Pseudodifferential operators and complex powers of elliptic operators on noncommutative tori

Gihyun Lee

Program on Differential Geometry on Noncommutative Tori

Sichuan University, Chengdu, China

(Joint work with H. Ha and R. Ponge)

May 16, 2019

Pseudodifferential Calculus on Noncommutative Tori

- Noncommutative Tori
- Motivation
- Symbols, Amplitudes and Oscillating Integrals
- ΨDOs on NC Tori and Their Main Properties

2 Resolvents and Complex Powers of Elliptic Ψ DOs on NC Tori

- Elliptic ΨDOs on NC Tori and Their Spectral Properties
- ΨDOs with Parameter
- The Resolvent of an Elliptic ΨDO
- Holomorphic Families of ΨDOs
- Complex Powers of an Elliptic Ψ DO

Part 1. Pseudodifferential Calculus on Noncommutative Tori

Noncommutative Tori

•
$$heta = (heta_{jl})$$
, anti-symmetric real $n imes n$ matrix $(n \ge 2)$.

Definition

 $A_{\theta} = C^*$ -algebra generated by the unitaries U_1, \ldots, U_n obeying the relation:

$$U_k U_j = e^{2i\pi\theta_{jk}} U_j U_k, \quad j,k=1,\ldots,n.$$

Notation: $U^k := U_1^{k_1} \cdots U_n^{k_n}, \ k = (k_1, \dots, k_n) \in \mathbb{Z}^n.$

(日) (四) (日) (日) (日)

•
$$\theta = (\theta_{jl})$$
, anti-symmetric real $n \times n$ matrix $(n \ge 2)$.

Definition

 $A_{\theta} = C^*$ -algebra generated by the unitaries U_1, \ldots, U_n obeying the relation:

$$U_k U_j = e^{2i\pi\theta_{jk}} U_j U_k, \quad j,k=1,\ldots,n.$$

Notation: $U^k := U_1^{k_1} \cdots U_n^{k_n}, \ k = (k_1, \dots, k_n) \in \mathbb{Z}^n.$

- There is a tracial state τ : A_θ → C such that τ(1) = 1 and τ(U^k) = 0 for 0 ≠ k ∈ Zⁿ.
- $\mathscr{H}_{\theta} :=$ the completion of A_{θ} w.r.t. the inner product,

$$(u|v) := \tau(uv^*).$$

• $u = \sum_{k \in \mathbb{Z}^n} u_k U^k$, $u_k = (u | U^k)$, the Fourier series of $u \in \mathscr{H}_{\theta}$.

• There is a continuous action of \mathbb{R}^n on A_{θ} such that

$$\alpha_s(U^k) = e^{is \cdot k} U^k, \qquad s \in \mathbb{R}^n, \ k \in \mathbb{Z}^n.$$

Smooth noncommutative torus

$$\begin{aligned} \mathscr{A}_{\theta} &:= \{ u \in A_{\theta}; \ s \to \alpha_s(u) \text{ is a smooth map from } \mathbb{R}^n \text{ to } A_{\theta} \} \\ &= \{ u = \sum u_k U^k \in A_{\theta}; \ (u_k)_{k \in \mathbb{Z}^n} \text{ decays rapidly} \}. \end{aligned}$$

• There is a continuous action of \mathbb{R}^n on A_{θ} such that

$$\alpha_s(U^k) = e^{is \cdot k} U^k, \qquad s \in \mathbb{R}^n, \ k \in \mathbb{Z}^n.$$

Smooth noncommutative torus

 $\begin{aligned} \mathscr{A}_{\theta} &:= \{ u \in A_{\theta}; \ s \to \alpha_s(u) \text{ is a smooth map from } \mathbb{R}^n \text{ to } A_{\theta} \} \\ &= \{ u = \sum u_k U^k \in A_{\theta}; \ (u_k)_{k \in \mathbb{Z}^n} \text{ decays rapidly} \}. \end{aligned}$

• For
$$j = 1, \ldots, n$$
 define $\delta_j : \mathscr{A}_{\theta} \to \mathscr{A}_{\theta}$ by

$$\delta_j(U^k) = -i\partial_{s_j}\alpha_s(U^k)|_{s=0} = k_jU^k, \quad k = (k_1, \ldots, k_n) \in \mathbb{Z}^n.$$

Then δ_j is a derivation on \mathscr{A}_{θ} , i.e., $\delta_j(uv) = \delta_j(u)v + u\delta_j(v)$ for all $u, v \in \mathscr{A}_{\theta}$.

Noncommutative Tori

• We equip \mathscr{A}_{θ} with the locally convex topology generated by the semi-norms,

$$u \longrightarrow \|\delta^{\alpha} u\|, \qquad \alpha \in \mathbb{N}_0^n.$$

 \mathscr{A}_{θ} is a Fréchet *-algebra with respect to this topology.

Noncommutative Tori

• We equip \mathscr{A}_{θ} with the locally convex topology generated by the semi-norms,

$$u \longrightarrow \|\delta^{\alpha} u\|, \qquad \alpha \in \mathbb{N}_0^n.$$

 \mathscr{A}_{θ} is a Fréchet *-algebra with respect to this topology.

NC Torus	Ordinary Torus ($ heta=0$)
$A_{ heta}$	$C(\mathbb{T}^n)$
$\mathscr{A}_{ heta}$	$\mathcal{C}^\infty(\mathbb{T}^n)$
$U_j \ (j=1,\ldots,n)$	the function $x o e^{ix_j}$
$U^k \; (k \in \mathbb{Z}^n)$	the function $x o e^{ix \cdot k}$
$\delta_j \ (j=1,\ldots,n)$	$D_{x_j} := -i\partial_{x_j}$
$\delta^{\alpha} := \delta_1^{\alpha_1} \cdots \delta_n^{\alpha_n} \ (\alpha \in \mathbb{N}_0^n)$	$D_x^{lpha} := D_{x_1}^{lpha_1} \cdots D_{x_n}^{lpha_n}$
the trace $ au$	the integral on \mathbb{T}^n
$\mathscr{H}_{ heta}$	$L^2(\mathbb{T}^n)$

Differential Operators

Definition (Connes)

A differential operator of order m on \mathscr{A}_{θ} is a linear operator $P : \mathscr{A}_{\theta} \to \mathscr{A}_{\theta}$ of the form,

$$Pu = \sum_{|\alpha| \leq m} a_{\alpha} \delta^{\alpha} u, \qquad a_{\alpha} \in \mathscr{A}_{\theta}.$$

The symbol of *P* is the map $\rho : \mathbb{R}^n \to \mathscr{A}_{\theta}$ defined by $\rho(\xi) = \sum_{|\alpha| \le m} a_{\alpha} \xi^{\alpha}$, $\xi \in \mathbb{R}^n$.

Differential Operators

Definition (Connes)

A differential operator of order m on \mathscr{A}_{θ} is a linear operator $P : \mathscr{A}_{\theta} \to \mathscr{A}_{\theta}$ of the form,

$$Pu = \sum_{|\alpha| \leq m} a_{\alpha} \delta^{\alpha} u, \qquad a_{\alpha} \in \mathscr{A}_{\theta}.$$

The symbol of *P* is the map $\rho : \mathbb{R}^n \to \mathscr{A}_{\theta}$ defined by $\rho(\xi) = \sum_{|\alpha| \le m} a_{\alpha} \xi^{\alpha}$, $\xi \in \mathbb{R}^n$.

- Example 1: The (flat) Laplacian $\Delta := \delta_1^2 + \cdots + \delta_n^2$.
- Example 2: (Connes-Tretkoff) Conformally deformed Laplacian
 Δ_k := k⁻¹Δk⁻¹ on a noncommutative 2-torus A_θ. Here k ∈ A_θ is positive and invertible.
- Using the Fourier inversion formula we see that

$$Pu = \iint e^{is\cdot\xi}
ho(\xi)lpha_{-s}(u)dsd\xi$$
 for all $u\in\mathscr{A}_{ heta}.$

- We can get much geometric information about a compact Riemannian manifold (M,g) from the zeta function $\zeta(s) := \text{Tr}(\Delta_g^{-s})$, where Δ_g is the Laplacian associated with g.
- e.g., $M = \text{compact Riemann surface} \Rightarrow \zeta(0) = \frac{1}{6}\chi(M) \dim \ker \Delta_g$.

- We can get much geometric information about a compact Riemannian manifold (M,g) from the zeta function $\zeta(s) := \text{Tr}(\Delta_g^{-s})$, where Δ_g is the Laplacian associated with g.
- e.g., $M = \text{compact Riemann surface} \Rightarrow \zeta(0) = \frac{1}{6}\chi(M) \dim \ker \Delta_g$.
- In 2009, Connes-Tretkoff proved the following version of Gauss-Bonnet theorem for a noncommutative 2-torus A_θ: the value of the zeta function ζ(s; Δ_k) := Tr(Δ^{-s}_k) at s = 0 is independent of the choice of positive and invertible element k ∈ A_θ.

- We can get much geometric information about a compact Riemannian manifold (M,g) from the zeta function $\zeta(s) := \text{Tr}(\Delta_g^{-s})$, where Δ_g is the Laplacian associated with g.
- e.g., $M = \text{compact Riemann surface} \Rightarrow \zeta(0) = \frac{1}{6}\chi(M) \dim \ker \Delta_g$.
- In 2009, Connes-Tretkoff proved the following version of Gauss-Bonnet theorem for a noncommutative 2-torus A_θ: the value of the zeta function ζ(s; Δ_k) := Tr(Δ^{-s}_k) at s = 0 is independent of the choice of positive and invertible element k ∈ A_θ.
- The following tools play a central role in Connes-Tretkoff's paper and its subsequent results.
 - Pseudodifferential operators (Ψ DOs) on noncommutative tori.
 - Parametric ΨDOs on noncommutative tori.
 - Holomorphic families of Ψ DOs.
 - Complex powers of an elliptic Ψ DO.

- We can get much geometric information about a compact Riemannian manifold (M,g) from the zeta function $\zeta(s) := \text{Tr}(\Delta_g^{-s})$, where Δ_g is the Laplacian associated with g.
- e.g., $M = \text{compact Riemann surface} \Rightarrow \zeta(0) = \frac{1}{6}\chi(M) \dim \ker \Delta_g$.
- In 2009, Connes-Tretkoff proved the following version of Gauss-Bonnet theorem for a noncommutative 2-torus A_θ: the value of the zeta function ζ(s; Δ_k) := Tr(Δ^{-s}_k) at s = 0 is independent of the choice of positive and invertible element k ∈ A_θ.
- The following tools play a central role in Connes-Tretkoff's paper and its subsequent results.
 - Pseudodifferential operators (Ψ DOs) on noncommutative tori.
 - Parametric ΨDOs on noncommutative tori.
 - Holomorphic families of ΨDOs .
 - Complex powers of an elliptic Ψ DO.
- The aim of this mini-course is to give detailed accounts on these notions as an aid in researches initiated by Connes-Tretkoff.

Symbols on Noncommutative Tori

• (Standard symbols, Baaj, Connes) $\mathbb{S}^m(\mathbb{R}^n; \mathscr{A}_{\theta}), m \in \mathbb{R}$, consists of maps $\rho(\xi) \in C^{\infty}(\mathbb{R}^n; \mathscr{A}_{\theta})$ such that, $\forall \alpha, \beta \in \mathbb{N}_0^n, \exists C_{\alpha\beta} > 0$ such that

$$\|\delta^{lpha}\partial^{eta}_{\xi}
ho(\xi)\|\leq \mathcal{C}_{lphaeta}(1+|\xi|)^{m-|eta|}\qquadorall\xi\in\mathbb{R}^n.$$

Symbols on Noncommutative Tori

- (Standard symbols, Baaj, Connes) S^m(ℝⁿ; A_θ), m ∈ ℝ, consists of maps ρ(ξ) ∈ C[∞](ℝⁿ; A_θ) such that, ∀α, β ∈ ℕ₀ⁿ, ∃C_{αβ} > 0 such that ||δ^α∂^β_ερ(ξ)|| ≤ C_{αβ}(1 + |ξ|)^{m-|β|} ∀ξ ∈ ℝⁿ.
- (Homogeneous symbols) $S_q(\mathbb{R}^n; \mathscr{A}_\theta)$, $q \in \mathbb{C}$, consists of smooth maps $\rho : \mathbb{R}^n \setminus 0 \to \mathscr{A}_\theta$ such that $\rho(\lambda \xi) = \lambda^q \rho(\xi) \ \forall \xi \in \mathbb{R}^n \setminus 0 \ \forall \lambda > 0$.

Symbols on Noncommutative Tori

- (Standard symbols, Baaj, Connes) S^m(ℝⁿ; A_θ), m ∈ ℝ, consists of maps ρ(ξ) ∈ C[∞](ℝⁿ; A_θ) such that, ∀α, β ∈ ℕ₀ⁿ, ∃C_{αβ} > 0 such that ||δ^α∂^β_ερ(ξ)|| ≤ C_{αβ}(1 + |ξ|)^{m-|β|} ∀ξ ∈ ℝⁿ.
- (Homogeneous symbols) $S_q(\mathbb{R}^n; \mathscr{A}_{\theta})$, $q \in \mathbb{C}$, consists of smooth maps $\rho : \mathbb{R}^n \setminus 0 \to \mathscr{A}_{\theta}$ such that $\rho(\lambda \xi) = \lambda^q \rho(\xi) \ \forall \xi \in \mathbb{R}^n \setminus 0 \ \forall \lambda > 0$.
- (Classical Symbols, Baaj) $S^q(\mathbb{R}^n; \mathscr{A}_{\theta}), q \in \mathbb{C}$, consists of maps $\rho(\xi) \in C^{\infty}(\mathbb{R}^n; \mathscr{A}_{\theta})$ that admit an expansion $\rho(\xi) \sim \sum_{j \geq 0} \rho_{q-j}(\xi), \rho_{q-j}(\xi) \in S_{q-j}(\mathbb{R}^n; \mathscr{A}_{\theta})$. Here \sim means that, $\forall N \geq 1 \ \forall \alpha, \beta \in \mathbb{N}_0^n, \exists C_{N\alpha\beta} > 0$ such that

$$\left|\delta^{\alpha}\partial_{\xi}^{\beta}\Big(\rho-\sum_{j< N}\rho_{q-j}\Big)(\xi)\right\| \leq C_{N\alpha\beta}|\xi|^{\Re q-N-|\beta|} \quad \forall \xi \in \mathbb{R}^{n} \text{ with } |\xi| \geq 1.$$

In this case $\rho_q(\xi)$ is called the principal symbol of $\rho(\xi)$.

• We have an inclusion $S^q(\mathbb{R}^n; \mathscr{A}_{\theta}) \subset \mathbb{S}^{\Re q}(\mathbb{R}^n; \mathscr{A}_{\theta}).$

Let $m \in \mathbb{R}$.

\mathscr{A}_{θ} -valued Amplitudes

 $A^m = A^m(\mathbb{R}^n \times \mathbb{R}^n; \mathscr{A}_{\theta})$ consists of maps $a(s, \xi) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n; \mathscr{A}_{\theta})$ such that, for all $\alpha, \beta, \gamma \in \mathbb{N}_0^n$, there is $C_{\alpha\beta\gamma} > 0$ such that

 $\|\delta^lpha\partial^eta_s\partial^\gamma_\xi a(s,\xi)\|\leq C_{lphaeta\gamma}(1+|s|+|\xi|)^m \qquad orall (s,\xi)\in \mathbb{R}^n imes \mathbb{R}^n.$

Let $m \in \mathbb{R}$.

\mathscr{A}_{θ} -valued Amplitudes

 $A^m = A^m(\mathbb{R}^n \times \mathbb{R}^n; \mathscr{A}_{\theta})$ consists of maps $a(s, \xi) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n; \mathscr{A}_{\theta})$ such that, for all $\alpha, \beta, \gamma \in \mathbb{N}_0^n$, there is $C_{\alpha\beta\gamma} > 0$ such that

 $\|\delta^lpha\partial^eta_{m{s}}\partial^\gamma_{m{s}} a(m{s},\xi)\| \leq C_{lphaeta\gamma}(1+|m{s}|+|\xi|)^m \qquad orall (m{s},\xi)\in \mathbb{R}^n imes \mathbb{R}^n.$

• Let $\chi(s,\xi) \in C_c^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ be such that $\chi(s,\xi) = 1$ near (0,0). Set $L = \chi(s,\xi) + \frac{1-\chi(s,\xi)}{|s|^2 + |\xi|^2} \sum_{1 \le i \le n} (\xi_j D_{s_j} + s_j D_{\xi_j}),$

where $D_{x_j} = \frac{1}{i} \partial_{x_j}$. • Observe that $L(e^{is \cdot \xi}) = e^{is \cdot \xi}$.

• Define the transpose of L by $\iint L(f)g = \iint f \ L^t(g)$. $\Rightarrow L^t$ gives rise to a continuous linear map from A^m to A^{m-1} .

Let $a(s,\xi) \in A^m(\mathbb{R}^n \times \mathbb{R}^n; \mathscr{A}_{\theta}).$

• If m < -2n, the map $(s, \xi) \rightarrow e^{is \cdot \xi} a(s, \xi)$ is integrable on $\mathbb{R}^n \times \mathbb{R}^n$. Moreover, for all $N \ge 0$, we have

$$\int \int e^{is \cdot \xi} a(s,\xi) ds d\xi = \int \int L^N[e^{is \cdot \xi}] a(s,\xi) ds d\xi$$

= $\int \int e^{is \cdot \xi} (L^t)^N[a(s,\xi)] ds d\xi$

Let $a(s,\xi) \in A^m(\mathbb{R}^n \times \mathbb{R}^n; \mathscr{A}_{\theta}).$

• If m < -2n, the map $(s, \xi) \rightarrow e^{is \cdot \xi} a(s, \xi)$ is integrable on $\mathbb{R}^n \times \mathbb{R}^n$. Moreover, for all $N \ge 0$, we have

$$egin{aligned} &\iint e^{is\cdot\xi}a(s,\xi)dsd\xi = \iint L^{N}[e^{is\cdot\xi}]a(s,\xi)dsd\xi \ &= \iint e^{is\cdot\xi}(L^{t})^{N}[a(s,\xi)]dsd\xi. \end{aligned}$$

• (Oscillating integrals) For general $m \in \mathbb{R}$, we define

$$J(a) = \iint e^{is\cdot\xi} (L^t)^N[a(s,\xi)] ds d\xi,$$

where N is any non-negative integer such that m - N < -2n. Here the choice of N is irrelevant. When m < -2n we may take N = 0. In this case we have $J(a) = \int \int e^{is \cdot \xi} a(s, \xi) ds d\xi$.

ΨDOs on NC Tori

If $\rho(\xi) \in \mathbb{S}^m(\mathbb{R}^n; \mathscr{A}_{\theta})$ and $u \in \mathscr{A}_{\theta}$, then $\rho(\xi)\alpha_{-s}(u) \in A^{m_+}(\mathbb{R}^n \times \mathbb{R}^n; \mathscr{A}_{\theta})$, where $m_+ := \max(m, 0)$.

< □ > < 同 > < 三</p>

ΨDOs on NC Tori

If $\rho(\xi) \in \mathbb{S}^m(\mathbb{R}^n; \mathscr{A}_{\theta})$ and $u \in \mathscr{A}_{\theta}$, then $\rho(\xi)\alpha_{-s}(u) \in A^{m_+}(\mathbb{R}^n \times \mathbb{R}^n; \mathscr{A}_{\theta})$, where $m_+ := \max(m, 0)$.

Definition

• A pseudodifferential operator (Ψ DO) associated with $\rho(\xi) \in \mathbb{S}^m(\mathbb{R}^n; \mathscr{A}_{\theta}), \ m \in \mathbb{R}$, is a linear map $P_{\rho} : \mathscr{A}_{\theta} \to \mathscr{A}_{\theta}$ defined by

$$P_{\rho}u = J(\rho(\xi)\alpha_{-s}(u)).$$

^Q Ψ^q(𝔄_θ), q ∈ C, consists of all linear operators P : 𝔄_θ → 𝔄_θ that are of the form P = P_ρ for some symbol ρ(ξ) ∈ S^q(ℝⁿ; 𝔄_θ).

ΨDOs on NC Tori

If $\rho(\xi) \in \mathbb{S}^m(\mathbb{R}^n; \mathscr{A}_{\theta})$ and $u \in \mathscr{A}_{\theta}$, then $\rho(\xi)\alpha_{-s}(u) \in A^{m_+}(\mathbb{R}^n \times \mathbb{R}^n; \mathscr{A}_{\theta})$, where $m_+ := \max(m, 0)$.

Definition

• A pseudodifferential operator (Ψ DO) associated with $\rho(\xi) \in \mathbb{S}^m(\mathbb{R}^n; \mathscr{A}_{\theta}), m \in \mathbb{R}$, is a linear map $P_{\rho} : \mathscr{A}_{\theta} \to \mathscr{A}_{\theta}$ defined by

$$P_{\rho}u = J(\rho(\xi)\alpha_{-s}(u)).$$

Q Ψ^q(𝔄_θ), q ∈ C, consists of all linear operators P : 𝔄_θ → 𝔄_θ that are of the form P = P_ρ for some symbol ρ(ξ) ∈ S^q(ℝⁿ; 𝔄_θ).

• (Connes-Tretkoff) Let $\rho(\xi) \in \mathbb{S}^m(\mathbb{R}^n; \mathscr{A}_{\theta}), m \in \mathbb{R}$. Then for every $u = \sum_{k \in \mathbb{Z}^n} u_k U^k \in \mathscr{A}_{\theta}$, we have

$$P_{\rho}u = \sum_{k\in\mathbb{Z}^n} u_k \rho(k) U^k.$$

Smoothing Operators

 $\begin{aligned} \mathscr{A}'_{\theta} &:= \{ v : \mathscr{A}_{\theta} \to \mathbb{C} : \ v \text{ is continuous and linear} \}. \\ \text{We equip } \mathscr{A}'_{\theta} \text{ with its strong topology, i.e., the LCS topology generated by the semi-norms,} \end{aligned}$

$$v \longrightarrow \sup_{u \in B} |\langle v, u \rangle|, \qquad B \subset \mathscr{A}_{\theta} \text{ bounded.}$$

Smoothing Operators

 $\begin{aligned} \mathscr{A}'_{\theta} &:= \{ v : \mathscr{A}_{\theta} \to \mathbb{C} : \ v \text{ is continuous and linear} \}. \\ \text{We equip } \mathscr{A}'_{\theta} \text{ with its strong topology, i.e., the LCS topology generated by the semi-norms,} \end{aligned}$

$$v \longrightarrow \sup_{u \in B} |\langle v, u \rangle|, \qquad B \subset \mathscr{A}_{\theta} \text{ bounded.}$$

We have continuous inclusions $\mathscr{A}_{\theta} \subset \mathscr{H}_{\theta} \subset \mathscr{A}'_{\theta}$.

- A linear operator $R : \mathscr{A}_{\theta} \to \mathscr{A}'_{\theta}$ is called smoothing when it extends to a continuous linear operator $R : \mathscr{A}'_{\theta} \to \mathscr{A}_{\theta}$.
- $\Psi^{-\infty}(\mathscr{A}_{\theta}) :=$ the space of smoothing operators.

Proposition (Ha-L.-Ponge)

Smoothing Operators

 $\begin{aligned} \mathscr{A}'_{\theta} &:= \{ v : \mathscr{A}_{\theta} \to \mathbb{C} : \ v \text{ is continuous and linear} \}. \\ \text{We equip } \mathscr{A}'_{\theta} \text{ with its strong topology, i.e., the LCS topology generated by the semi-norms,} \end{aligned}$

$$v \longrightarrow \sup_{u \in B} |\langle v, u \rangle|, \qquad B \subset \mathscr{A}_{\theta} \text{ bounded.}$$

We have continuous inclusions $\mathscr{A}_{\theta} \subset \mathscr{H}_{\theta} \subset \mathscr{A}'_{\theta}$.

- A linear operator $R : \mathscr{A}_{\theta} \to \mathscr{A}'_{\theta}$ is called smoothing when it extends to a continuous linear operator $R : \mathscr{A}'_{\theta} \to \mathscr{A}_{\theta}$.
- $\Psi^{-\infty}(\mathscr{A}_{\theta}) :=$ the space of smoothing operators.

Proposition (Ha-L.-Ponge)

- A linear operator $R : \mathscr{A}_{\theta} \to \mathscr{A}'_{\theta}$ is smoothing if and only if there is a symbol $\rho(\xi) \in \mathscr{S}(\mathbb{R}^n; \mathscr{A}_{\theta})$ such that $R = P_{\rho}$.
- Every ΨDO P : A_θ → A_θ uniquely extends to a continuous linear map P : A'_θ → A'_θ.

Composition of ΨDOs

Let
$$\rho_j(\xi) \in \mathbb{S}^{m_j}(\mathbb{R}^n; \mathscr{A}_{\theta}), m_j \in \mathbb{R}, j = 1, 2$$
. Set
 $\rho_1 \sharp \rho_2(\xi) = \iint e^{it \cdot \eta} \rho_1(\xi + \eta) \alpha_{-t}[\rho_2(\xi)] dt d\eta.$

The integral on the right-hand side makes sense as an oscillating integral. It can be shown that $\rho_1 \sharp \rho_2(\xi) \in \mathbb{S}^{m_1+m_2}(\mathbb{R}^n; \mathscr{A}_{\theta})$ and $P_{\rho_1} P_{\rho_2} = P_{\rho_1 \sharp \rho_2}$. Let $\rho_j(\xi) \in \mathbb{S}^{m_j}(\mathbb{R}^n; \mathscr{A}_{ heta}), \ m_j \in \mathbb{R}, \ j = 1, 2.$ Set

$$\rho_1 \sharp \rho_2(\xi) = \iint e^{it \cdot \eta} \rho_1(\xi + \eta) \alpha_{-t}[\rho_2(\xi)] dt d\eta.$$

The integral on the right-hand side makes sense as an oscillating integral. It can be shown that $\rho_1 \sharp \rho_2(\xi) \in \mathbb{S}^{m_1+m_2}(\mathbb{R}^n; \mathscr{A}_{\theta})$ and $P_{\rho_1} P_{\rho_2} = P_{\rho_1 \sharp \rho_2}$.

Proposition

Let $P_j \in \Psi^{q_j}(\mathscr{A}_{\theta})$, $q_j \in \mathbb{C}$, j = 1, 2. In addition, let $\rho(\xi)$ and $\sigma(\xi)$ be the respective principal symbols of P_1 and P_2 . Then

$$P_1P_2 \in \Psi^{q_1+q_2}(\mathscr{A}_{\theta}).$$

2 $\rho(\xi)\sigma(\xi)$ is the principal symbol of P_1P_2 .

Sobolev Spaces on NC Tori

Let $s \in \mathbb{R}$. Then $\Lambda^s := (1 + \Delta)^{\frac{s}{2}} \in \Psi^s(\mathscr{A}_{\theta})$ and Λ^s has symbol $(1 + |\xi|^2)^{\frac{s}{2}}$.

Definition (Sobolev Spaces)

$$\mathscr{H}^{(s)}_{\theta} := \{ u \in \mathscr{A}'_{\theta}; \ \Lambda^{s} u \in \mathscr{H}_{\theta} \}.$$

Sobolev Spaces on NC Tori

Let $s \in \mathbb{R}$. Then $\Lambda^s := (1 + \Delta)^{\frac{s}{2}} \in \Psi^s(\mathscr{A}_{\theta})$ and Λ^s has symbol $(1 + |\xi|^2)^{\frac{s}{2}}$.

Definition (Sobolev Spaces)

$$\mathscr{H}_{\theta}^{(s)} := \{ u \in \mathscr{A}_{\theta}'; \ \Lambda^{s} u \in \mathscr{H}_{\theta} \}.$$

• $\mathscr{H}_{\theta}^{(s)}$ is a Hilbert space with the inner product,

$$(u|v)_{s} := (\Lambda^{s}u|\Lambda^{s}v), \quad u, v \in \mathscr{H}_{\theta}^{(s)}.$$

• Given any s' > s, the inclusion $\mathscr{H}_{\theta}^{(s')} \subset \mathscr{H}_{\theta}^{(s)}$ is compact.

Sobolev Spaces on NC Tori

Let $s \in \mathbb{R}$. Then $\Lambda^s := (1 + \Delta)^{\frac{s}{2}} \in \Psi^s(\mathscr{A}_{\theta})$ and Λ^s has symbol $(1 + |\xi|^2)^{\frac{s}{2}}$.

Definition (Sobolev Spaces)

 $\mathscr{H}_{\theta}^{(s)} := \{ u \in \mathscr{A}_{\theta}'; \ \Lambda^{s} u \in \mathscr{H}_{\theta} \}.$

• $\mathscr{H}_{\theta}^{(s)}$ is a Hilbert space with the inner product,

$$(u|v)_{s} := (\Lambda^{s}u|\Lambda^{s}v), \quad u,v \in \mathscr{H}_{\theta}^{(s)}.$$

• Given any s' > s, the inclusion $\mathscr{H}_{\theta}^{(s')} \subset \mathscr{H}_{\theta}^{(s)}$ is compact.

- Let $\rho(\xi) \in \mathbb{S}^m(\mathbb{R}^n; \mathscr{A}_{\theta}), m \in \mathbb{R}$. For every $s \in \mathbb{R}, P_{\rho}$ uniquely extends to a continuous linear map $P_{\rho} : \mathscr{H}_{\theta}^{(s+m)} \to \mathscr{H}_{\theta}^{(s)}$. In particular, if m = 0 then P_{ρ} gives rise to a bounded operator on \mathscr{H}_{θ} .
- (Baaj, Connes) If m < 0, then P_{ρ} gives rise to a compact operator $P_{\rho} : \mathscr{H}_{\theta} \to \mathscr{H}_{\theta}$.

イロト イヨト イヨト ・

Δ = δ₁² + · · · + δ_n² is isospectral to the flat Laplacian on Tⁿ.
 Weyl's law: λ_k(Δ)(ck⁻¹)^{2/n} → 1 as k → ∞. Here c := π^{n/2}Γ(^{n/2} + 1)⁻¹.

- $\Delta = \delta_1^2 + \cdots + \delta_n^2$ is isospectral to the flat Laplacian on \mathbb{T}^n .
- 2 Weyl's law: $\lambda_k(\Delta)(ck^{-1})^{\frac{2}{n}} \to 1$ as $k \to \infty$. Here $c := \pi^{\frac{n}{2}} \Gamma(\frac{n}{2} + 1)^{-1}$.
- Set $\Lambda^m = (1 + \Delta)^{\frac{m}{2}}$. Using functional calculus, for m < 0, we see that

 $\mu_k(\Lambda^m) = \text{the } (k+1)\text{-th eigenvalue of } \Lambda^m = O(k^{\frac{m}{n}}) \text{ as } k \to \infty.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(日)

Proposition (Ha-L.-Ponge)

Let m < -n. Then for every $\rho(\xi) \in \mathbb{S}^m(\mathbb{R}^n; \mathscr{A}_{\theta})$, P_{ρ} is trace-class, and its trace is given by

$$\operatorname{Tr}(P_{\rho}) = \sum_{k \in \mathbb{Z}^n} \tau[\rho(k)].$$

Image: A match a ma

Part 2. Resolvents and Complex Powers of Elliptic ΨDOs on NC Tori

Elliptic Ψ DOs on NC Tori

Definition

 $P \in \Psi^q(\mathscr{A}_{\theta}), q \in \mathbb{C}$, is called elliptic when its principal symbol $\rho_q(\xi)$ is invertible for all $\xi \in \mathbb{R}^n \setminus 0$.

- Example 1: The (flat) Laplacian $\Delta := \delta_1^2 + \cdots + \delta_n^2$.
- Example 2: Connes-Tretkoff's conformally deformed laplacian.

Elliptic **VDOs** on NC Tori

Definition

 $P \in \Psi^q(\mathscr{A}_{\theta}), q \in \mathbb{C}$, is called elliptic when its principal symbol $\rho_q(\xi)$ is invertible for all $\xi \in \mathbb{R}^n \setminus 0$.

- Example 1: The (flat) Laplacian $\Delta := \delta_1^2 + \cdots + \delta_n^2$.
- Example 2: Connes-Tretkoff's conformally deformed laplacian.

Proposition

 $P \in \Psi^q(\mathscr{A}_{\theta}), q \in \mathbb{C}$, is elliptic if and only if it admits a parametrix, i.e., an operator $Q \in \Psi^{-q}(\mathscr{A}_{\theta})$ such that $PQ = QP = 1 \mod \Psi^{-\infty}(\mathscr{A}_{\theta})$.

Elliptic Ψ DOs on NC Tori

Definition

 $P \in \Psi^q(\mathscr{A}_{\theta}), q \in \mathbb{C}$, is called elliptic when its principal symbol $\rho_q(\xi)$ is invertible for all $\xi \in \mathbb{R}^n \setminus 0$.

- Example 1: The (flat) Laplacian $\Delta := \delta_1^2 + \cdots + \delta_n^2$.
- Example 2: Connes-Tretkoff's conformally deformed laplacian.

Proposition

 $P \in \Psi^q(\mathscr{A}_{\theta}), q \in \mathbb{C}$, is elliptic if and only if it admits a parametrix, i.e., an operator $Q \in \Psi^{-q}(\mathscr{A}_{\theta})$ such that $PQ = QP = 1 \mod \Psi^{-\infty}(\mathscr{A}_{\theta})$.

Consequences

Det
$$s\in\mathbb{R}.$$
 Then, for any $u\in\mathscr{A}_{ heta}'$, $Pu\in\mathscr{H}_{ heta}^{(s)}\Leftrightarrow u\in\mathscr{H}_{ heta}^{(s+\Re q)}.$

2 For every $s \in \mathbb{R}$, $P : \mathscr{H}_{\theta}^{(s+m)} \to \mathscr{H}_{\theta}^{(s)}$ is a Fredholm operator.

Let $P \in \Psi^q(\mathscr{A}_{\theta})$ be an elliptic $\Psi \mathsf{DO}$ with $m := \Re q > 0$.

- The resolvent set of $P := \{\lambda \in \mathbb{C}; P \lambda : \mathscr{H}_{\theta}^{(m)} \to \mathscr{H}_{\theta} \text{ is bijective}\}.$
- Sp *P* := the complement of the resolvent set.

Let $P \in \Psi^q(\mathscr{A}_{\theta})$ be an elliptic $\Psi \mathsf{DO}$ with $m := \Re q > 0$.

- The resolvent set of $P := \{\lambda \in \mathbb{C}; P \lambda : \mathscr{H}_{\theta}^{(m)} \to \mathscr{H}_{\theta} \text{ is bijective}\}.$
- Sp P := the complement of the resolvent set.

Proposition (Ha-L.-Ponge)

 $\operatorname{Sp} P = \mathbb{C}$ or $\operatorname{Sp} P$ is a discrete set consisting of isolated eigenvalues with finite multiplicity.

Let $P \in \Psi^q(\mathscr{A}_{ heta})$ be an elliptic $\Psi \mathsf{DO}$ with $m := \Re q > 0$.

- The resolvent set of $P := \{\lambda \in \mathbb{C}; P \lambda : \mathscr{H}_{\theta}^{(m)} \to \mathscr{H}_{\theta} \text{ is bijective}\}.$
- Sp P := the complement of the resolvent set.

Proposition (Ha-L.-Ponge)

 $\operatorname{Sp} P = \mathbb{C}$ or $\operatorname{Sp} P$ is a discrete set consisting of isolated eigenvalues with finite multiplicity.

Suppose Sp $P \neq \mathbb{C}$. Then the map $\mathbb{C} \setminus \text{Sp } P \ni \lambda \to (P - \lambda)^{-1} \in \mathscr{L}(\mathscr{H}_{\theta}, \mathscr{H}_{\theta}^{(m)})$ is holomorphic. The root space $E_{\lambda}(P)$ and Riesz projection $\Pi_{\lambda}(P)$ of $\lambda \in \text{Sp } P$ are defined by

$$E_{\lambda}(P) = \bigcup_{\ell \geq 0} \ker(P - \lambda)^{\ell}, \qquad \Pi_{\lambda}(P) = \frac{1}{2i\pi} \int_{|\zeta - \lambda| = r} (\zeta - P)^{-1} d\zeta.$$

Here *r* is small enough so that $\{\zeta \in \mathbb{C}; |\zeta - \lambda| \leq r\} \cap \operatorname{Sp} P = \{\lambda\}$.

- $\Pi_{\lambda}(P)^2 = \Pi_{\lambda}(P)$ and $\Pi_{\lambda}(P)\Pi_{\mu}(P) = 0$ if $\lambda \neq \mu$.
- $E_{\lambda}(P)$ is a finite dimensional subspace of \mathscr{A}_{θ} . In particular, there is $N \in \mathbb{N}$ such that $E_{\lambda}(P) = \ker(P \lambda)^N$.

- $\Pi_{\lambda}(P)^2 = \Pi_{\lambda}(P)$ and $\Pi_{\lambda}(P)\Pi_{\mu}(P) = 0$ if $\lambda \neq \mu$.
- $E_{\lambda}(P)$ is a finite dimensional subspace of \mathscr{A}_{θ} . In particular, there is $N \in \mathbb{N}$ such that $E_{\lambda}(P) = \ker(P \lambda)^N$.
- Π_λ(P) is a projection onto E_λ(P) with kernel E_λ(P^{*})[⊥]. In particular, we have direct-sum decomposition ℋ_θ = E_λ(P) + E_λ(P^{*})[⊥].
- $\Pi_{\lambda}(P)$ is a smoothing operator.
- *P* induces a linear homeomorphism $P_1 : E_0(P^*)^{\perp} \cap \mathscr{H}_{\theta}^{(m)} \to E_0(P^*)^{\perp}$.

- $\Pi_{\lambda}(P)^2 = \Pi_{\lambda}(P)$ and $\Pi_{\lambda}(P)\Pi_{\mu}(P) = 0$ if $\lambda \neq \mu$.
- $E_{\lambda}(P)$ is a finite dimensional subspace of \mathscr{A}_{θ} . In particular, there is $N \in \mathbb{N}$ such that $E_{\lambda}(P) = \ker(P \lambda)^{N}$.
- $\Pi_{\lambda}(P)$ is a projection onto $E_{\lambda}(P)$ with kernel $E_{\overline{\lambda}}(P^*)^{\perp}$. In particular, we have direct-sum decomposition $\mathscr{H}_{\theta} = E_{\lambda}(P) + E_{\overline{\lambda}}(P^*)^{\perp}$.
- $\Pi_{\lambda}(P)$ is a smoothing operator.
- P induces a linear homeomorphism $P_1: E_0(P^*)^{\perp} \cap \mathscr{H}_{\theta}^{(m)} \to E_0(P^*)^{\perp}$.

Definition

The partial inverse of P is the operator $P^{-1} : \mathscr{H}_{\theta} \to \mathscr{H}_{\theta}^{(m)}$ defined by - $P^{-1} = 0$ on $E_0(P)$. - $P^{-1}u = P_1^{-1}u$ for all $u \in E_0(P^*)^{\perp}$.

We have $PP^{-1} = 1 - \Pi_0(P)$ on \mathscr{H}_{θ} and $P^{-1}P = 1 - \Pi_0(P)$ on $\mathscr{H}_{\theta}^{(m)}$.

Pseudo-cones and Vectors with Parameter

- In what follows, we let Λ ⊂ C be an open pseudo-cone, i.e., Λ is of the form Λ = Θ \ D. Here Θ is an open cone in C \ 0 about the negative real axis and D is the closed disk at the origin.
- For open pseudo-cones Λ_1 and Λ_2 , we denote by $\Lambda_1 \subset \subset \Lambda_2$ if $\overline{\Lambda_1} \subset \Lambda_2$.

Pseudo-cones and Vectors with Parameter

- In what follows, we let Λ ⊂ C be an open pseudo-cone, i.e., Λ is of the form Λ = Θ \ D. Here Θ is an open cone in C \ 0 about the negative real axis and D is the closed disk at the origin.
- For open pseudo-cones Λ_1 and Λ_2 , we denote by $\Lambda_1 \subset \Lambda_2$ if $\overline{\Lambda_1} \subset \Lambda_2$.

Definition

Let *E* be a locally convex space. Hol^{*d*}(Λ , *E*), *d* $\in \mathbb{Z}$, consists of holomorphic families $(x(\lambda))_{\lambda \in \Lambda}$ with values in *E* such that, for all continuous semi-norm *p* on *E* and pseudo-cones $\Lambda' \subset \Lambda$, there is $C_{p\Lambda'} > 0$ such that

$$p(x(\lambda)) \leq C_{p\Lambda'}(1+|\lambda|)^d \qquad orall \lambda \in \Lambda'.$$

Ψ DOs with Parameter

In what follows, let w > 0, $q \in \mathbb{C}$, $d \in \mathbb{Z}$. Set $d_{-} = \sup(0, -d)$ and $m = \Re q + wd_{-}$.

- Notation: $C^{\infty,d}(\mathbb{R}^n \times \Lambda; \mathscr{A}_{\theta}) := \operatorname{Hol}^d(\Lambda, C^{\infty}(\mathbb{R}^n; \mathscr{A}_{\theta})).$

VDOs with Parameter

In what follows, let w > 0, $q \in \mathbb{C}$, $d \in \mathbb{Z}$. Set $d_{-} = \sup(0, -d)$ and $m = \Re q + wd_{-}$.

- Notation: $C^{\infty,d}(\mathbb{R}^n \times \Lambda; \mathscr{A}_{\theta}) := \operatorname{Hol}^d(\Lambda, C^{\infty}(\mathbb{R}^n; \mathscr{A}_{\theta})).$

Definition (Classical Symbols with Parameter)

 $S^{q,d}(\mathbb{R}^n \times \Lambda; \mathscr{A}_{\theta})$ consists of maps $\rho(\xi; \lambda) \in C^{\infty,d}(\mathbb{R}^n \times \Lambda; \mathscr{A}_{\theta})$ for which there are maps $\rho_{q-j} : (\mathbb{R}^n \setminus 0) \times \Theta \to \mathscr{A}_{\theta}, j \ge 0$, such that

- $\rho_{q-j}(t\xi;t^{w}\lambda) = t^{q-j}\rho_{q-j}(\xi;\lambda) \quad \forall t > 0 \quad \forall (\xi,\lambda) \in (\mathbb{R}^n \setminus 0) \times \Theta.$
- $-\rho_{q-j}(\xi;\lambda)$ is smooth w.r.t. ξ and holomorphic w.r.t. λ .
- $\begin{array}{ll} \ \forall N \in \mathbb{N} & \forall \Lambda' \subset \subset \Lambda \text{ and } \forall \alpha, \beta \in \mathbb{N}_0^n, \ \exists \mathcal{C}_{N\Lambda'\alpha\beta} > 0 \text{ such that, for all} \\ \lambda \in \Lambda' \text{ and } \xi \in \mathbb{R}^n \text{ with } |\xi| \geq 1, \text{ we have} \end{array}$

$$\left\|\delta^{\alpha}\partial_{\xi}^{\beta}\Big(\rho-\sum_{j< N}\rho_{\boldsymbol{q}-j}\Big)(\xi;\lambda)\right\|\leq \mathsf{C}_{\boldsymbol{N}\boldsymbol{\Lambda}'\boldsymbol{\alpha}\boldsymbol{\beta}}(1+|\lambda|)^{d}|\xi|^{\boldsymbol{m}-\boldsymbol{N}-|\boldsymbol{\beta}|}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Definition (Ψ DOs with Parameter)

 $\Psi^{q,d}(\mathscr{A}_{\theta};\Lambda) := \{ (P_{\rho(\cdot;\lambda)})_{\lambda \in \Lambda}; \ \rho(\xi;\lambda) \in S^{q,d}(\mathbb{R}^n \times \Lambda;\mathscr{A}_{\theta}) \}.$

Definition (Ψ DOs with Parameter)

$$\Psi^{q,d}(\mathscr{A}_{\theta};\Lambda) := \{ (P_{\rho(\cdot;\lambda)})_{\lambda \in \Lambda}; \ \rho(\xi;\lambda) \in S^{q,d}(\mathbb{R}^n \times \Lambda;\mathscr{A}_{\theta}) \}.$$

Proposition (L.-Ponge)

$P_j(\lambda) \in \Psi^{q_j,d_j}(\mathscr{A}_{\theta};\Lambda) \Rightarrow P_1(\lambda)P_2(\lambda) \in \Psi^{q_1+q_2,d_1+d_2}(\mathscr{A}_{\theta};\Lambda).$

Definition (Ψ DOs with Parameter)

$$\Psi^{q,d}(\mathscr{A}_{\theta};\Lambda) := \{ (P_{\rho(\cdot;\lambda)})_{\lambda \in \Lambda}; \ \rho(\xi;\lambda) \in S^{q,d}(\mathbb{R}^n \times \Lambda;\mathscr{A}_{\theta}) \}.$$

Proposition (L.-Ponge)

$P_{j}(\lambda) \in \Psi^{q_{j},d_{j}}(\mathscr{A}_{\theta};\Lambda) \Rightarrow P_{1}(\lambda)P_{2}(\lambda) \in \Psi^{q_{1}+q_{2},d_{1}+d_{2}}(\mathscr{A}_{\theta};\Lambda).$

- Let P be an elliptic differential operator of order m with principal symbol ρ_m(ξ).
- $\mathscr{C}(P) := \{\lambda \in \mathbb{C} : \exists \xi \in \mathbb{R}^n \setminus 0 \text{ s.t. } \rho_m(\xi) \lambda \text{ is not invertible} \}.$

Definition (Ψ DOs with Parameter)

$$\Psi^{q,d}(\mathscr{A}_{\theta};\Lambda) := \{ (P_{\rho(\cdot;\lambda)})_{\lambda \in \Lambda}; \ \rho(\xi;\lambda) \in S^{q,d}(\mathbb{R}^n \times \Lambda;\mathscr{A}_{\theta}) \}.$$

Proposition (L.-Ponge)

$P_j(\lambda) \in \Psi^{q_j,d_j}(\mathscr{A}_{\theta};\Lambda) \Rightarrow P_1(\lambda)P_2(\lambda) \in \Psi^{q_1+q_2,d_1+d_2}(\mathscr{A}_{\theta};\Lambda).$

- Let P be an elliptic differential operator of order m with principal symbol $\rho_m(\xi)$.
- $\mathscr{C}(P) := \{\lambda \in \mathbb{C} : \exists \xi \in \mathbb{R}^n \setminus 0 \text{ s.t. } \rho_m(\xi) \lambda \text{ is not invertible} \}.$
- We assume that both 𝔅(P) and Sp P \ 0 are contained in a closed cone about the positive real axis lying in the right half-plane.
- $\check{\Theta}(P) :=$ the complement of the closed cone described above.

< □ > < 同 > < 回 > < 回 > < 回 >

Definition (Ψ DOs with Parameter)

$$\Psi^{q,d}(\mathscr{A}_{\theta};\Lambda) := \{ (P_{\rho(\cdot;\lambda)})_{\lambda \in \Lambda}; \ \rho(\xi;\lambda) \in S^{q,d}(\mathbb{R}^n \times \Lambda;\mathscr{A}_{\theta}) \}.$$

Proposition (L.-Ponge)

$P_j(\lambda) \in \Psi^{q_j,d_j}(\mathscr{A}_{\theta};\Lambda) \Rightarrow P_1(\lambda)P_2(\lambda) \in \Psi^{q_1+q_2,d_1+d_2}(\mathscr{A}_{\theta};\Lambda).$

- Let P be an elliptic differential operator of order m with principal symbol $\rho_m(\xi)$.
- $\mathscr{C}(P) := \{\lambda \in \mathbb{C} : \exists \xi \in \mathbb{R}^n \setminus 0 \text{ s.t. } \rho_m(\xi) \lambda \text{ is not invertible} \}.$
- We assume that both $\mathscr{C}(P)$ and Sp $P \setminus 0$ are contained in a closed cone about the positive real axis lying in the right half-plane.
- $\check{\Theta}(P) :=$ the complement of the closed cone described above.
- $r := \inf\{\lambda \in \mathbb{C}; \ \lambda \in \operatorname{Sp} P, \ \lambda \neq 0\}.$
- $\Lambda(P) := \breve{\Theta}(P) \setminus \overline{D(0,R)}$, where $R := \frac{1}{2}r$.

イロト イヨト イヨト イヨト

- Let P be an elliptic differential operator of order m with principal symbol $\rho_m(\xi)$.
- $P \lambda \in \Psi^{m,1}(\mathscr{A}_{\theta}; \Lambda(P))$ and $P \lambda$ has principal symbol $\rho_m(\xi) \lambda$.

- Let P be an elliptic differential operator of order m with principal symbol ρ_m(ξ).
- $P \lambda \in \Psi^{m,1}(\mathscr{A}_{\theta}; \Lambda(P))$ and $P \lambda$ has principal symbol $\rho_m(\xi) \lambda$.

Moreover, the following holds.

Proposition (L.-Ponge)

 $(P - \lambda)^{-1} \in \Psi^{-m,-1}(\mathscr{A}_{\theta}; \Lambda(P))$. Moreover $(P - \lambda)^{-1}$ has principal symbol $(\rho_m(\xi) - \lambda)^{-1}$.

Let Ω be an open subset of \mathbb{C} .

Definition (Fathi-Ghorbanpour-Khalkhali)

 $(\rho(z)(\xi))_{z\in\Omega}\subset S^*(\mathbb{R}^n;\mathscr{A}_{ heta})$ is said to be a holomorphic family when:

- The order w(z) of $\rho(z)(\xi)$ depends analytically on z.
- 2 $z \to \rho(z)(\xi)$ is a holomorphic map from Ω to $C^{\infty}(\mathbb{R}^n; \mathscr{A}_{\theta})$.

Let Ω be an open subset of \mathbb{C} .

Definition (Fathi-Ghorbanpour-Khalkhali)

 $(\rho(z)(\xi))_{z\in\Omega}\subset S^*(\mathbb{R}^n;\mathscr{A}_{ heta})$ is said to be a holomorphic family when:

- The order w(z) of $\rho(z)(\xi)$ depends analytically on z.
- 2 $z \to \rho(z)(\xi)$ is a holomorphic map from Ω to $C^{\infty}(\mathbb{R}^n; \mathscr{A}_{\theta})$.
- $\circ \rho(z)(\xi) \sim \sum_{j\geq 0} \rho(z)_{w(z)-j}(\xi), \ \rho(z)_{w(z)-j}(\xi) \in S_{w(z)-j}(\mathbb{R}^n; \mathscr{A}_{\theta}).$

Definition (Holomorphic Families of ΨDOs)

 $\mathsf{Hol}(\Omega,\Psi^*(\mathscr{A}_\theta)):=\{(P_{\rho(z)})_{z\in\Omega};\ (\rho(z)(\xi))_{z\in\Omega}\in\mathsf{Hol}(\Omega,S^*(\mathbb{R}^n;\mathscr{A}_\theta))\}.$

• $P(z), Q(z) \in \operatorname{Hol}(\Omega, \Psi^*(\mathscr{A}_{\theta})) \Rightarrow P(z)Q(z) \in \operatorname{Hol}(\Omega, \Psi^*(\mathscr{A}_{\theta})).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Complex Powers of an Elliptic Ψ DO

• Let Γ be the contour in $\Lambda(P)$ of the form $\Gamma = \Gamma_1^{(-)} \cup \Gamma_2 \cup \Gamma_1^{(+)}$, where

$$\begin{split} \Gamma_1^{(-)} &= (\infty, r_1 e^{i(2\pi - \phi)}], \\ \Gamma_2 &= \{\lambda \in \mathbb{C}; \ |\lambda| = r_1, \ \phi \leq \arg \lambda \leq 2\pi - \phi\}, \\ \Gamma_1^{(+)} &= [r_1 e^{i\phi}, \infty). \end{split}$$

Here we choose r_1 so that $0 < r_1 < r = \inf\{|\lambda| : 0 \neq \lambda \in \text{Sp } P\}$.

• We orient Γ in clockwise direction.

Complex Powers of an Elliptic ΨDO

• Let Γ be the contour in $\Lambda(P)$ of the form $\Gamma = \Gamma_1^{(-)} \cup \Gamma_2 \cup \Gamma_1^{(+)}$, where

$$\begin{split} \Gamma_1^{(-)} &= (\infty, r_1 e^{i(2\pi - \phi)}], \\ \Gamma_2 &= \{\lambda \in \mathbb{C}; \ |\lambda| = r_1, \ \phi \leq \arg \lambda \leq 2\pi - \phi\}, \\ \Gamma_1^{(+)} &= [r_1 e^{i\phi}, \infty). \end{split}$$

Here we choose r_1 so that $0 < r_1 < r = \inf\{|\lambda| : 0 \neq \lambda \in \operatorname{Sp} P\}$.

• We orient Γ in clockwise direction.

Definition (Complex Powers of an Elliptic ΨDO)

We define a family of operators $(P^s)_{\Re s < 0}$ by

$$P^{s}=rac{1}{2i\pi}\int_{\Gamma}\lambda^{s}(P-\lambda)^{-1}d\lambda,\qquad\Re s<0.$$

• • • • • • • • • •

$$P^{s}=rac{1}{2i\pi}\int_{\Gamma}\lambda^{s}(P-\lambda)^{-1}d\lambda,\qquad\Re s<0.$$

Recall that $(P - \lambda)^{-1} \in \Psi^{-m,-1}(\mathscr{A}_{\theta}; \Lambda(P)).$

- Using the result that (P − λ)⁻¹ ∈ Ψ^{-m,-1}(𝔄_θ; Λ(P)) we can compute the symbol of P^s, and prove that (P^s)_{ℜs<0} gives rise to a holomorphic family of ΨDOs of order ms.
- For general s ∈ C, we define P^s as the ΨDO such that P^s = P^kP^{s-k}, where k is any positive integer > ℜs. Here the choice of k is irrelevant.

Theorem (L.-Ponge)

 $(P^s)_{s\in\mathbb{C}}\in Hol(\mathbb{C},\Psi^*(\mathscr{A}_{\theta}))$ and $\operatorname{ord} P^s=ms$. Moreover, we have

•
$$P^{s_1+s_2} = P^{s_1}P^{s_2} \ \forall s_j \in \mathbb{C}, \ j = 1, 2.$$

- P^{-k} = the kth power of the partial inverse of $P \ \forall k \in \mathbb{N}$.
- P^{ℓ} (in the sense of complex powers) = $(1 \Pi_0(P))P^{\ell} \ \forall \ell \in \mathbb{N}$.
- P^0 (in the sense of complex powers) = $1 \Pi_0(P)$.

Thank you for your attention!