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Part 1. Pseudodifferential Calculus on Noncommutative
Tori
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Noncommutative Tori

θ = (θjl), anti-symmetric real n × n matrix (n ≥ 2).

Definition

Aθ = C ∗-algebra generated by the unitaries U1, . . .Un obeying the relation:

UkUj = e2iπθjkUjUk , j , k = 1, . . . , n.

Notation: Uk := Uk1
1 · · ·Ukn

n , k = (k1, . . . , kn) ∈ Zn.

There is a tracial state τ : Aθ → C such that τ(1) = 1 and τ(Uk) = 0
for 0 6= k ∈ Zn.

Hθ := the completion of Aθ w.r.t. the inner product,

(u|v) := τ(uv∗).

u =
∑

k∈Zn ukU
k , uk =

(
u|Uk

)
, the Fourier series of u ∈Hθ.
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Noncommutative Tori

There is a continuous action of Rn on Aθ such that

αs(Uk) = e is·kUk , s ∈ Rn, k ∈ Zn.

Smooth noncommutative torus

Aθ := {u ∈ Aθ; s → αs(u) is a smooth map from Rn to Aθ}
= {u =

∑
ukU

k ∈ Aθ; (uk)k∈Zn decays rapidly}.

For j = 1, . . . , n define δj : Aθ → Aθ by

δj(U
k) = −i∂sjαs(Uk)|s=0 = kjU

k , k = (k1, . . . , kn) ∈ Zn.

Then δj is a derivation on Aθ, i.e., δj(uv) = δj(u)v + uδj(v) for all
u, v ∈ Aθ.
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Noncommutative Tori

We equip Aθ with the locally convex topology generated by the
semi-norms,

u −→ ‖δαu‖, α ∈ Nn
0.

Aθ is a Fréchet ∗-algebra with respect to this topology.

NC Torus Ordinary Torus (θ = 0)

Aθ C (Tn)

Aθ C∞(Tn)

Uj (j = 1, . . . , n) the function x → e ixj

Uk (k ∈ Zn) the function x → e ix ·k

δj (j = 1, . . . , n) Dxj := −i∂xj
δα := δα1

1 · · · δαn
n (α ∈ Nn

0) Dα
x := Dα1

x1
· · ·Dαn

xn

the trace τ the integral on Tn

Hθ L2(Tn)

Gihyun Lee (Seoul National University) ΨDOs on NC Tori May 16, 2019 6 / 29



Noncommutative Tori

We equip Aθ with the locally convex topology generated by the
semi-norms,

u −→ ‖δαu‖, α ∈ Nn
0.
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Differential Operators

Definition (Connes)

A differential operator of order m on Aθ is a linear operator P : Aθ → Aθ

of the form,
Pu =

∑
|α|≤m

aαδ
αu, aα ∈ Aθ.

The symbol of P is the map ρ : Rn → Aθ defined by ρ(ξ) =
∑
|α|≤m aαξ

α,
ξ ∈ Rn.

Example 1: The (flat) Laplacian ∆ := δ2
1 + · · ·+ δ2

n.

Example 2: (Connes-Tretkoff) Conformally deformed Laplacian
∆k := k−1∆k−1 on a noncommutative 2-torus Aθ. Here k ∈ Aθ is
positive and invertible.

Using the Fourier inversion formula we see that

Pu =

∫∫
e is·ξρ(ξ)α−s(u)dsd̄ξ for all u ∈ Aθ.
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Motivation

We can get much geometric information about a compact
Riemannian manifold (M, g) from the zeta function ζ(s) := Tr(∆−sg ),
where ∆g is the Laplacian associated with g .

e.g., M = compact Riemann surface ⇒ ζ(0) = 1
6χ(M)− dim ker ∆g .

In 2009, Connes-Tretkoff proved the following version of
Gauss-Bonnet theorem for a noncommutative 2-torus Aθ: the value
of the zeta function ζ(s; ∆k) := Tr(∆−sk ) at s = 0 is independent of
the choice of positive and invertible element k ∈ Aθ.

The following tools play a central role in Connes-Tretkoff’s paper and
its subsequent results.

Pseudodifferential operators (ΨDOs) on noncommutative tori.
Parametric ΨDOs on noncommutative tori.
Holomorphic families of ΨDOs.
Complex powers of an elliptic ΨDO.

The aim of this mini-course is to give detailed accounts on these
notions as an aid in researches initiated by Connes-Tretkoff.
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Symbols on Noncommutative Tori

(Standard symbols, Baaj, Connes) Sm(Rn; Aθ), m ∈ R, consists of
maps ρ(ξ) ∈ C∞(Rn; Aθ) such that, ∀α, β ∈ Nn

0, ∃Cαβ > 0 such that

‖δα∂βξ ρ(ξ)‖ ≤ Cαβ(1 + |ξ|)m−|β| ∀ξ ∈ Rn.

(Homogeneous symbols) Sq(Rn; Aθ), q ∈ C, consists of smooth maps
ρ : Rn \ 0→ Aθ such that ρ(λξ) = λqρ(ξ) ∀ξ ∈ Rn \ 0 ∀λ > 0.

(Classical Symbols, Baaj) Sq(Rn; Aθ), q ∈ C, consists of maps
ρ(ξ) ∈ C∞(Rn; Aθ) that admit an expansion ρ(ξ) ∼

∑
j≥0 ρq−j(ξ),

ρq−j(ξ) ∈ Sq−j(Rn; Aθ). Here ∼ means that, ∀N ≥ 1 ∀α, β ∈ Nn
0,

∃CNαβ > 0 such that∥∥∥δα∂βξ (ρ−∑
j<N

ρq−j

)
(ξ)
∥∥∥ ≤ CNαβ|ξ|<q−N−|β| ∀ξ ∈ Rn with |ξ| ≥ 1.

In this case ρq(ξ) is called the principal symbol of ρ(ξ).

We have an inclusion Sq(Rn; Aθ) ⊂ S<q(Rn; Aθ).
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Amplitudes and Oscillating Integrals

Let m ∈ R.

Aθ-valued Amplitudes

Am = Am(Rn × Rn; Aθ) consists of maps a(s, ξ) ∈ C∞(Rn × Rn; Aθ) such
that, for all α, β, γ ∈ Nn

0, there is Cαβγ > 0 such that

‖δα∂βs ∂
γ
ξ a(s, ξ)‖ ≤ Cαβγ(1 + |s|+ |ξ|)m ∀(s, ξ) ∈ Rn × Rn.

Let χ(s, ξ) ∈ C∞c (Rn × Rn) be such that χ(s, ξ) = 1 near (0, 0). Set

L = χ(s, ξ) +
1− χ(s, ξ)

|s|2 + |ξ|2
∑

1≤j≤n
(ξjDsj + sjDξj ),

where Dxj = 1
i ∂xj .

Observe that L(e is·ξ) = e is·ξ.

Define the transpose of L by
∫∫

L(f )g =
∫∫

f Lt(g).
⇒ Lt gives rise to a continuous linear map from Am to Am−1.
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Amplitudes and Oscillating Integrals

Let a(s, ξ) ∈ Am(Rn × Rn; Aθ).

If m < −2n, the map (s, ξ)→ e is·ξa(s, ξ) is integrable on Rn × Rn.
Moreover, for all N ≥ 0, we have∫∫

e is·ξa(s, ξ)dsd̄ξ =

∫∫
LN [e is·ξ]a(s, ξ)dsd̄ξ

=

∫∫
e is·ξ(Lt)N [a(s, ξ)]dsd̄ξ.

(Oscillating integrals) For general m ∈ R, we define

J(a) =

∫∫
e is·ξ(Lt)N [a(s, ξ)]dsd̄ξ,

where N is any non-negative integer such that m − N < −2n. Here
the choice of N is irrelevant. When m < −2n we may take N = 0. In
this case we have J(a) =

∫∫
e is·ξa(s, ξ)dsd̄ξ.
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ΨDOs on NC Tori

If ρ(ξ) ∈ Sm(Rn; Aθ) and u ∈ Aθ, then ρ(ξ)α−s(u) ∈ Am+(Rn × Rn; Aθ),
where m+ := max(m, 0).

Definition
1 A pseudodifferential operator (ΨDO) associated with
ρ(ξ) ∈ Sm(Rn; Aθ), m ∈ R, is a linear map Pρ : Aθ → Aθ defined by

Pρu = J(ρ(ξ)α−s(u)).

2 Ψq(Aθ), q ∈ C, consists of all linear operators P : Aθ → Aθ that are
of the form P = Pρ for some symbol ρ(ξ) ∈ Sq(Rn; Aθ).

(Connes-Tretkoff) Let ρ(ξ) ∈ Sm(Rn; Aθ), m ∈ R. Then for every
u =

∑
k∈Zn ukU

k ∈ Aθ, we have

Pρu =
∑
k∈Zn

ukρ(k)Uk .
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Smoothing Operators

A ′θ := {v : Aθ → C : v is continuous and linear}.
We equip A ′θ with its strong topology, i.e., the LCS topology generated by
the semi-norms,

v −→ sup
u∈B
| 〈v , u〉 |, B ⊂ Aθ bounded.

We have continuous inclusions Aθ ⊂Hθ ⊂ A ′θ .

A linear operator R : Aθ → A ′θ is called smoothing when it extends to
a continuous linear operator R : A ′θ → Aθ.

Ψ−∞(Aθ) := the space of smoothing operators.

Proposition (Ha-L.-Ponge)

A linear operator R : Aθ → A ′θ is smoothing if and only if there is a
symbol ρ(ξ) ∈ S (Rn; Aθ) such that R = Pρ.

Every ΨDO P : Aθ → Aθ uniquely extends to a continuous linear
map P : A ′θ → A ′θ .
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A linear operator R : Aθ → A ′θ is smoothing if and only if there is a
symbol ρ(ξ) ∈ S (Rn; Aθ) such that R = Pρ.

Every ΨDO P : Aθ → Aθ uniquely extends to a continuous linear
map P : A ′θ → A ′θ .
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Composition of ΨDOs

Let ρj(ξ) ∈ Smj (Rn; Aθ), mj ∈ R, j = 1, 2. Set

ρ1]ρ2(ξ) =

∫∫
e it·ηρ1(ξ + η)α−t [ρ2(ξ)]dtd̄η.

The integral on the right-hand side makes sense as an oscillating integral.
It can be shown that ρ1]ρ2(ξ) ∈ Sm1+m2(Rn; Aθ) and Pρ1Pρ2 = Pρ1]ρ2 .

Proposition

Let Pj ∈ Ψqj (Aθ), qj ∈ C, j = 1, 2. In addition, let ρ(ξ) and σ(ξ) be the
respective principal symbols of P1 and P2. Then

1 P1P2 ∈ Ψq1+q2(Aθ).

2 ρ(ξ)σ(ξ) is the principal symbol of P1P2.
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Sobolev Spaces on NC Tori

Let s ∈ R. Then Λs := (1 + ∆)
s
2 ∈ Ψs(Aθ) and Λs has symbol (1 + |ξ|2)

s
2 .

Definition (Sobolev Spaces)

H
(s)
θ := {u ∈ A ′θ ; Λsu ∈Hθ}.

H
(s)
θ is a Hilbert space with the inner product,

(u|v)s := (Λsu|Λsv), u, v ∈H
(s)
θ .

Given any s ′ > s, the inclusion H
(s′)
θ ⊂H

(s)
θ is compact.

Let ρ(ξ) ∈ Sm(Rn; Aθ), m ∈ R. For every s ∈ R, Pρ uniquely extends

to a continuous linear map Pρ : H
(s+m)
θ →H

(s)
θ . In particular, if

m = 0 then Pρ gives rise to a bounded operator on Hθ.

(Baaj, Connes) If m < 0, then Pρ gives rise to a compact operator
Pρ : Hθ →Hθ.
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Trace-Class Property of ΨDOs

1 ∆ = δ2
1 + · · ·+ δ2

n is isospectral to the flat Laplacian on Tn.

2 Weyl’s law: λk(∆)(ck−1)
2
n → 1 as k →∞. Here c := π

n
2 Γ(n2 + 1)−1.

3 Set Λm = (1 + ∆)
m
2 . Using functional calculus, for m < 0, we see that

µk(Λm) = the (k + 1)-th eigenvalue of Λm = O(k
m
n ) as k →∞.

4 If m < −n, then Λm ∈ L 1, i.e., Λm is a trace-class operator on Hθ.

5 Let ρ(ξ) ∈ Sm(Rn; Aθ), m < −n. Then Pρ = (PρΛ−m)Λm ∈ L 1.

Proposition (Ha-L.-Ponge)

Let m < −n. Then for every ρ(ξ) ∈ Sm(Rn; Aθ), Pρ is trace-class, and its
trace is given by

Tr(Pρ) =
∑
k∈Zn

τ [ρ(k)].
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Part 2. Resolvents and Complex Powers of Elliptic
ΨDOs on NC Tori
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Elliptic ΨDOs on NC Tori

Definition

P ∈ Ψq(Aθ), q ∈ C, is called elliptic when its principal symbol ρq(ξ) is
invertible for all ξ ∈ Rn \ 0.

Example 1: The (flat) Laplacian ∆ := δ2
1 + · · ·+ δ2

n.

Example 2: Connes-Tretkoff’s conformally deformed laplacian.

Proposition

P ∈ Ψq(Aθ), q ∈ C, is elliptic if and only if it admits a parametrix, i.e., an
operator Q ∈ Ψ−q(Aθ) such that PQ = QP = 1 mod Ψ−∞(Aθ).

Consequences

1 Let s ∈ R. Then, for any u ∈ A ′θ , Pu ∈H
(s)
θ ⇔ u ∈H

(s+<q)
θ .

2 For every s ∈ R, P : H
(s+m)
θ →H

(s)
θ is a Fredholm operator.
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Spectra and Partial Inverses of Elliptic ΨDOs

Let P ∈ Ψq(Aθ) be an elliptic ΨDO with m := <q > 0.

The resolvent set of P := {λ ∈ C; P − λ : H
(m)
θ →Hθ is bijective}.

SpP := the complement of the resolvent set.

Proposition (Ha-L.-Ponge)

SpP = C or SpP is a discrete set consisting of isolated eigenvalues with
finite multiplicity.

Suppose SpP 6= C. Then the map

C \ SpP 3 λ→ (P − λ)−1 ∈ L (Hθ,H
(m)
θ ) is holomorphic. The root

space Eλ(P) and Riesz projection Πλ(P) of λ ∈ SpP are defined by

Eλ(P) =
⋃
`≥0

ker(P − λ)`, Πλ(P) =
1

2iπ

∫
|ζ−λ|=r

(ζ − P)−1dζ.

Here r is small enough so that {ζ ∈ C; |ζ − λ| ≤ r} ∩ SpP = {λ}.
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Spectra and Partial Inverses of Elliptic ΨDOs

Πλ(P)2 = Πλ(P) and Πλ(P)Πµ(P) = 0 if λ 6= µ.

Eλ(P) is a finite dimensional subspace of Aθ. In particular, there is
N ∈ N such that Eλ(P) = ker(P − λ)N .

Πλ(P) is a projection onto Eλ(P) with kernel Eλ(P∗)⊥. In particular,
we have direct-sum decomposition Hθ = Eλ(P) u Eλ(P∗)⊥.

Πλ(P) is a smoothing operator.

P induces a linear homeomorphism P1 : E0(P∗)⊥∩H
(m)
θ → E0(P∗)⊥.

Definition

The partial inverse of P is the operator P−1 : Hθ →H
(m)
θ defined by

- P−1 = 0 on E0(P).

- P−1u = P−1
1 u for all u ∈ E0(P∗)⊥.

We have PP−1 = 1− Π0(P) on Hθ and P−1P = 1− Π0(P) on H
(m)
θ .
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Pseudo-cones and Vectors with Parameter

In what follows, we let Λ ⊂ C be an open pseudo-cone, i.e., Λ is of
the form Λ = Θ \ D. Here Θ is an open cone in C \ 0 about the
negative real axis and D is the closed disk at the origin.

For open pseudo-cones Λ1 and Λ2, we denote by Λ1 ⊂⊂ Λ2 if Λ1 ⊂ Λ2.

Definition

Let E be a locally convex space. Hold(Λ,E ), d ∈ Z, consists of
holomorphic families (x(λ))λ∈Λ with values in E such that, for all
continuous semi-norm p on E and pseudo-cones Λ′ ⊂⊂ Λ, there is
CpΛ′ > 0 such that

p(x(λ)) ≤ CpΛ′(1 + |λ|)d ∀λ ∈ Λ′.
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ΨDOs with Parameter

In what follows, let w > 0, q ∈ C, d ∈ Z. Set d− = sup(0,−d) and
m = <q + wd−.

- Notation: C∞,d(Rn × Λ; Aθ) := Hold(Λ,C∞(Rn; Aθ)).

Definition (Classical Symbols with Parameter)

Sq,d(Rn × Λ; Aθ) consists of maps ρ(ξ;λ) ∈ C∞,d(Rn × Λ; Aθ) for which
there are maps ρq−j : (Rn \ 0)×Θ→ Aθ, j ≥ 0, such that

– ρq−j(tξ; twλ) = tq−jρq−j(ξ;λ) ∀t > 0 ∀(ξ, λ) ∈ (Rn \ 0)×Θ.

– ρq−j(ξ;λ) is smooth w.r.t. ξ and holomorphic w.r.t. λ.

– ∀N ∈ N ∀Λ′ ⊂⊂ Λ and ∀α, β ∈ Nn
0, ∃CNΛ′αβ > 0 such that, for all

λ ∈ Λ′ and ξ ∈ Rn with |ξ| ≥ 1, we have∥∥∥δα∂βξ (ρ−∑
j<N

ρq−j

)
(ξ;λ)

∥∥∥ ≤ CNΛ′αβ(1 + |λ|)d |ξ|m−N−|β|.
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ΨDOs with Parameter and the Agmon Pseudo-cone

Definition (ΨDOs with Parameter)

Ψq,d(Aθ; Λ) := {(Pρ(·;λ))λ∈Λ; ρ(ξ;λ) ∈ Sq,d(Rn × Λ; Aθ)}.

Proposition (L.-Ponge)

Pj(λ) ∈ Ψqj ,dj (Aθ; Λ)⇒ P1(λ)P2(λ) ∈ Ψq1+q2,d1+d2(Aθ; Λ).

Let P be an elliptic differential operator of order m with principal
symbol ρm(ξ).

C (P) := {λ ∈ C : ∃ξ ∈ Rn \ 0 s.t. ρm(ξ)− λ is not invertible}.
We assume that both C (P) and SpP \ 0 are contained in a closed
cone about the positive real axis lying in the right half-plane.

Θ̆(P) := the complement of the closed cone described above.
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2 r .
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The Resolvent of an Elliptic ΨDO

Let P be an elliptic differential operator of order m with principal
symbol ρm(ξ).

P − λ ∈ Ψm,1(Aθ; Λ(P)) and P − λ has principal symbol ρm(ξ)− λ.

Moreover, the following holds.

Proposition (L.-Ponge)

(P − λ)−1 ∈ Ψ−m,−1(Aθ; Λ(P)). Moreover (P − λ)−1 has principal symbol
(ρm(ξ)− λ)−1.
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Holomorphic Families of ΨDOs

Let Ω be an open subset of C.

Definition (Fathi-Ghorbanpour-Khalkhali)

(ρ(z)(ξ))z∈Ω ⊂ S∗(Rn; Aθ) is said to be a holomorphic family when:

1 The order w(z) of ρ(z)(ξ) depends analytically on z .

2 z → ρ(z)(ξ) is a holomorphic map from Ω to C∞(Rn; Aθ).

3 ρ(z)(ξ) ∼
∑

j≥0 ρ(z)w(z)−j(ξ), ρ(z)w(z)−j(ξ) ∈ Sw(z)−j(Rn; Aθ).

Definition (Holomorphic Families of ΨDOs)

Hol(Ω,Ψ∗(Aθ)) := {(Pρ(z))z∈Ω; (ρ(z)(ξ))z∈Ω ∈ Hol(Ω,S∗(Rn; Aθ))}.

P(z),Q(z) ∈ Hol(Ω,Ψ∗(Aθ)) ⇒ P(z)Q(z) ∈ Hol(Ω,Ψ∗(Aθ)).
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Complex Powers of an Elliptic ΨDO

Let Γ be the contour in Λ(P) of the form Γ = Γ
(−)
1 ∪ Γ2 ∪ Γ

(+)
1 , where

Γ
(−)
1 = (∞, r1e i(2π−φ)],

Γ2 = {λ ∈ C; |λ| = r1, φ ≤ arg λ ≤ 2π − φ},

Γ
(+)
1 = [r1e

iφ,∞).

Here we choose r1 so that 0 < r1 < r = inf{|λ| : 0 6= λ ∈ SpP}.
We orient Γ in clockwise direction.

Definition (Complex Powers of an Elliptic ΨDO)

We define a family of operators (Ps)<s<0 by

Ps =
1

2iπ

∫
Γ
λs(P − λ)−1dλ, <s < 0.
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Complex Powers of an Elliptic ΨDO

Ps =
1

2iπ

∫
Γ
λs(P − λ)−1dλ, <s < 0.

Recall that (P − λ)−1 ∈ Ψ−m,−1(Aθ; Λ(P)).

Using the result that (P − λ)−1 ∈ Ψ−m,−1(Aθ; Λ(P)) we can
compute the symbol of Ps , and prove that (Ps)<s<0 gives rise to a
holomorphic family of ΨDOs of order ms.

For general s ∈ C, we define Ps as the ΨDO such that Ps = PkPs−k ,
where k is any positive integer > <s. Here the choice of k is
irrelevant.
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Complex Powers of an Elliptic ΨDO

Theorem (L.-Ponge)

(Ps)s∈C ∈ Hol(C,Ψ∗(Aθ)) and ordPs = ms. Moreover, we have

Ps1+s2 = Ps1Ps2 ∀sj ∈ C, j = 1, 2.

P−k = the kth power of the partial inverse of P ∀k ∈ N.

P` (in the sense of complex powers) = (1− Π0(P))P` ∀` ∈ N.

P0 (in the sense of complex powers) = 1− Π0(P).
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Thank you for your attention!
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