577Ta P2) = 6(57 T, pZ)L(]- —Ss,m, P2)=

has possible poles at s = 0,1, besides other possible poles in
the open interval (0,1) (involving GRH and Siegel zeros).



Langlands Conjecture: Poles and Functoriality

» Elliptic Endoscopy: For n=n; + ny + -+ 4+ n, with n; > 0,
H[n1~~~n,] = SOZn1+1 X SO2n2+1 X X SO2n,+1

is an elliptic endoscopy group of SO2,+1 with the dual
embedding:

SPan, (C) x Spyp, (C) x -+ x Spy, (C) — Spy,(C).

» Theorem [J.]: L(s, 7, p2) has a pole at s =1 of order r — 1

if and only if 3 a partition n = > 7_; nj with n; >0 s.t. 7 is

an endoscopy transfer from an irred. cusp. autom. rep'n
& QT

of Hip,...n,J(A). (7 has a generic global Arthur parameter.)



Langlands Conjecture: Poles and Functoriality

Invariant Theory: For an irreducible cuspidal automorphic
representation 7 of G(A), there exists a closed subgroup H2 of
GY(C), such that for p : GY(C) — GL(V,), the following holds:

dim Homyy (V,, 1) = —ords=1L(s, 7, p).

Functorial Source: There exists a reductive algebraic group H
defined over F with properties:

1.t : HY(C)Cc H}) - GY(C),

2. there exists an irreducible cuspidal automorphic representation
o of H(A), which is primitive, such that 7 is the Langlands
functorial transfer of o.

3. L3(s,m,p) = L(s,0,po04).

Remark: My Theorem proves the Langlands Conjecture for
G = SO2p+1 and p = po. This is one of the very few known cases.
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