Pseudodifferential operators and complex powers of elliptic operators on noncommutative tori

Gihyun Lee

Program on Differential Geometry on Noncommutative Tori
Sichuan University, Chengdu, China
(Joint work with H. Ha and R. Ponge)

May 16, 2019

Overview

(1) Pseudodifferential Calculus on Noncommutative Tori

- Noncommutative Tori
- Motivation
- Symbols, Amplitudes and Oscillating Integrals
- UDOs on NC Tori and Their Main Properties
(2) Resolvents and Complex Powers of Elliptic Ψ DOs on NC Tori
- Elliptic $\Psi D O s$ on NC Tori and Their Spectral Properties
- UDOs with Parameter
- The Resolvent of an Elliptic $\Psi D O$
- Holomorphic Families of UDOs
- Complex Powers of an Elliptic Ψ DO

Part 1. Pseudodifferential Calculus on Noncommutative Tori

Noncommutative Tori

- $\theta=\left(\theta_{j l}\right)$, anti-symmetric real $n \times n$ matrix $(n \geq 2)$.

Definition

$A_{\theta}=C^{*}$-algebra generated by the unitaries $U_{1}, \ldots U_{n}$ obeying the relation:

$$
U_{k} U_{j}=e^{2 i \pi \theta_{j k}} U_{j} U_{k}, \quad j, k=1, \ldots, n
$$

Notation: $U^{k}:=U_{1}^{k_{1}} \cdots U_{n}^{k_{n}}, k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$.

Noncommutative Tori

- $\theta=\left(\theta_{j l}\right)$, anti-symmetric real $n \times n$ matrix $(n \geq 2)$.

Definition

$A_{\theta}=C^{*}$-algebra generated by the unitaries $U_{1}, \ldots U_{n}$ obeying the relation:

$$
U_{k} U_{j}=e^{2 i \pi \theta_{j k}} U_{j} U_{k}, \quad j, k=1, \ldots, n
$$

Notation: $U^{k}:=U_{1}^{k_{1}} \cdots U_{n}^{k_{n}}, k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$.

- There is a tracial state $\tau: A_{\theta} \rightarrow \mathbb{C}$ such that $\tau(1)=1$ and $\tau\left(U^{k}\right)=0$ for $0 \neq k \in \mathbb{Z}^{n}$.
- $\mathscr{H}_{\theta}:=$ the completion of A_{θ} w.r.t. the inner product,

$$
(u \mid v):=\tau\left(u v^{*}\right)
$$

- $u=\sum_{k \in \mathbb{Z}^{n}} u_{k} U^{k}, u_{k}=\left(u \mid U^{k}\right)$, the Fourier series of $u \in \mathscr{H}_{\theta}$.

Noncommutative Tori

- There is a continuous action of \mathbb{R}^{n} on A_{θ} such that

$$
\alpha_{s}\left(U^{k}\right)=e^{i s \cdot k} U^{k}, \quad s \in \mathbb{R}^{n}, k \in \mathbb{Z}^{n}
$$

Smooth noncommutative torus

$$
\begin{aligned}
\mathscr{A}_{\theta} & : \\
& =\left\{u \in A_{\theta} ; s \rightarrow \alpha_{s}(u) \text { is a smooth map from } \mathbb{R}^{n} \text { to } A_{\theta}\right\} \\
& =\left\{u=\sum u_{k} U^{k} \in A_{\theta} ;\left(u_{k}\right)_{k \in \mathbb{Z}^{n}} \text { decays rapidly }\right\} .
\end{aligned}
$$

Noncommutative Tori

- There is a continuous action of \mathbb{R}^{n} on A_{θ} such that

$$
\alpha_{s}\left(U^{k}\right)=e^{i s \cdot k} U^{k}, \quad s \in \mathbb{R}^{n}, k \in \mathbb{Z}^{n}
$$

Smooth noncommutative torus

$$
\begin{aligned}
\mathscr{A}_{\theta} & :=\left\{u \in A_{\theta} ; s \rightarrow \alpha_{s}(u) \text { is a smooth map from } \mathbb{R}^{n} \text { to } A_{\theta}\right\} \\
& =\left\{u=\sum u_{k} U^{k} \in A_{\theta} ;\left(u_{k}\right)_{k \in \mathbb{Z}^{n}} \text { decays rapidly }\right\} .
\end{aligned}
$$

- For $j=1, \ldots, n$ define $\delta_{j}: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}$ by

$$
\delta_{j}\left(U^{k}\right)=-\left.i \partial_{s_{j}} \alpha_{s}\left(U^{k}\right)\right|_{s=0}=k_{j} U^{k}, \quad k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n} .
$$

Then δ_{j} is a derivation on \mathscr{A}_{θ}, i.e., $\delta_{j}(u v)=\delta_{j}(u) v+u \delta_{j}(v)$ for all $u, v \in \mathscr{A}_{\theta}$.

Noncommutative Tori

- We equip \mathscr{A}_{θ} with the locally convex topology generated by the semi-norms,

$$
u \longrightarrow\left\|\delta^{\alpha} u\right\|, \quad \alpha \in \mathbb{N}_{0}^{n}
$$

\mathscr{A}_{θ} is a Fréchet $*$-algebra with respect to this topology.

Noncommutative Tori

- We equip \mathscr{A}_{θ} with the locally convex topology generated by the semi-norms,

$$
u \longrightarrow\left\|\delta^{\alpha} u\right\|, \quad \alpha \in \mathbb{N}_{0}^{n}
$$

\mathscr{A}_{θ} is a Fréchet $*$-algebra with respect to this topology.

NC Torus	Ordinary Torus $(\theta=0)$
A_{θ}	$C\left(\mathbb{T}^{n}\right)$
\mathscr{A}_{θ}	$C^{\infty}\left(\mathbb{T}^{n}\right)$
$U_{j}(j=1, \ldots, n)$	the function $x \rightarrow e^{i x_{j}}$
$U^{k}\left(k \in \mathbb{Z}^{n}\right)$	the function $x \rightarrow e^{i x \cdot k}$
$\delta_{j}(j=1, \ldots, n)$	$D_{x_{j}}:=-i \partial_{x_{j}}$
$\delta^{\alpha}:=\delta_{1}^{\alpha_{1}} \cdots \delta_{n}^{\alpha_{n}}\left(\alpha \in \mathbb{N}_{0}^{n}\right)$	$D_{x}^{\alpha}:=D_{\chi_{1}}^{\alpha_{1}} \cdots D_{\chi_{n}}^{\alpha_{n}}$
the trace τ	the integral on \mathbb{T}^{n}
\mathscr{H}_{θ}	$L^{2}\left(\mathbb{T}^{n}\right)$

Differential Operators

Definition (Connes)

A differential operator of order m on \mathscr{A}_{θ} is a linear operator $P: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}$ of the form,

$$
P u=\sum_{|\alpha| \leq m} a_{\alpha} \delta^{\alpha} u, \quad a_{\alpha} \in \mathscr{A}_{\theta} .
$$

The symbol of P is the map $\rho: \mathbb{R}^{n} \rightarrow \mathscr{A}_{\theta}$ defined by $\rho(\xi)=\sum_{|\alpha| \leq m} a_{\alpha} \xi^{\alpha}$, $\xi \in \mathbb{R}^{n}$.

Differential Operators

Definition (Connes)

A differential operator of order m on \mathscr{A}_{θ} is a linear operator $P: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}$ of the form,

$$
P u=\sum_{|\alpha| \leq m} a_{\alpha} \delta^{\alpha} u, \quad a_{\alpha} \in \mathscr{A}_{\theta} .
$$

The symbol of P is the map $\rho: \mathbb{R}^{n} \rightarrow \mathscr{A}_{\theta}$ defined by $\rho(\xi)=\sum_{|\alpha| \leq m} a_{\alpha} \xi^{\alpha}$, $\xi \in \mathbb{R}^{n}$.

- Example 1: The (flat) Laplacian $\Delta:=\delta_{1}^{2}+\cdots+\delta_{n}^{2}$.
- Example 2: (Connes-Tretkoff) Conformally deformed Laplacian $\Delta_{k}:=k^{-1} \Delta k^{-1}$ on a noncommutative 2-torus \mathscr{A}_{θ}. Here $k \in \mathscr{A}_{\theta}$ is positive and invertible.
- Using the Fourier inversion formula we see that

$$
P u=\iint e^{i s \cdot \xi} \rho(\xi) \alpha_{-s}(u) d s \not \subset \xi \quad \text { for all } u \in \mathscr{A}_{\theta}
$$

Motivation

- We can get much geometric information about a compact Riemannian manifold (M, g) from the zeta function $\zeta(s):=\operatorname{Tr}\left(\Delta_{g}^{-s}\right)$, where Δ_{g} is the Laplacian associated with g.
- e.g., $M=$ compact Riemann surface $\Rightarrow \zeta(0)=\frac{1}{6} \chi(M)-\operatorname{dim}$ ker Δ_{g}.

Motivation

- We can get much geometric information about a compact Riemannian manifold (M, g) from the zeta function $\zeta(s):=\operatorname{Tr}\left(\Delta_{g}^{-s}\right)$, where Δ_{g} is the Laplacian associated with g.
- e.g., $M=$ compact Riemann surface $\Rightarrow \zeta(0)=\frac{1}{6} \chi(M)$ - dim ker Δ_{g}.
- In 2009, Connes-Tretkoff proved the following version of Gauss-Bonnet theorem for a noncommutative 2-torus \mathscr{A}_{θ} : the value of the zeta function $\zeta\left(s ; \Delta_{k}\right):=\operatorname{Tr}\left(\Delta_{k}^{-s}\right)$ at $s=0$ is independent of the choice of positive and invertible element $k \in \mathscr{A}_{\theta}$.

Motivation

- We can get much geometric information about a compact Riemannian manifold (M, g) from the zeta function $\zeta(s):=\operatorname{Tr}\left(\Delta_{g}^{-s}\right)$, where Δ_{g} is the Laplacian associated with g.
- e.g., $M=$ compact Riemann surface $\Rightarrow \zeta(0)=\frac{1}{6} \chi(M)-\operatorname{dim}$ ker Δ_{g}.
- In 2009, Connes-Tretkoff proved the following version of Gauss-Bonnet theorem for a noncommutative 2-torus \mathscr{A}_{θ} : the value of the zeta function $\zeta\left(s ; \Delta_{k}\right):=\operatorname{Tr}\left(\Delta_{k}^{-s}\right)$ at $s=0$ is independent of the choice of positive and invertible element $k \in \mathscr{A}_{\theta}$.
- The following tools play a central role in Connes-Tretkoff's paper and its subsequent results.
- Pseudodifferential operators ($\Psi D O s$) on noncommutative tori.
- Parametric $\Psi D O$ s on noncommutative tori.
- Holomorphic families of Ψ DOs.
- Complex powers of an elliptic Ψ DO.

Motivation

- We can get much geometric information about a compact Riemannian manifold (M, g) from the zeta function $\zeta(s):=\operatorname{Tr}\left(\Delta_{g}^{-s}\right)$, where Δ_{g} is the Laplacian associated with g.
- e.g., $M=$ compact Riemann surface $\Rightarrow \zeta(0)=\frac{1}{6} \chi(M)-\operatorname{dim}$ ker Δ_{g}.
- In 2009, Connes-Tretkoff proved the following version of Gauss-Bonnet theorem for a noncommutative 2-torus \mathscr{A}_{θ} : the value of the zeta function $\zeta\left(s ; \Delta_{k}\right):=\operatorname{Tr}\left(\Delta_{k}^{-s}\right)$ at $s=0$ is independent of the choice of positive and invertible element $k \in \mathscr{A}_{\theta}$.
- The following tools play a central role in Connes-Tretkoff's paper and its subsequent results.
- Pseudodifferential operators ($\Psi \mathrm{DOs}$) on noncommutative tori.
- Parametric $\Psi D O s$ on noncommutative tori.
- Holomorphic families of Ψ DOs.
- Complex powers of an elliptic $\Psi D O$.
- The aim of this mini-course is to give detailed accounts on these notions as an aid in researches initiated by Connes-Tretkoff.

Symbols on Noncommutative Tori

- (Standard symbols, Baaj, Connes) $\mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m \in \mathbb{R}$, consists of maps $\rho(\xi) \in C^{\infty}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ such that, $\forall \alpha, \beta \in \mathbb{N}_{0}^{n}, \exists C_{\alpha \beta}>0$ such that

$$
\left\|\delta^{\alpha} \partial_{\xi}^{\beta} \rho(\xi)\right\| \leq C_{\alpha \beta}(1+|\xi|)^{m-|\beta|} \quad \forall \xi \in \mathbb{R}^{n}
$$

Symbols on Noncommutative Tori

- (Standard symbols, Baaj, Connes) $\mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m \in \mathbb{R}$, consists of maps $\rho(\xi) \in C^{\infty}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ such that, $\forall \alpha, \beta \in \mathbb{N}_{0}^{n}, \exists C_{\alpha \beta}>0$ such that

$$
\left\|\delta^{\alpha} \partial_{\xi}^{\beta} \rho(\xi)\right\| \leq C_{\alpha \beta}(1+|\xi|)^{m-|\beta|} \quad \forall \xi \in \mathbb{R}^{n}
$$

- (Homogeneous symbols) $S_{q}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), q \in \mathbb{C}$, consists of smooth maps $\rho: \mathbb{R}^{n} \backslash 0 \rightarrow \mathscr{A}_{\theta}$ such that $\rho(\lambda \xi)=\lambda^{q} \rho(\xi) \forall \xi \in \mathbb{R}^{n} \backslash 0 \forall \lambda>0$.

Symbols on Noncommutative Tori

- (Standard symbols, Baaj, Connes) $\mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m \in \mathbb{R}$, consists of maps $\rho(\xi) \in C^{\infty}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ such that, $\forall \alpha, \beta \in \mathbb{N}_{0}^{n}, \exists C_{\alpha \beta}>0$ such that

$$
\left\|\delta^{\alpha} \partial_{\xi}^{\beta} \rho(\xi)\right\| \leq C_{\alpha \beta}(1+|\xi|)^{m-|\beta|} \quad \forall \xi \in \mathbb{R}^{n}
$$

- (Homogeneous symbols) $S_{q}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), q \in \mathbb{C}$, consists of smooth maps $\rho: \mathbb{R}^{n} \backslash 0 \rightarrow \mathscr{A}_{\theta}$ such that $\rho(\lambda \xi)=\lambda^{q} \rho(\xi) \forall \xi \in \mathbb{R}^{n} \backslash 0 \forall \lambda>0$.
- (Classical Symbols, Baaj) $S^{q}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), q \in \mathbb{C}$, consists of maps $\rho(\xi) \in C^{\infty}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ that admit an expansion $\rho(\xi) \sim \sum_{j \geq 0} \rho_{q-j}(\xi)$, $\rho_{q-j}(\xi) \in S_{q-j}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$. Here \sim means that, $\forall N \geq 1 \forall \alpha, \beta \in \mathbb{N}_{0}^{n}$, $\exists C_{N \alpha \beta}>0$ such that

$$
\left\|\delta^{\alpha} \partial_{\xi}^{\beta}\left(\rho-\sum_{j<N} \rho_{q-j}\right)(\xi)\right\| \leq C_{N \alpha \beta}|\xi|^{\Re q-N-|\beta|} \quad \forall \xi \in \mathbb{R}^{n} \text { with }|\xi| \geq 1 .
$$

In this case $\rho_{q}(\xi)$ is called the principal symbol of $\rho(\xi)$.

- We have an inclusion $S^{q}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right) \subset \mathbb{S}^{\Re q}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$.

Amplitudes and Oscillating Integrals

Let $m \in \mathbb{R}$.
\mathscr{A}_{θ}-valued Amplitudes
$A^{m}=A^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ consists of maps $a(s, \xi) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ such that, for all $\alpha, \beta, \gamma \in \mathbb{N}_{0}^{n}$, there is $C_{\alpha \beta \gamma}>0$ such that

$$
\left\|\delta^{\alpha} \partial_{s}^{\beta} \partial_{\xi}^{\gamma} a(s, \xi)\right\| \leq C_{\alpha \beta \gamma}(1+|s|+|\xi|)^{m} \quad \forall(s, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

Amplitudes and Oscillating Integrals

Let $m \in \mathbb{R}$.

\mathscr{A}_{θ}-valued Amplitudes

$A^{m}=A^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ consists of maps $a(s, \xi) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ such that, for all $\alpha, \beta, \gamma \in \mathbb{N}_{0}^{n}$, there is $C_{\alpha \beta \gamma}>0$ such that

$$
\left\|\delta^{\alpha} \partial_{s}^{\beta} \partial_{\xi}^{\gamma} a(s, \xi)\right\| \leq C_{\alpha \beta \gamma}(1+|s|+|\xi|)^{m} \quad \forall(s, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

- Let $\chi(s, \xi) \in C_{c}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ be such that $\chi(s, \xi)=1$ near $(0,0)$. Set

$$
L=\chi(s, \xi)+\frac{1-\chi(s, \xi)}{|s|^{2}+|\xi|^{2}} \sum_{1 \leq j \leq n}\left(\xi_{j} D_{s_{j}}+s_{j} D_{\xi_{j}}\right)
$$

where $D_{x_{j}}=\frac{1}{i} \partial_{x_{j}}$.

- Observe that $L\left(e^{i s \cdot \xi}\right)=e^{i s \cdot \xi}$.
- Define the transpose of L by $\iint L(f) g=\iint f L^{t}(g)$.
$\Rightarrow L^{t}$ gives rise to a continuous linear map from A^{m} to A^{m-1}.

Amplitudes and Oscillating Integrals

Let $a(s, \xi) \in A^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$.

- If $m<-2 n$, the map $(s, \xi) \rightarrow e^{i s \cdot \xi} a(s, \xi)$ is integrable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. Moreover, for all $N \geq 0$, we have

$$
\begin{aligned}
\iint e^{i s \cdot \xi} a(s, \xi) d s \nexists \xi & =\iint L^{N}\left[e^{i s \cdot \xi}\right] a(s, \xi) d s \nexists \xi \\
& =\iint e^{i s \cdot \xi}\left(L^{t}\right)^{N}[a(s, \xi)] d s d \xi
\end{aligned}
$$

Amplitudes and Oscillating Integrals

Let $a(s, \xi) \in A^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$.

- If $m<-2 n$, the map $(s, \xi) \rightarrow e^{i s \cdot \xi} a(s, \xi)$ is integrable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. Moreover, for all $N \geq 0$, we have

$$
\begin{aligned}
\iint e^{i s \cdot \xi} a(s, \xi) d s d \xi & =\iint L^{N}\left[e^{i s \cdot \xi}\right] a(s, \xi) d s d \xi \\
& =\iint e^{i s \cdot \xi}\left(L^{t}\right)^{N}[a(s, \xi)] d s d \xi
\end{aligned}
$$

- (Oscillating integrals) For general $m \in \mathbb{R}$, we define

$$
J(a)=\iint e^{i s \cdot \xi}\left(L^{t}\right)^{N}[a(s, \xi)] d s \nexists \xi,
$$

where N is any non-negative integer such that $m-N<-2 n$. Here the choice of N is irrelevant. When $m<-2 n$ we may take $N=0$. In this case we have $J(a)=\iint e^{i s \cdot \xi} a(s, \xi) d s d \xi$.

UDOs on NC Tori

If $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ and $u \in \mathscr{A}_{\theta}$, then $\rho(\xi) \alpha_{-s}(u) \in A^{m_{+}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$, where $m_{+}:=\max (m, 0)$.

UDOs on NC Tori

If $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ and $u \in \mathscr{A}_{\theta}$, then $\rho(\xi) \alpha_{-s}(u) \in A^{m_{+}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$, where $m_{+}:=\max (m, 0)$.

Definition

(1) A pseudodifferential operator ($\Psi \mathrm{DO}$) associated with $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m \in \mathbb{R}$, is a linear map $P_{\rho}: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}$ defined by

$$
P_{\rho} u=J\left(\rho(\xi) \alpha_{-s}(u)\right)
$$

(2) $\Psi^{q}\left(\mathscr{A}_{\theta}\right), q \in \mathbb{C}$, consists of all linear operators $P: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}$ that are of the form $P=P_{\rho}$ for some symbol $\rho(\xi) \in S^{q}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$.

UDOs on NC Tori

If $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ and $u \in \mathscr{A}_{\theta}$, then $\rho(\xi) \alpha_{-s}(u) \in A^{m_{+}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$, where $m_{+}:=\max (m, 0)$.

Definition

(1) A pseudodifferential operator ($\Psi \mathrm{DO}$) associated with $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m \in \mathbb{R}$, is a linear map $P_{\rho}: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}$ defined by

$$
P_{\rho} u=J\left(\rho(\xi) \alpha_{-s}(u)\right)
$$

(2) $\Psi^{q}\left(\mathscr{A}_{\theta}\right), q \in \mathbb{C}$, consists of all linear operators $P: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}$ that are of the form $P=P_{\rho}$ for some symbol $\rho(\xi) \in S^{q}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$.

- (Connes-Tretkoff) Let $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m \in \mathbb{R}$. Then for every $u=\sum_{k \in \mathbb{Z}^{n}} u_{k} U^{k} \in \mathscr{A}_{\theta}$, we have

$$
P_{\rho} u=\sum_{k \in \mathbb{Z}^{n}} u_{k} \rho(k) U^{k} .
$$

Smoothing Operators

$\mathscr{A}_{\theta}^{\prime}:=\left\{v: \mathscr{A}_{\theta} \rightarrow \mathbb{C}: v\right.$ is continuous and linear $\}$.
We equip $\mathscr{A}_{\theta}^{\prime}$ with its strong topology, i.e., the LCS topology generated by the semi-norms,

$$
v \longrightarrow \sup _{u \in B}|\langle v, u\rangle|, \quad B \subset \mathscr{A}_{\theta} \text { bounded. }
$$

Smoothing Operators

$\mathscr{A}_{\theta}^{\prime}:=\left\{v: \mathscr{A}_{\theta} \rightarrow \mathbb{C}: v\right.$ is continuous and linear $\}$.
We equip $\mathscr{A}_{\theta}^{\prime}$ with its strong topology, i.e., the LCS topology generated by the semi-norms,

$$
v \longrightarrow \sup _{u \in B}|\langle v, u\rangle|, \quad B \subset \mathscr{A}_{\theta} \text { bounded. }
$$

We have continuous inclusions $\mathscr{A}_{\theta} \subset \mathscr{H}_{\theta} \subset \mathscr{A}_{\theta}^{\prime}$.

- A linear operator $R: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}^{\prime}$ is called smoothing when it extends to a continuous linear operator $R: \mathscr{A}_{\theta}^{\prime} \rightarrow \mathscr{A}_{\theta}$.
- $\Psi^{-\infty}\left(\mathscr{A}_{\theta}\right):=$ the space of smoothing operators.

Proposition (Ha-L.-Ponge)

Smoothing Operators

$\mathscr{A}_{\theta}^{\prime}:=\left\{v: \mathscr{A}_{\theta} \rightarrow \mathbb{C}: v\right.$ is continuous and linear $\}$.
We equip $\mathscr{A}_{\theta}^{\prime}$ with its strong topology, i.e., the LCS topology generated by the semi-norms,

$$
v \longrightarrow \sup _{u \in B}|\langle v, u\rangle|, \quad B \subset \mathscr{A}_{\theta} \text { bounded. }
$$

We have continuous inclusions $\mathscr{A}_{\theta} \subset \mathscr{H}_{\theta} \subset \mathscr{A}_{\theta}^{\prime}$.

- A linear operator $R: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}^{\prime}$ is called smoothing when it extends to a continuous linear operator $R: \mathscr{A}_{\theta}^{\prime} \rightarrow \mathscr{A}_{\theta}$.
- $\Psi^{-\infty}\left(\mathscr{A}_{\theta}\right):=$ the space of smoothing operators.

Proposition (Ha-L.-Ponge)

- A linear operator $R: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}^{\prime}$ is smoothing if and only if there is a symbol $\rho(\xi) \in \mathscr{S}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ such that $R=P_{\rho}$.
- Every $\Psi D O P: \mathscr{A}_{\theta} \rightarrow \mathscr{A}_{\theta}$ uniquely extends to a continuous linear $\operatorname{map} P: \mathscr{A}_{\theta}^{\prime} \rightarrow \mathscr{A}_{\theta}^{\prime}$.

Composition of $\Psi D O s$

Let $\rho_{j}(\xi) \in \mathbb{S}^{m_{j}}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m_{j} \in \mathbb{R}, j=1,2$. Set

$$
\rho_{1} \sharp \rho_{2}(\xi)=\iint e^{i t \cdot \eta} \rho_{1}(\xi+\eta) \alpha_{-t}\left[\rho_{2}(\xi)\right] d t d \eta .
$$

The integral on the right-hand side makes sense as an oscillating integral. It can be shown that $\rho_{1} \sharp \rho_{2}(\xi) \in \mathbb{S}^{m_{1}+m_{2}}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ and $P_{\rho_{1}} P_{\rho_{2}}=P_{\rho_{1} \sharp \rho_{2}}$.

Composition of $\Psi D O s$

Let $\rho_{j}(\xi) \in \mathbb{S}^{m_{j}}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m_{j} \in \mathbb{R}, j=1,2$. Set

$$
\rho_{1} \sharp \rho_{2}(\xi)=\iint e^{i t \cdot \eta} \rho_{1}(\xi+\eta) \alpha_{-t}\left[\rho_{2}(\xi)\right] d t \not d \eta .
$$

The integral on the right-hand side makes sense as an oscillating integral. It can be shown that $\rho_{1} \sharp \rho_{2}(\xi) \in \mathbb{S}^{m_{1}+m_{2}}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ and $P_{\rho_{1}} P_{\rho_{2}}=P_{\rho_{1} \sharp \rho_{2}}$.

Proposition

Let $P_{j} \in \Psi^{q_{j}}\left(\mathscr{A}_{\theta}\right), q_{j} \in \mathbb{C}, j=1,2$. In addition, let $\rho(\xi)$ and $\sigma(\xi)$ be the respective principal symbols of P_{1} and P_{2}. Then
(1) $P_{1} P_{2} \in \Psi^{q_{1}+q_{2}}\left(\mathscr{A}_{\theta}\right)$.
(2) $\rho(\xi) \sigma(\xi)$ is the principal symbol of $P_{1} P_{2}$.

Sobolev Spaces on NC Tori

Let $s \in \mathbb{R}$. Then $\Lambda^{s}:=(1+\Delta)^{\frac{s}{2}} \in \Psi^{s}\left(\mathscr{A}_{\theta}\right)$ and Λ^{s} has symbol $\left(1+|\xi|^{2}\right)^{\frac{s}{2}}$.

Definition (Sobolev Spaces)

$\mathscr{H}_{\theta}^{(s)}:=\left\{u \in \mathscr{A}_{\theta}^{\prime} ; \Lambda^{s} u \in \mathscr{H}_{\theta}\right\}$.

Sobolev Spaces on NC Tori

Let $s \in \mathbb{R}$. Then $\Lambda^{s}:=(1+\Delta)^{\frac{s}{2}} \in \Psi^{s}\left(\mathscr{A}_{\theta}\right)$ and Λ^{s} has symbol $\left(1+|\xi|^{2}\right)^{\frac{s}{2}}$.

Definition (Sobolev Spaces)

$\mathscr{H}_{\theta}^{(s)}:=\left\{u \in \mathscr{A}_{\theta}^{\prime} ; \Lambda^{s} u \in \mathscr{H}_{\theta}\right\}$.

- $\mathscr{H}_{\theta}^{(s)}$ is a Hilbert space with the inner product,

$$
(u \mid v)_{s}:=\left(\Lambda^{s} u \mid \Lambda^{s} v\right), \quad u, v \in \mathscr{H}_{\theta}^{(s)}
$$

- Given any $s^{\prime}>s$, the inclusion $\mathscr{H}_{\theta}^{\left(s^{\prime}\right)} \subset \mathscr{H}_{\theta}^{(s)}$ is compact.

Sobolev Spaces on NC Tori

Let $s \in \mathbb{R}$. Then $\Lambda^{s}:=(1+\Delta)^{\frac{s}{2}} \in \Psi^{s}\left(\mathscr{A}_{\theta}\right)$ and Λ^{s} has symbol $\left(1+|\xi|^{2}\right)^{\frac{s}{2}}$.

Definition (Sobolev Spaces)

$$
\mathscr{H}_{\theta}^{(s)}:=\left\{u \in \mathscr{A}_{\theta}^{\prime} ; \Lambda^{s} u \in \mathscr{H}_{\theta}\right\} .
$$

- $\mathscr{H}_{\theta}^{(s)}$ is a Hilbert space with the inner product,

$$
(u \mid v)_{s}:=\left(\Lambda^{s} u \mid \Lambda^{s} v\right), \quad u, v \in \mathscr{H}_{\theta}^{(s)}
$$

- Given any $s^{\prime}>s$, the inclusion $\mathscr{H}_{\theta}^{\left(s^{\prime}\right)} \subset \mathscr{H}_{\theta}^{(s)}$ is compact.
- Let $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m \in \mathbb{R}$. For every $s \in \mathbb{R}, P_{\rho}$ uniquely extends to a continuous linear map $P_{\rho}: \mathscr{H}_{\theta}^{(s+m)} \rightarrow \mathscr{H}_{\theta}^{(s)}$. In particular, if $m=0$ then P_{ρ} gives rise to a bounded operator on \mathscr{H}_{θ}.
- (Baaj, Connes) If $m<0$, then P_{ρ} gives rise to a compact operator $P_{\rho}: \mathscr{H}_{\theta} \rightarrow \mathscr{H}_{\theta}$.

Trace-Class Property of $\Psi D O s$

(1) $\Delta=\delta_{1}^{2}+\cdots+\delta_{n}^{2}$ is isospectral to the flat Laplacian on \mathbb{T}^{n}.
(2) Weyl's law: $\lambda_{k}(\Delta)\left(c k^{-1}\right)^{\frac{2}{n}} \rightarrow 1$ as $k \rightarrow \infty$. Here $c:=\pi^{\frac{n}{2}} \Gamma\left(\frac{n}{2}+1\right)^{-1}$.

Trace-Class Property of $\Psi D O s$

(1) $\Delta=\delta_{1}^{2}+\cdots+\delta_{n}^{2}$ is isospectral to the flat Laplacian on \mathbb{T}^{n}.
(2) Weyl's law: $\lambda_{k}(\Delta)\left(c k^{-1}\right)^{\frac{2}{n}} \rightarrow 1$ as $k \rightarrow \infty$. Here $c:=\pi^{\frac{n}{2}} \Gamma\left(\frac{n}{2}+1\right)^{-1}$.
(3) Set $\Lambda^{m}=(1+\Delta)^{\frac{m}{2}}$. Using functional calculus, for $m<0$, we see that $\mu_{k}\left(\Lambda^{m}\right)=$ the $(k+1)$-th eigenvalue of $\Lambda^{m}=O\left(k^{\frac{m}{n}}\right)$ as $k \rightarrow \infty$.

Trace-Class Property of $\Psi D O s$

(1) $\Delta=\delta_{1}^{2}+\cdots+\delta_{n}^{2}$ is isospectral to the flat Laplacian on \mathbb{T}^{n}.
(2) Weyl's law: $\lambda_{k}(\Delta)\left(c k^{-1}\right)^{\frac{2}{n}} \rightarrow 1$ as $k \rightarrow \infty$. Here $c:=\pi^{\frac{n}{2}} \Gamma\left(\frac{n}{2}+1\right)^{-1}$.
(3) Set $\Lambda^{m}=(1+\Delta)^{\frac{m}{2}}$. Using functional calculus, for $m<0$, we see that

$$
\mu_{k}\left(\Lambda^{m}\right)=\text { the }(k+1) \text {-th eigenvalue of } \Lambda^{m}=\mathrm{O}\left(k^{\frac{m}{n}}\right) \text { as } k \rightarrow \infty
$$

(9) If $m<-n$, then $\Lambda^{m} \in \mathscr{L}^{1}$, i.e., Λ^{m} is a trace-class operator on \mathscr{H}_{θ}.

Trace-Class Property of $\Psi D O s$

(1) $\Delta=\delta_{1}^{2}+\cdots+\delta_{n}^{2}$ is isospectral to the flat Laplacian on \mathbb{T}^{n}.
(2) Weyl's law: $\lambda_{k}(\Delta)\left(c k^{-1}\right)^{\frac{2}{n}} \rightarrow 1$ as $k \rightarrow \infty$. Here $c:=\pi^{\frac{n}{2}} \Gamma\left(\frac{n}{2}+1\right)^{-1}$.
(3) Set $\Lambda^{m}=(1+\Delta)^{\frac{m}{2}}$. Using functional calculus, for $m<0$, we see that

$$
\mu_{k}\left(\Lambda^{m}\right)=\text { the }(k+1) \text {-th eigenvalue of } \Lambda^{m}=\mathrm{O}\left(k^{\frac{m}{n}}\right) \text { as } k \rightarrow \infty
$$

(9) If $m<-n$, then $\Lambda^{m} \in \mathscr{L}^{1}$, i.e., Λ^{m} is a trace-class operator on \mathscr{H}_{θ}.
(9) Let $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m<-n$. Then $P_{\rho}=\left(P_{\rho} \Lambda^{-m}\right) \Lambda^{m} \in \mathscr{L}^{1}$.

Trace-Class Property of $\Psi D O s$

(1) $\Delta=\delta_{1}^{2}+\cdots+\delta_{n}^{2}$ is isospectral to the flat Laplacian on \mathbb{T}^{n}.
(2) Weyl's law: $\lambda_{k}(\Delta)\left(c k^{-1}\right)^{\frac{2}{n}} \rightarrow 1$ as $k \rightarrow \infty$. Here $c:=\pi^{\frac{n}{2}} \Gamma\left(\frac{n}{2}+1\right)^{-1}$.
(3) Set $\Lambda^{m}=(1+\Delta)^{\frac{m}{2}}$. Using functional calculus, for $m<0$, we see that $\mu_{k}\left(\Lambda^{m}\right)=$ the $(k+1)$-th eigenvalue of $\Lambda^{m}=\mathrm{O}\left(k^{\frac{m}{n}}\right)$ as $k \rightarrow \infty$.
(9) If $m<-n$, then $\Lambda^{m} \in \mathscr{L}^{1}$, i.e., Λ^{m} is a trace-class operator on \mathscr{H}_{θ}.
(0) Let $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), m<-n$. Then $P_{\rho}=\left(P_{\rho} \Lambda^{-m}\right) \Lambda^{m} \in \mathscr{L}^{1}$.

Proposition (Ha-L.-Ponge)

Let $m<-n$. Then for every $\rho(\xi) \in \mathbb{S}^{m}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right), P_{\rho}$ is trace-class, and its trace is given by

$$
\operatorname{Tr}\left(P_{\rho}\right)=\sum_{k \in \mathbb{Z}^{n}} \tau[\rho(k)] .
$$

Part 2. Resolvents and Complex Powers of Elliptic UDOs on NC Tori

Elliptic $\Psi D O$ on NC Tori

Definition

$P \in \Psi^{q}\left(\mathscr{A}_{\theta}\right), q \in \mathbb{C}$, is called elliptic when its principal symbol $\rho_{q}(\xi)$ is invertible for all $\xi \in \mathbb{R}^{n} \backslash 0$.

- Example 1: The (flat) Laplacian $\Delta:=\delta_{1}^{2}+\cdots+\delta_{n}^{2}$.
- Example 2: Connes-Tretkoff's conformally deformed Iaplacian.

Elliptic $\Psi D O$ s on NC Tori

Definition

$P \in \Psi^{q}\left(\mathscr{A}_{\theta}\right), q \in \mathbb{C}$, is called elliptic when its principal symbol $\rho_{q}(\xi)$ is invertible for all $\xi \in \mathbb{R}^{n} \backslash 0$.

- Example 1: The (flat) Laplacian $\Delta:=\delta_{1}^{2}+\cdots+\delta_{n}^{2}$.
- Example 2: Connes-Tretkoff's conformally deformed laplacian.

Proposition

$P \in \Psi^{q}\left(\mathscr{A}_{\theta}\right), q \in \mathbb{C}$, is elliptic if and only if it admits a parametrix, i.e., an operator $Q \in \Psi^{-q}\left(\mathscr{A}_{\theta}\right)$ such that $P Q=Q P=1 \bmod \Psi^{-\infty}\left(\mathscr{A}_{\theta}\right)$.

Elliptic $\Psi D O s$ on NC Tori

Definition

$P \in \Psi^{q}\left(\mathscr{A}_{\theta}\right), q \in \mathbb{C}$, is called elliptic when its principal symbol $\rho_{q}(\xi)$ is invertible for all $\xi \in \mathbb{R}^{n} \backslash 0$.

- Example 1: The (flat) Laplacian $\Delta:=\delta_{1}^{2}+\cdots+\delta_{n}^{2}$.
- Example 2: Connes-Tretkoff's conformally deformed Iaplacian.

Proposition

$P \in \Psi^{q}\left(\mathscr{A}_{\theta}\right), q \in \mathbb{C}$, is elliptic if and only if it admits a parametrix, i.e., an operator $Q \in \Psi^{-q}\left(\mathscr{A}_{\theta}\right)$ such that $P Q=Q P=1 \bmod \Psi^{-\infty}\left(\mathscr{A}_{\theta}\right)$.

Consequences

(1) Let $s \in \mathbb{R}$. Then, for any $u \in \mathscr{\mathscr { A }}_{\theta}^{\prime}, P u \in \mathscr{H}_{\theta}^{(s)} \Leftrightarrow u \in \mathscr{H}_{\theta}^{(s+\Re q)}$.
(2) For every $s \in \mathbb{R}, P: \mathscr{H}_{\theta}^{(s+m)} \rightarrow \mathscr{H}_{\theta}^{(s)}$ is a Fredholm operator.

Spectra and Partial Inverses of Elliptic Ψ DOs

Let $P \in \Psi^{q}\left(\mathscr{A}_{\theta}\right)$ be an elliptic Ψ DO with $m:=\Re q>0$.

- The resolvent set of $P:=\left\{\lambda \in \mathbb{C} ; P-\lambda: \mathscr{H}_{\theta}^{(m)} \rightarrow \mathscr{H}_{\theta}\right.$ is bijective $\}$.
- $\operatorname{Sp} P:=$ the complement of the resolvent set.

Spectra and Partial Inverses of Elliptic Ψ DOs

Let $P \in \Psi^{q}\left(\mathscr{A}_{\theta}\right)$ be an elliptic Ψ DO with $m:=\Re q>0$.

- The resolvent set of $P:=\left\{\lambda \in \mathbb{C} ; P-\lambda: \mathscr{H}_{\theta}^{(m)} \rightarrow \mathscr{H}_{\theta}\right.$ is bijective $\}$.
- $\operatorname{Sp} P:=$ the complement of the resolvent set.

Proposition (Ha-L.-Ponge)

$\mathrm{Sp} P=\mathbb{C}$ or $\mathrm{Sp} P$ is a discrete set consisting of isolated eigenvalues with finite multiplicity.

Spectra and Partial Inverses of Elliptic $\Psi D O s$

Let $P \in \Psi^{q}\left(\mathscr{A}_{\theta}\right)$ be an elliptic $\Psi D O$ with $m:=\Re q>0$.

- The resolvent set of $P:=\left\{\lambda \in \mathbb{C} ; P-\lambda: \mathscr{H}_{\theta}^{(m)} \rightarrow \mathscr{H}_{\theta}\right.$ is bijective $\}$.
- $\operatorname{Sp} P:=$ the complement of the resolvent set.

Proposition (Ha-L.-Ponge)

$\mathrm{Sp} P=\mathbb{C}$ or $\mathrm{Sp} P$ is a discrete set consisting of isolated eigenvalues with finite multiplicity.

Suppose $\operatorname{Sp} P \neq \mathbb{C}$. Then the map
$\mathbb{C} \backslash \operatorname{Sp} P \ni \lambda \rightarrow(P-\lambda)^{-1} \in \mathscr{L}\left(\mathscr{H}_{\theta}, \mathscr{H}_{\theta}^{(m)}\right)$ is holomorphic. The root space $E_{\lambda}(P)$ and Riesz projection $\Pi_{\lambda}(P)$ of $\lambda \in \operatorname{Sp} P$ are defined by

$$
E_{\lambda}(P)=\bigcup_{\ell \geq 0} \operatorname{ker}(P-\lambda)^{\ell}, \quad \Pi_{\lambda}(P)=\frac{1}{2 i \pi} \int_{|\zeta-\lambda|=r}(\zeta-P)^{-1} d \zeta
$$

Here r is small enough so that $\{\zeta \in \mathbb{C} ;|\zeta-\lambda| \leq r\} \cap \operatorname{Sp} P=\{\lambda\}$.

Spectra and Partial Inverses of Elliptic Ψ DOs

- $\Pi_{\lambda}(P)^{2}=\Pi_{\lambda}(P)$ and $\Pi_{\lambda}(P) \Pi_{\mu}(P)=0$ if $\lambda \neq \mu$.
- $E_{\lambda}(P)$ is a finite dimensional subspace of \mathscr{A}_{θ}. In particular, there is $N \in \mathbb{N}$ such that $E_{\lambda}(P)=\operatorname{ker}(P-\lambda)^{N}$.

Spectra and Partial Inverses of Elliptic Ψ DOs

- $\Pi_{\lambda}(P)^{2}=\Pi_{\lambda}(P)$ and $\Pi_{\lambda}(P) \Pi_{\mu}(P)=0$ if $\lambda \neq \mu$.
- $E_{\lambda}(P)$ is a finite dimensional subspace of \mathscr{A}_{θ}. In particular, there is $N \in \mathbb{N}$ such that $E_{\lambda}(P)=\operatorname{ker}(P-\lambda)^{N}$.
- $\Pi_{\lambda}(P)$ is a projection onto $E_{\lambda}(P)$ with kernel $E_{\bar{\lambda}}\left(P^{*}\right)^{\perp}$. In particular, we have direct-sum decomposition $\mathscr{H}_{\theta}=E_{\lambda}(P)+E_{\bar{\lambda}}\left(P^{*}\right)^{\perp}$.
- $\Pi_{\lambda}(P)$ is a smoothing operator.
- P induces a linear homeomorphism $P_{1}: E_{0}\left(P^{*}\right)^{\perp} \cap \mathscr{H}_{\theta}^{(m)} \rightarrow E_{0}\left(P^{*}\right)^{\perp}$.

Spectra and Partial Inverses of Elliptic $\Psi D O s$

- $\Pi_{\lambda}(P)^{2}=\Pi_{\lambda}(P)$ and $\Pi_{\lambda}(P) \Pi_{\mu}(P)=0$ if $\lambda \neq \mu$.
- $E_{\lambda}(P)$ is a finite dimensional subspace of \mathscr{A}_{θ}. In particular, there is $N \in \mathbb{N}$ such that $E_{\lambda}(P)=\operatorname{ker}(P-\lambda)^{N}$.
- $\Pi_{\lambda}(P)$ is a projection onto $E_{\lambda}(P)$ with kernel $E_{\bar{\lambda}}\left(P^{*}\right)^{\perp}$. In particular, we have direct-sum decomposition $\mathscr{H}_{\theta}=E_{\lambda}(P) \dot{+} E_{\bar{\lambda}}\left(P^{*}\right)^{\perp}$.
- $\Pi_{\lambda}(P)$ is a smoothing operator.
- P induces a linear homeomorphism $P_{1}: E_{0}\left(P^{*}\right)^{\perp} \cap \mathscr{H}_{\theta}^{(m)} \rightarrow E_{0}\left(P^{*}\right)^{\perp}$.

Definition

The partial inverse of P is the operator $P^{-1}: \mathscr{H}_{\theta} \rightarrow \mathscr{H}_{\theta}^{(m)}$ defined by

- $P^{-1}=0$ on $E_{0}(P)$.
- $P^{-1} u=P_{1}^{-1} u$ for all $u \in E_{0}\left(P^{*}\right)^{\perp}$.

We have $P P^{-1}=1-\Pi_{0}(P)$ on \mathscr{H}_{θ} and $P^{-1} P=1-\Pi_{0}(P)$ on $\mathscr{H}_{\theta}^{(m)}$.

Pseudo-cones and Vectors with Parameter

- In what follows, we let $\Lambda \subset \mathbb{C}$ be an open pseudo-cone, i.e., Λ is of the form $\Lambda=\Theta \backslash D$. Here Θ is an open cone in $\mathbb{C} \backslash 0$ about the negative real axis and D is the closed disk at the origin.
- For open pseudo-cones Λ_{1} and Λ_{2}, we denote by $\Lambda_{1} \subset \subset \Lambda_{2}$ if $\overline{\Lambda_{1}} \subset \Lambda_{2}$.

Pseudo-cones and Vectors with Parameter

- In what follows, we let $\Lambda \subset \mathbb{C}$ be an open pseudo-cone, i.e., Λ is of the form $\Lambda=\Theta \backslash D$. Here Θ is an open cone in $\mathbb{C} \backslash 0$ about the negative real axis and D is the closed disk at the origin.
- For open pseudo-cones Λ_{1} and Λ_{2}, we denote by $\Lambda_{1} \subset \subset \Lambda_{2}$ if $\overline{\Lambda_{1}} \subset \Lambda_{2}$.

Definition

Let E be a locally convex space. $\operatorname{Hol}^{d}(\Lambda, E), d \in \mathbb{Z}$, consists of holomorphic families $(x(\lambda))_{\lambda \in \Lambda}$ with values in E such that, for all continuous semi-norm p on E and pseudo-cones $\Lambda^{\prime} \subset \subset \Lambda$, there is $C_{p \Lambda^{\prime}}>0$ such that

$$
p(x(\lambda)) \leq C_{p \Lambda^{\prime}}(1+|\lambda|)^{d} \quad \forall \lambda \in \Lambda^{\prime} .
$$

UDOs with Parameter

In what follows, let $w>0, q \in \mathbb{C}, d \in \mathbb{Z}$. Set $d_{-}=\sup (0,-d)$ and $m=\Re q+w d_{-}$.

- Notation: $C^{\infty, d}\left(\mathbb{R}^{n} \times \Lambda ; \mathscr{A}_{\theta}\right):=\operatorname{Hol}^{d}\left(\Lambda, C^{\infty}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)\right)$.

UDOs with Parameter

In what follows, let $w>0, q \in \mathbb{C}, d \in \mathbb{Z}$. Set $d_{-}=\sup (0,-d)$ and $m=\Re q+w d_{-}$.

- Notation: $C^{\infty, d}\left(\mathbb{R}^{n} \times \Lambda ; \mathscr{A}_{\theta}\right):=\operatorname{Hol}^{d}\left(\Lambda, C^{\infty}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)\right)$.

Definition (Classical Symbols with Parameter)

$S^{q, d}\left(\mathbb{R}^{n} \times \Lambda ; \mathscr{A}_{\theta}\right)$ consists of maps $\rho(\xi ; \lambda) \in C^{\infty, d}\left(\mathbb{R}^{n} \times \Lambda ; \mathscr{A}_{\theta}\right)$ for which there are maps $\rho_{q-j}:\left(\mathbb{R}^{n} \backslash 0\right) \times \Theta \rightarrow \mathscr{A}_{\theta}, j \geq 0$, such that
$-\rho_{q-j}\left(t \xi ; t^{w} \lambda\right)=t^{q-j} \rho_{q-j}(\xi ; \lambda) \quad \forall t>0 \quad \forall(\xi, \lambda) \in\left(\mathbb{R}^{n} \backslash 0\right) \times \Theta$.
$-\rho_{q-j}(\xi ; \lambda)$ is smooth w.r.t. ξ and holomorphic w.r.t. λ.
$-\forall N \in \mathbb{N} \quad \forall \Lambda^{\prime} \subset \subset \Lambda$ and $\forall \alpha, \beta \in \mathbb{N}_{0}^{n}, \exists C_{N N^{\prime} \alpha \beta}>0$ such that, for all $\lambda \in \Lambda^{\prime}$ and $\xi \in \mathbb{R}^{n}$ with $|\xi| \geq 1$, we have

$$
\left\|\delta^{\alpha} \partial_{\xi}^{\beta}\left(\rho-\sum_{j<N} \rho_{q-j}\right)(\xi ; \lambda)\right\| \leq C_{N \Lambda^{\prime} \alpha \beta}(1+|\lambda|)^{d}|\xi|^{m-N-|\beta|}
$$

UDOs with Parameter and the Agmon Pseudo-cone

Definition ($\Psi \mathrm{DOs}$ with Parameter)

$$
\Psi^{q, d}\left(\mathscr{A}_{\theta} ; \Lambda\right):=\left\{\left(P_{\rho(; \lambda)}\right)_{\lambda \in \Lambda ;} ; \rho(\xi ; \lambda) \in S^{q, d}\left(\mathbb{R}^{n} \times \Lambda ; \mathscr{A}_{\theta}\right)\right\} .
$$

UDOs with Parameter and the Agmon Pseudo-cone

Definition (Ψ DOs with Parameter)

$$
\Psi^{q, d}\left(\mathscr{A}_{\theta} ; \Lambda\right):=\left\{\left(P_{\rho(; \lambda)}\right)_{\lambda \in \Lambda} ; \rho(\xi ; \lambda) \in S^{q, d}\left(\mathbb{R}^{n} \times \Lambda ; \mathscr{A}_{\theta}\right)\right\} .
$$

Proposition (L.-Ponge)

$$
P_{j}(\lambda) \in \Psi^{q_{j}, d_{j}}\left(\mathscr{A}_{\theta} ; \Lambda\right) \Rightarrow P_{1}(\lambda) P_{2}(\lambda) \in \Psi^{q_{1}+q_{2}, d_{1}+d_{2}}\left(\mathscr{A}_{\theta} ; \Lambda\right) .
$$

UDOs with Parameter and the Agmon Pseudo-cone

Definition ($\Psi D O s$ with Parameter)

$$
\Psi^{q, d}\left(\mathscr{A}_{\theta} ; \Lambda\right):=\left\{\left(P_{\rho(; \lambda)}\right)_{\lambda \in \Lambda} ; \rho(\xi ; \lambda) \in S^{q, d}\left(\mathbb{R}^{n} \times \Lambda ; \mathscr{A}_{\theta}\right)\right\} .
$$

Proposition (L.-Ponge)

$$
P_{j}(\lambda) \in \Psi^{q_{j}, d_{j}}\left(\mathscr{A}_{\theta} ; \Lambda\right) \Rightarrow P_{1}(\lambda) P_{2}(\lambda) \in \Psi^{q_{1}+q_{2}, d_{1}+d_{2}}\left(\mathscr{A}_{\theta} ; \Lambda\right) .
$$

- Let P be an elliptic differential operator of order m with principal symbol $\rho_{m}(\xi)$.
- $\mathscr{C}(P):=\left\{\lambda \in \mathbb{C}: \exists \xi \in \mathbb{R}^{n} \backslash 0\right.$ s.t. $\rho_{m}(\xi)-\lambda$ is not invertible $\}$.

UDOs with Parameter and the Agmon Pseudo-cone

Definition ($\Psi D O s$ with Parameter)

$$
\Psi^{q, d}\left(\mathscr{A}_{\theta} ; \Lambda\right):=\left\{\left(P_{\rho(; \lambda)}\right)_{\lambda \in \Lambda} ; \rho(\xi ; \lambda) \in S^{q, d}\left(\mathbb{R}^{n} \times \Lambda ; \mathscr{A}_{\theta}\right)\right\} .
$$

Proposition (L.-Ponge)

$$
P_{j}(\lambda) \in \Psi^{q_{j}, d_{j}}\left(\mathscr{A}_{\theta} ; \Lambda\right) \Rightarrow P_{1}(\lambda) P_{2}(\lambda) \in \Psi^{q_{1}+q_{2}, d_{1}+d_{2}}\left(\mathscr{A}_{\theta} ; \Lambda\right) .
$$

- Let P be an elliptic differential operator of order m with principal symbol $\rho_{m}(\xi)$.
- $\mathscr{C}(P):=\left\{\lambda \in \mathbb{C}: \exists \xi \in \mathbb{R}^{n} \backslash 0\right.$ s.t. $\rho_{m}(\xi)-\lambda$ is not invertible $\}$.
- We assume that both $\mathscr{C}(P)$ and $\mathrm{Sp} P \backslash 0$ are contained in a closed cone about the positive real axis lying in the right half-plane.
- $\breve{\Theta}(P):=$ the complement of the closed cone described above.

UDOs with Parameter and the Agmon Pseudo-cone

Definition (Ψ DOs with Parameter)

$$
\Psi^{q, d}\left(\mathscr{A}_{\theta} ; \Lambda\right):=\left\{\left(P_{\rho(; \lambda)}\right)_{\lambda \in \Lambda} ; \rho(\xi ; \lambda) \in S^{q, d}\left(\mathbb{R}^{n} \times \Lambda ; \mathscr{A}_{\theta}\right)\right\} .
$$

Proposition (L.-Ponge)

$$
P_{j}(\lambda) \in \Psi^{q_{j}, d_{j}}\left(\mathscr{A}_{\theta} ; \Lambda\right) \Rightarrow P_{1}(\lambda) P_{2}(\lambda) \in \Psi^{q_{1}+q_{2}, d_{1}+d_{2}}\left(\mathscr{A}_{\theta} ; \Lambda\right) .
$$

- Let P be an elliptic differential operator of order m with principal symbol $\rho_{m}(\xi)$.
- $\mathscr{C}(P):=\left\{\lambda \in \mathbb{C}: \exists \xi \in \mathbb{R}^{n} \backslash 0\right.$ s.t. $\rho_{m}(\xi)-\lambda$ is not invertible $\}$.
- We assume that both $\mathscr{C}(P)$ and $\mathrm{Sp} P \backslash 0$ are contained in a closed cone about the positive real axis lying in the right half-plane.
- $\breve{\Theta}(P):=$ the complement of the closed cone described above.
- $r:=\inf \{\lambda \in \mathbb{C} ; \lambda \in \operatorname{Sp} P, \lambda \neq 0\}$.
- $\Lambda(P):=\breve{\Theta}(P) \backslash \overline{D(0, R)}$, where $R:=\frac{1}{2} r$.

The Resolvent of an Elliptic $\Psi D O$

- Let P be an elliptic differential operator of order m with principal symbol $\rho_{m}(\xi)$.
- $P-\lambda \in \Psi^{m, 1}\left(\mathscr{A}_{\theta} ; \Lambda(P)\right)$ and $P-\lambda$ has principal symbol $\rho_{m}(\xi)-\lambda$.

The Resolvent of an Elliptic $\Psi D 0$

- Let P be an elliptic differential operator of order m with principal symbol $\rho_{m}(\xi)$.
- $P-\lambda \in \Psi^{m, 1}\left(\mathscr{A}_{\theta} ; \Lambda(P)\right)$ and $P-\lambda$ has principal symbol $\rho_{m}(\xi)-\lambda$.

Moreover, the following holds.
Proposition (L.-Ponge)
$(P-\lambda)^{-1} \in \psi^{-m,-1}\left(\mathscr{A}_{\theta} ; \Lambda(P)\right)$. Moreover $(P-\lambda)^{-1}$ has principal symbol $\left(\rho_{m}(\xi)-\lambda\right)^{-1}$.

Holomorphic Families of $\Psi D O s$

Let Ω be an open subset of \mathbb{C}.

Definition (Fathi-Ghorbanpour-Khalkhali)

$(\rho(z)(\xi))_{z \in \Omega} \subset S^{*}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ is said to be a holomorphic family when:
(1) The order $w(z)$ of $\rho(z)(\xi)$ depends analytically on z.
(2) $z \rightarrow \rho(z)(\xi)$ is a holomorphic map from Ω to $C^{\infty}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$.
(8) $\rho(z)(\xi) \sim \sum_{j \geq 0} \rho(z)_{w(z)-j}(\xi), \rho(z)_{w(z)-j}(\xi) \in S_{w(z)-j}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$.

Holomorphic Families of $\Psi D O s$

Let Ω be an open subset of \mathbb{C}.

Definition (Fathi-Ghorbanpour-Khalkhali)

$(\rho(z)(\xi))_{z \in \Omega} \subset S^{*}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$ is said to be a holomorphic family when:
(1) The order $w(z)$ of $\rho(z)(\xi)$ depends analytically on z.
(2) $z \rightarrow \rho(z)(\xi)$ is a holomorphic map from Ω to $C^{\infty}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$.
(8) $\rho(z)(\xi) \sim \sum_{j \geq 0} \rho(z)_{w(z)-j}(\xi), \rho(z)_{w(z)-j}(\xi) \in S_{w(z)-j}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)$.

Definition (Holomorphic Families of $\Psi D O s$)

$\operatorname{Hol}\left(\Omega, \Psi^{*}\left(\mathscr{A}_{\theta}\right)\right):=\left\{\left(P_{\rho(z)}\right)_{z \in \Omega} ;(\rho(z)(\xi))_{z \in \Omega} \in \operatorname{Hol}\left(\Omega, S^{*}\left(\mathbb{R}^{n} ; \mathscr{A}_{\theta}\right)\right)\right\}$.

- $P(z), Q(z) \in \operatorname{Hol}\left(\Omega, \Psi^{*}\left(\mathscr{A}_{\theta}\right)\right) \Rightarrow P(z) Q(z) \in \operatorname{Hol}\left(\Omega, \Psi^{*}\left(\mathscr{A}_{\theta}\right)\right)$.

Complex Powers of an Elliptic $\Psi D O$

- Let Γ be the contour in $\Lambda(P)$ of the form $\Gamma=\Gamma_{1}^{(-)} \cup \Gamma_{2} \cup \Gamma_{1}^{(+)}$, where

$$
\begin{gathered}
\Gamma_{1}^{(-)}=\left(\infty, r_{1} e^{i(2 \pi-\phi)}\right] \\
\Gamma_{2}=\left\{\lambda \in \mathbb{C} ;|\lambda|=r_{1}, \phi \leq \arg \lambda \leq 2 \pi-\phi\right\}, \\
\Gamma_{1}^{(+)}=\left[r_{1} e^{i \phi}, \infty\right)
\end{gathered}
$$

Here we choose r_{1} so that $0<r_{1}<r=\inf \{|\lambda|: 0 \neq \lambda \in \operatorname{Sp} P\}$.

- We orient Γ in clockwise direction.

Complex Powers of an Elliptic $\Psi D O$

- Let Γ be the contour in $\Lambda(P)$ of the form $\Gamma=\Gamma_{1}^{(-)} \cup \Gamma_{2} \cup \Gamma_{1}^{(+)}$, where

$$
\begin{gathered}
\Gamma_{1}^{(-)}=\left(\infty, r_{1} e^{i(2 \pi-\phi)}\right] \\
\Gamma_{2}=\left\{\lambda \in \mathbb{C} ;|\lambda|=r_{1}, \phi \leq \arg \lambda \leq 2 \pi-\phi\right\} \\
\Gamma_{1}^{(+)}=\left[r_{1} e^{i \phi}, \infty\right)
\end{gathered}
$$

Here we choose r_{1} so that $0<r_{1}<r=\inf \{|\lambda|: 0 \neq \lambda \in \operatorname{Sp} P\}$.

- We orient Γ in clockwise direction.

Definition (Complex Powers of an Elliptic $\Psi D O$)

We define a family of operators $\left(P^{s}\right)_{\Re s<0}$ by

$$
P^{s}=\frac{1}{2 i \pi} \int_{\Gamma} \lambda^{s}(P-\lambda)^{-1} d \lambda, \quad \Re s<0
$$

Complex Powers of an Elliptic $\Psi D O$

$$
P^{s}=\frac{1}{2 i \pi} \int_{\Gamma} \lambda^{s}(P-\lambda)^{-1} d \lambda, \quad \Re s<0 .
$$

Recall that $(P-\lambda)^{-1} \in \Psi^{-m,-1}\left(\mathscr{A}_{\theta} ; \Lambda(P)\right)$.

- Using the result that $(P-\lambda)^{-1} \in \Psi^{-m,-1}\left(\mathscr{A}_{\theta} ; \Lambda(P)\right)$ we can compute the symbol of P^{s}, and prove that $\left(P^{s}\right)_{\Re s<0}$ gives rise to a holomorphic family of $\Psi D O s$ of order $m s$.
- For general $s \in \mathbb{C}$, we define P^{s} as the $\Psi D O$ such that $P^{s}=P^{k} P^{s-k}$, where k is any positive integer $>\Re s$. Here the choice of k is irrelevant.

Complex Powers of an Elliptic $\Psi D O$

Theorem (L.-Ponge)

$\left(P^{s}\right)_{s \in \mathbb{C}} \in \operatorname{Hol}\left(\mathbb{C}, \Psi^{*}\left(\mathscr{A}_{\theta}\right)\right)$ and $\operatorname{ord} P^{s}=m s$. Moreover, we have

- $P^{s_{1}+s_{2}}=P^{s_{1}} P^{s_{2}} \forall s_{j} \in \mathbb{C}, j=1,2$.
- $P^{-k}=$ the k th power of the partial inverse of $P \forall k \in \mathbb{N}$.
- P^{ℓ} (in the sense of complex powers) $=\left(1-\Pi_{0}(P)\right) P^{\ell} \forall \ell \in \mathbb{N}$.
- P^{0} (in the sense of complex powers) $=1-\Pi_{0}(P)$.

Thank you for your attention!

