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Motivation

Many physical problems can be modeled by PDEs that take
the form of gradient flows or Hamiltonian systems. Examples
include Allen-Cahn equation, Cahn-Hilliard equation,
phase-field models, image processing, optimal transport, ...;
nonlinear Schrödinger equations, Bose-Einstein condensates,
Sine-Gordon equations, ...

Gradient flows or Hamiltonian systems are dynamically driven
by a free energy or Hamiltonian E (φ), and takes the form:

∂φ

∂t
= −G δE (φ)

δφ
,

where G is a positive operator (gradient flows) or a
skew-symmetric operator (Hamiltonian systems), and satisfy a
dissipative or conservative energy law:

d

dt
E (φ) = −(G δE (φ)

δφ
,
δE (φ)

δφ
).
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Some examples

heat equation: E (φ) =
∫

Ω
1
2 |∇φ|2 and G = I ;

Allen-Cahn: E (φ) =
∫

Ω( 1
2 |∇φ|2 + 1

4ε2 (φ2 − 1)2) and G = I ;

Cahn-Hilliard: E (φ) =
∫

Ω( ε2 |∇φ|2 + 1
4ε(φ

2 − 1)2) and
G = −∆;

Phase-field crystal: E (φ) =
∫

Ω( 1
4φ

4 + α
2φ

2 − |∇φ|2 + 1
2 |∆φ|2)

and G = −∆;

L1 minimization: E (φ) =
∫

Ω |∇φ| and G = I ;

Nonlinear Schrödinger equation:
E (φ) =

∫
Ω( 1

2 |∇φ|2 + 1
2F (|φ|2)) and G = i;

KDV equation: E (φ) =
∫

Ω( 1
2 |∂xφ|2 + φ3), G = ∂x .
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Gradient flows

Given a free energy functional E (φ), the gradient flow in L2

(G = I ):
∂φ

∂t
= −δE (φ)

δφ
;

or the gradient flow in H−1 (G = −∆):

∂φ

∂t
= ∆

δE (φ)

δφ
.

If E (φ) =
∫

Ω[ 1
2 |∇φ|2 + F (φ)]dx with F (φ) being a double-well

type potential, then the gradient flow in L2 is the so called
Allen-Cahn equation (Allen & Cahn ’79):

∂φ

∂t
= ∆φ− F ′(φ),

and the gradient flow in H−1 is the so called Cahn-Hilliard
equation (Cahn & Hilliard ’58):

∂φ

∂t
= −∆(∆φ− F ′(φ)).
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The method with a Lagrange multiplier (Badia et al. ’11,
Tiera & Guillen-Gonzalez ’13)

If F (φ) = 1
4 (φ2 − 1)2 so F ′(φ) = (φ2 − 1)φ. Introduce a Lagrange

multiplier (auxiliary function) q = φ2 − 1, and rewrite the
Allen-Cahn equation ∂φ

∂t = ∆φ− F ′(φ) as

∂φ

∂t
= ∆φ− qφ,

∂q

∂t
= 2φ

∂φ

∂t
.

Taking the inner products of the above with φt and 1
2q, we obtain

the energy law:

d

dt
(

1

2
‖∇φ‖2 +

1

4
‖q‖2) = −‖φt‖2.
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• One can then construct linear, unconditionally energy stable
schemes for the above modified system:

φn+1 − φn
∆t

=∆φn+1 − qn+1φn,

qn+1 − qn

∆t
=2φn

φn+1 − φn
∆t

Taking the inner products of the above with φn+1−φn
∆t and 1

2q
n+1,

respectively, one obtains immediately:

1

∆t

[1

2
‖∇φn+1‖2 +

1

4

∫

Ω
(qn+1)2 − 1

2
‖∇φn‖2 − 1

4

∫

Ω
(qn)2

+
1

2
‖∇(φn+1 − φn)‖2 +

1

4

∫

Ω
(qn+1 − qn)2

]
= −‖φ

n+1 − φn
∆t

‖2.

• However, this approach only works with very special F (φ) such
that q′(φ) = cφ, so its applicability is very limited; and it requires
solving coupled equations with variable coefficients.
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Invariant Energy Quadratization (IEQ) Method (X. Yang,
Q. Wang, ...)

Assuming that F (φ) is bounded from below, i.e., F (φ) > −C0, and
introducing two auxiliary functions

ū(t, x ;φ) = ∇φ, v(t, x ;φ) =
√

F (φ) + C0,

so the free energy becomes

E (ū, v ;φ) =

∫

Ω
(

1

2
ū2 + v2 − C0)dx ,

and the original gradient flow can be recast as:

∂φ

∂t
= ∆w

w = −∇ · ∇φ+ 2v
δv

δφ
,

∂v

∂t
=
δv

δφ

∂φ

∂t
,

∂ū

∂t
= ∇∂φ

∂t
.
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Unconditionally stable schemes

Consider the following first-order scheme:

φn+1 − φn
∆t

=∆µn+1,

µn+1 =−∇ · ∇φn+1 + 2vn+1 δv

δφ
|φ=φn ,

vn+1 − vn

∆t
=
δv

δφ
|φ=φn

φn+1 − φn
∆t

,

ūn+1 − ūn

∆t
=∇φ

n+1 − φn
∆t

.

Taking the inner products of the above with µn+1, φn+1−φn
∆t , 2vn+1

and ūn+1, respectively, one obtains immediately:

1

∆t

[ ∫

Ω

(1

2
|ūn+1|2 + (vn+1)2

)
−
∫

Ω

(1

2
|ūn|2 + (vn)2

)

+
1

2

∫

Ω

(
|ūn+1 − ūn|2 + (vn+1 − vn)2

)]
= −‖∇µn+1‖2.
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Main advantages of the IEQ approach

This approach leads to efficient and flexible numerical schemes:

It can be efficiently implemented: one can eliminate vn+1,
ūn+1 and µn+1 from the coupled system, leading to a
fourth-order equation for φn+1 with variable coefficients at
each time step;

It can be easily extended to higher-order with the BDFk
scheme, with BDF2 being unconditionally stable.

It allows us to deal with a large class of gradient flows (cf. X.
Yang, Q. Wang, L. Ju, J. Zhao, S., etc, 2016, 2017).
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Although the IEQ approach has proven to be a very powerful way
to construct energy stable schemes, it does leave somethings to be
desired:

It involves solving problems with complicated VARIABLE
coefficients.

It requires that the free energy density F (φ) is bounded from
below.

For gradient flows with multiple components, it leads to
coupled system.

Q. Can we do better?
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The scalar auxiliary variable (SAV) approach

The SAV approach is inspired by the IEQ method. It preserves its
advantages while overcomes most of its shortcomings.
Let E (φ) =

∫
Ω[ 1

2φLφ+ F (φ)]dx and assume that
E1(φ) :=

∫
Ω F (φ)dx is bounded from below, i.e., E1(φ) > −C0 for

some C0 > 0.
We introduce one scalar auxiliary variable (SAV):

r(t) =
√

E1(φ) + C0.

Then, the original system ∂φ
∂t = −G δE(φ)

δφ can be recast as:

∂φ

∂t
= −Gµ

µ = Lφ+
r(t)√

E1(φ) + C0

F ′(φ)

rt =
1

2
√
E1(φ) + C0

∫

Ω
F ′(φ)φtdx .
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Unconditionally stable, linear and decoupled schemes

Second-order BDF scheme:

3φn+1 − 4φn + φn−1

2∆t
= −Gµn+1,

µn+1 = Lφn+1 +
rn+1

√
E1[φ̃n+1] + C0

F ′(φ̃n+1),

3rn+1 − 4rn + rn−1

2∆t
=

∫

Ω

F ′(φ̃n+1)

2
√

E1[φ̃n+1] + C0

3φn+1 − 4φn + φn−1

2∆t
dx ,

where g(φ̃n+1) := 2g(φn)− g(φn−1).
Taking the inner products of the above with µn+1,

−3φn+1−4φn+φn−1

2∆t and 2rn+1, respectively, one derives that the
scheme is unconditionally energy stable with a modified energy,
i.e.:
1

2
(φn+1,Lφn+1) + |rn+1|2− 1

2
(φn,Lφn)− |rn|2 ≤ −(µn+1,Gµn+1).
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One can replace BDF-2 by Crank-Nicolson. It is
unconditionally energy stable and also maintains the
dissipation rate. In particular, it is energy conserving for
conservative systems.

One can construct k-th order schemes based on BDF-k for
3 ≤ k ≤ 6.

They are also unconditionally stable in practice.
But a rigorous proof of unconditional stability is still elusive.

The unconditional stability holds also for fully discretized
schemes with any consistent Galerkin approximation or
finite-difference with summation-by-parts in space.
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Efficient implementation

We can write the schemes as a matrix system



c1I G 0
−L c2I ∗
∗ 0 c3





φn+1

µn+1

rn+1


 = b̄n,

So we can solve rn+1 with a block Gaussian elimination, which
requires solving a system with constant coefficients of the form

(
c1I G
−L c2I

)(
φ
µ

)
= b̄.

With rn+1 known, we can obtain (φn+1, µn+1) by solving one
more equation in the above form.
So the cost is essentially twice the cost of a semi-implicit scheme,
but it enjoys many additional benefits.
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SAV approach with stabilization

If the nonlinear term is too ”strong”, the SAV approach may
require restrictive time steps for accuracy. However, this situation
can be easily improved with a stabilization.

Given ε� 1. Consider the free energy

E (φ) =

∫
1

2
|∇φ|2 +

1

ε2
F (φ).

Then, the SAV approach with E1(φ) =
∫

1
ε2F (φ) will require

small time steps to get accurate results.

Choose S > 0, and split the free energy as follows:

E (φ) =

∫
(

1

2
|∇φ|2 +

S

ε2
φ2) +

1

ε2
(F (φ)− Sφ2).

We still have
∫

1
ε2 (F (φ)− Sφ2) > −C0, so SAV can be

applied with this splitting, and leads to much improved results.
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Figure: (Effect of stabilization) The solution at T = 0.1. Left:
∆t = 10−4; Right: ∆t = 4× 10−3. The red dashed lines represent
solutions with stabilization, while the black solid lines represent solutions
without stabilization.
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Adaptive time stepping

Thanks to its unconditionally energy stability, one can (and should)
couple the scheme with an adaptive time stepping strategy.

Figure: Numerical comparisons among small time steps, adaptive time
steps, and large time steps
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Fig. 8. (Example 6) Comparison of BDF2, BDF3 and BDF4.

flows, such as [53]. Here, the adaptive time-stepping strategy is followed by the one
used in [43], which has been shown to be powerful for Allen–Cahn equations. The
main idea is to update the time step size by using the formula

(4.13) Adp(e, τ) = ρ

(
tol

e

)1/2

τ,

where ρ is a default safety coefficient, tol is a reference tolerance, and e is the relative
error at each time level. In this example, we choose ρ = 0.9 and tol = 10−3. The
minimum and maximum time steps are taken as τmin = 10−5 and τmax = 10−2,
respectively. The initial time step is taken as τmin.

Algorithm 1 Time step and stabilized coefficient adaptive procedure

Given: Un, τn and stabilized parameter Sn.

Step 1. Compute Un+1
1 by the first order SAV scheme with τn.

Step 2. Compute Un+1
2 by the second order SAV scheme with τn.

Step 3. Calculate en+1 =
||Un+1

1 −Un+1
2 ||

||Un+1
2 ||

Step 4. if en+1 > tol, then
Recalculate time step τn ← max{τmin,min{Adp(en+1, τn), τmax}}.

Step 5. goto Step 1
Step 6. else

Update time step τn+1 ← max{τmin,min{Adp(en+1, τn), τmax}}.
Step 7. endif

For comparison, we obtain the reference solution by the SAV/CN scheme with
very small uniform time step τ = 10−5, and we also compute one experiment with large
time step as τ = 10−3. Snapshots of phase evolutions, original energy evolutions and
modified energy evolution, and the adaptive time steps in the adaptive experiment
are shown in Fig. 9. It is observed that the adaptive-time solutions given in the
middle row are in good agreement with the reference solutions presented in the top
row. However, the solutions with large time step are far way from the reference
solutions. This is also indicated by both the original energy evolutions and modified
energy evolutions. It is also seen that the time step progressively increases based on
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Figure: Numerical comparisons among small time steps, adaptive time
steps, and large time steps
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Main advantages of the SAV approach

The SAV schemes, up to second-order, are unconditionally
energy stable, and can be easily extended to higher-order with
the BDFk schemes.

It only requires solving decoupled, linear system with
CONSTANT coefficients.

It only requires E1(φ) :=
∫

Ω F (φ)dx , instead of F (φ), be
bounded from below, so it applies to a larger class of gradient
flows.

For gradient flows with multiple components, the scheme will
lead to decoupled equations with constant coefficients to solve
at each time step.
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Some numerical examples
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Fig. 3. (Example 3) The evolution of radius with different time step.

Scheme ∆t=1.6e-4 ∆t=8e-5 ∆t=4e-5 ∆t=2e-5 ∆t=1e-5

SAVT/CN
Error 1.74e-7 4.54e-8 1.17e-8 2.94e-9 2.01e-10
Rate - 1.93 1.96 1.99 2.01

SAVT/BDF
Error 1.38e-6 3.72e-7 9.63e-8 2.43e-8 5.98e-9
Rate - 1.89 1.95 1.99 2.02

Table 1
(Example 4) Errors and convergence rates of SAVT/CN and SAVT/BDF for the Cahn–Hilliard

equation.

and the time step ∆t = 8×10−6. The initial value is the sum of a randomly generated
function φ0(x, y) and a constant ¯phi that gives the average of φ:

φ̄ =
1

4π2

∫

0≤x,y≤2π

dxdy φ.

The average φ̄ is chosen as 0.25, 0, −0.25, respectively.

We use the SAVT/BDF scheme to investigate the configuration at T = 0.032,
which is drawn in FIG. 4. Regardless of ū, we observe that for a smaller fractional
order α, the phase separation and coarsening process appear slower, displaying a phase
structure more heterogeneous. This observation is consistent with the results in [1].

4.2. Phase field crystals. We turn to gradient flows of φ(x) that describes
modulated phases. Free energy of this kind was first found in Brazovskii’s work
[5], known as the Landau-Brazovskii model. Since then, the free energy, including
many variants, has been adopted to study various physical systems (see for example
[24, 3, 26, 44]). The free energy may take different forms. Here, we will use the
following form,

(4.9) E(φ) =

∫

Ω

{
1

4
φ4 +

1− ε
2

φ2 − |∇φ|2 +
1

2
(∆φ)2

}
dx.

In addition, it requires φ to be conserved, that is, the average φ̄ shall be a constant.
Therefore, when considering gradient flows, usually the H−1 type is used. The H−1
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Several applications

Multiple Cahn-Hilliard/Allen-Cahn systems

Molecular beam epitaxial

Gradient flows with constraints

Coupling with other conservation laws: two-phase
incompressible flow

Nonlinear Schrödinger equation

An example of non gradient flow: Navier-Stokes equations
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Gradient flows of several functions

Consider the energy functional

E (φ) =
k∑

i=1

(φi ,Liφi ) + E1[φ1, . . . , φk ],

where Li are non-negative linear operators, E1[φ1, . . . , φk ] > −C0.
Introduce r(t) =

√
E1 + C0. Then then gradient flow associated

with E (φ) reads:

∂φi
∂t

=∆µi , i = 1, · · · , k ,

µi =Liφi +
r√

E1 + C0

δE1

δφi
, i = 1, · · · , k ,

rt =
1

2
√
E1 + C0

∫

Ω

k∑

i=1

δE1

δφi

∂φi
∂t

dx .
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Setting Ui = δE1
δφi

, the 2nd-order scheme based on Crank-Nicolson:

φn+1
i − φni

∆t
=∆

µn+1
i + µni

2
, i = 1, · · · , k,

µn+1
i + µni

2
=Li

φn+1
i + φni

2
+

rn+1 + rn

2
√

E1[φ̄
n+1/2
j ] + C0

Ui [φ̄
n+1/2
j ], i = 1, · · · , k,

rn+1 − rn =

∫

Ω

k∑

i=1

Ui [φ̄
n+1/2]

2
√
E1[φ̄

n+1/2
j ] + C0

(φn+1
i − φni )dx .

Multiplying the above three equations with ∆tµ
n+1/2
i ,

φn+1
i − φni , rn+1 + rn and taking the sum over i , we can show

that the scheme is unconditionally energy stable.
As before, we can determine rn+1 by solving k decoupled
equations with constant coefficients of the form:

(I − λ∆Li )φi = fi , i = 1, · · · , k ;

then obtain {φj} by solving another k decoupled equations in
the above form.

Jie Shen
Structure preserving numerical schemes for complex dissipative/conservative nonlinear systems



Preliminary results on grain growth (with Longqing Chen)

Cahn-Hilliard system with k = 100 order parameters, and
E1 =

∫
Ω f (φ1, · · · , φk) with

f (φ1, · · · , φk) = −α
2

k∑

i=1

φ2
i +

β

4
(

k∑

i=1

φ2
i )2+(γ−β

2
)

k∑

i=1

∑

j>i

φ2
i φ

2
j .

Existing schemes use explicit or semi-implicit discretization,
requiring severe time step constraint.
The SAV scheme is unconditionally stable and only required
solving PDEs with constant-coefficients.

Figure: Grain growth with 100 coupled CH equations: 500, 1000 2000
time steps.

Jie Shen
Structure preserving numerical schemes for complex dissipative/conservative nonlinear systems



Molecular beam epitaxial (MBE) without slope selection
(with Qing Cheng and X. Yang, JSC ’18)

Consider the energy function:

E (φ) =

∫

Ω
[−1

2
ln(1 + |∇φ|2) +

η2

2
|∆φ|2]dx .

Note that the first part of the energy density, −1
2 ln(1 + |∇φ|2), is

unbounded from below, but one can show that

E1(φ) =

∫

Ω
[−1

2
ln(1 + |∇φ|2) +

α

2
|∆φ|2]dx > −C0, ∀α > 0.

Hence, we take α < η2 and split E (φ) as

E (φ) = E1(φ) +

∫

Ω

η2 − α
2
|∆φ|2dx

and introduce

r(t) =

√∫

Ω

α

2
|∆φ|2 − 1

2
ln(1 + |∇φ|2)dx + C0.
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MBE (continued)

We can then rewrite the original system as

φt + (η2 − α)∆2φ+
r(t)

G (φ)

δE1(φ)

δφ
= 0,

rt =
1

2G (φ)

∫

Ω

δE1(φ)

δφ
φtdx ,

where

G (φ) =

√∫

Ω

α

2
|∆φ|2 − 1

2
log(1 + |∇φ|2)dx + C0.

Taking the inner product of the above equations with φt and
2r(t), respectively, we obtain:

d

dt
[

∫

Ω

η2 − α
2
|∆φ|2dx + r2(t)] = −‖φt‖2.
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MBE (continued):

Let φ̄n+1/2 = 3
2φ

n − 1
2φ

n−1. A second-order, unconditionally
energy stable scheme for the modified system is:

φn+1
i − φni

∆t
+ (η2 − α)∆2φ

n+1
i + φni

2
+

rn+1 + rn

2G (φ̄n+1/2)

δE1

δφ
[φ̄n+1/2)] = 0,

rn+1 − rn =
1

2G (φ̄n+1/2)

∫

Ω

δE1

δφ
[φ̄n+1/2)](φn+1

i − φni )dx .

It is easy to show that the above scheme is unconditionally
energy stable.

One can solve rn+1 explicitly, and then obtain φn+1 by solving
a fourth-order equation with constant coefficients.
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20 Q. CHENG, X. YANG AND J. SHEN

Figure 7. The isolines of the numerical solutions of the height function φ and its
Laplacian ∆φ for the slope model with random initial condition (4.6) using Scheme-
1 and time step δt = 10−4 . For each subfigure, the left is φ and the right is ∆φ .
Snapshots are taken at t = 0, 1, 10, 50, 100, 500, respectively.
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Figure 1. Time evolution of the free energy functional for five different time steps
of δt = 0.005, 0.0025, 0.00125, 0.000625, and 0.0003125 for initial value as (4.3) with
the parameter (4.1) . The energy curves show the decays for all time steps, which
confirms that our algorithm is unconditionally energy stable. The small inset figure
shows the small differences in the energy evolution for all four time steps.

Figure 2. Time evolution of the free energy functional for five different time steps

of δt = 0.0025, 0.00125, 0.000625, 0.0003125, and 0.00015625 for φ̂0 = 0 with
parameter in (4.5). The energy curves show the decays for all time steps, which
confirms that our algorithm is unconditionally energy stable. The small inset figure
shows the small differences in the energy evolution for all four time steps.

the energy decays rather rapidly like o(− log 10(t)) as predicted in [12]. The growth rate of the

roughness is o(t
1
2

) is shown in Fig.10. All of these numerical solutions present similar and consistent
features to those obtained in [12,17–19,29,30] using the other energy stable numerical schemes.

5. Concluding remarks

In this paper, we presented a set of efficient time discretization schemes for solving the MBE
model with slope selection and without slope selection. The schemes are (i) second order accurate

EFFICIENT SCHEMES FOR THE MOLECULAR BEAM EPITAXY MODEL 21

Figure 8. The isolines of the numerical solutions of the height function φ and
its Laplacian ∆φ for the noslope model with random initial condition (4.6) using
Scheme-3 and time step δt = 10−4 . For each subfigure, the left is φ and the right
is ∆φ . Snapshots are taken at t = 0, 1, 10, 50, 100, 500, respectively.

Figure 9. The loglog, and semi-log plots of the time evolution of the energy for the
slope model and the noslope model, respectively. For the slope model, the energy de-
creases like o(t1/3) while for the noslope model, the energy decreases like o(log 10(t))
, until saturation. The blue lines represent the energy plot obtained by the simu-
lations, while the straight red lines are obtained by least square approximations to
the energy data. The least squares fit is only up to about time t = 500.

Figure: Simulation of MBE: Left, energy evolution; Right, log-log plot of the energy
compared with o(log10 t).
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Gradient flows with constraints: Phase-field vesicle
membrane model (Q. Cheng & S., SISC ’18)

Consider the bending energy (Du, Liu & Wang ’04):

Eb(φ) =
ε

2

∫

Ω

(
−∆φ+

1

ε2
G (φ)

)2
dx ,

where G (φ) = F ′(φ) and F (φ) = (1− φ2)2, with constraints:
volume and surface area of the vesicle

A(φ) =
1

2

∫

Ω
(φ+ 1)dx and B(φ) =

∫

Ω

( ε
2
|∇φ|2 +

1

ε
F (φ)

)
dx ,

are conserved.
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Penalty approach

Total energy:

Etot(φ) = Eb(φ) +
1

2γ

(
A(φ)− α

)2
+

1

2η

(
B(φ)− β

)2
,

where γ and η are two small parameters, and α, β represent the
initial volume and surface area. Although we can construct
unconditional energy stable SAV schemes with a single SAV, the
nonlinear terms in Etot behave very differently so a single SAV does
not lead to accurate numerical results.
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Penalty approach with Multiple SAVs (Q. Cheng & S., to
appear in SISC)

Hence, we introduce two SAVs:

U = B(φ)− β, V =

√∫

Ω

( 6

ε2
φ2|∇φ|2 +

1

ε4
(G (φ))2

)
dx + C ,

where C is a positive constant, so the total energy becomes

Etot =
ε

2

∫

Ω

(
|∆φ|2− 2

ε2
|∇φ|2

)
dx+

1

2γ
(A(φ)−α)2+

U2

2η
+
ε

2
(V 2−C ).

Then, the L2 gradient flow can be written as:

φt = −Mµ,

µ =
δEtot

δφ
= ε∆2φ+

2

ε
∆φ+

1

γ
(A(φ)− α) +

1

η
U
δU

δφ
+ εV

δV

δφ
,

Ut =

∫

Ω

δU

δφ
φtdx , Vt =

∫

Ω

δV

δφ
φtdx .
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Second-order MSAV-CN scheme

φn+1 − φn
δt

= −M µn+1 + µn

2
,

µn+1 + µn

2
= ε∆2φ

n+1 + φn

2
+

1

γ
(A(

φn+1 + φn

2
)− α)

+
2

ε
∆φ?,n+ 1

2 +
1

η
Un+ 1

2
δU

δφ
(φ?,n+ 1

2 ) + εV n+ 1
2
δV

δφ
(φ?,n+ 1

2 ),

Un+1 − Un =

∫

Ω

δU

δφ
(φ?,n+ 1

2 )(φn+1 − φn)dx ,

V n+1 − V n =

∫

Ω

δV

δφ
(φ?,n+ 1

2 )(φn+1 − φn)dx ,

where φ?,n+ 1
2 = 3

2φ
n − 1

2φ
n−1 is a second-order extrapolation for

φn+ 1
2 .
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One can first solve Un+1 and V n+1 by bock Gaussian
elimination which leads to a 2× 2 linear system.

Then, one can determine (φn+1, µn+1) as in previous models.

The above scheme satisfies the following energy law:

En+1,n
cn − En,n−1

cn ≤ −δtM‖µn+ 1
2 ‖2,

where

En+1,n
cn =

ε

2
‖∆φn+1‖2 − 1

ε
‖∇φn+1‖2 +

1

2ε
‖∇φn+1 −∇φn‖2

+
1

2η
(Un+1)2 +

ε

2
(V n+1)2 +

1

2γ
(A(φn+1)− α)2.
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Our numerical experiments indicate that time step required for
accuracy is not very sensitive to the choice of penalty parameters,
i.e., very small penalty parameters can be used without using
excessively small time steps.

Figure: Evolution of the volume difference A(φ)− α, and the surface area
difference B(φ)− β with and without the volume and surface area
constraints using the Scheme 2 with the time step size δt = 0.0001.
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Figure: The dynamical behaviors of four spherical vesicles without the
volume and surface area constraints using the Scheme 2 with the time
step size δt = 0.0001. Snapshots of the numerical approximation of the
isosurfaces of φ = 0 are taken at t = 0, 0.005, 0.002, 0.1, 0.5, 2.
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Figure: Collision of four spherical vesicles with the volume and surface
area constraints (i.e., η = γ = 0.001). Snapshots of the iso-surfaces of
φ = 0 at t = 0, 0.005,0.002, 0.1, 0.5,2
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Phase-field model for two-phase incompressible flows

Let F (φ) = 1
4η2 (φ2 − 1)2. Consider the mixing free energy:

Emix(φ) = λ

∫

Ω
(

1

2
|∇φ|2 + F (φ)) dx = λ

∫

Ω

1

2
|∇φ|2 dx + E1(φ).

• Cahn-Hilliard phase-field equation:

φt + (u · ∇)φ = ∇ · (γ∇µ),

µ =
δEmix

δφ
= −λ∆φ+ λF ′(φ).

• Momentum equation:

ρ0(ut + (u · ∇)u) = ν∆u −∇p + µ∇φ.

• Incompressibility:
∇ · u = 0.
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Energy dissipation law:

d

dt

∫

Ω
{ρ0

2
|u|2 +

λ

2
|∇φ|2 +λF (φ)} = −

∫

Ω
{µ|∇u|2 + γ|∇δEmix

δφ
|2}.

As before, we introduce r(t) =
√

E1(φ) + δ, and replace

µ = −λ∆φ+ λF ′(φ)

by

µ = −λ∆φ+ λ
r(t)√

E1(φ) + δ
F ′(φ),

rt =
1

2
√

E1(φ) + δ

∫

Ω
(F ′(φ)

dφ

dt
)dx .
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Second-order SAV scheme

Let φ̄n+1 := 2φn − φn−1, ūn+1 := 2un − un−1 and
ûn+1 = 2un − un−1 or ũn+1.

3φn+1 − 4φn + φn−1

2δt
+ ûn+1 · ∇φ̄n+1 = γ∆µn+1,

µn+1 = −λ∆φn+1 +
λrn+1

√
E1[φ̄n+1] + δ

F ′(φ̄n+1),

3rn+1 − 4rn + rn−1

2∆t
=

∫

Ω

F ′(φ̄n+1)

2
√

E1[φ̄n+1] + δ

3φn+1 − 4φn + φn−1

2∆t
dx ;

ρ0{
3ũn+1 − 4un + un−1

2δt
+ ūn+1 · ∇ũn+1}

− ν∆ũn+1 +∇pn − µn+1∇φ̄n+1 = 0;

∆(pn+1 − pn) =
3ρ0

2δt
∇ · ũn+1, ∂n(pn+1 − pn)|∂Ω = 0;

un+1 = ũn+1 − 2δt

3ρ0
∇(pn+1 − pn).
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Several remarks:

The pressure is decoupled from the rest by a
pressure-correction projection method.

If we take ûn+1 = ũn+1, the scheme is unconditionally stable,
linear and 2nd-order, but weakly coupled between
(φn+1, µn+1, ũn+1) by the term un+1 · ∇φ̄n+1. The weakly
coupled linear system is positive definite.

If we take ûn+1 = 2un − un−1, the scheme is linear, decoupled
and 2nd-order, only requires solving a sequence of Poisson
type equations at each time step, but not unconditionally
energy stable.

One can use the decoupled scheme with ûn+1 = 2un − un−1

as a preconditioner for the coupled scheme if large time step is
used.
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Nonlinear Schrödinger equation

Consider the NLS:

iut = −∆u + F ′(|u|2)u,

where i =
√
−1 and F is a smooth function (e.g. F (v) = v2). It

conserves the energy/Hamiltonian, i.e.,

1

2
∂t

∫

Ω
(|∇u|2 + F (|u|2))dx = 0.

We can rewrite the NLS as

ut = −i δE (u)

δu
with E (u) =

1

2

∫

Ω
(|∇u|2 + F (|u|2))dx .

In addition, it also conserves the mass, i.e.,

∂t

∫

Ω
|u|2dx = 0.
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A SAV reformulation of NLS

A large amount of work has been devoted to design higher-order
numerical schemes which conserve mass and/or energy. But no
linear, energy conserving, second-order scheme is available for
general F .

Let E1(u) =
∫

Ω F (|u|2)dx , and introduce r(t) =
√

E1(u) + δ.
Then, we can rewrite NLS as follows:

iut = −∆u +
r√

E1(u) + δ
F ′(|u|2)u,

rt =
1√

E1(u) + δ

∫

Ω
F ′(|u|2) Re(uūt)dx.
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A SAV-CN scheme for NLS

i
un+1 − un

∆t
= −∆

un+1 + un

2
+

rn+1 + rn

2
√
E1(ũn+1/2) + δ

F ′(|ũn+1/2|2)ũn+1/2,

rn+1 − rn =
1√

E1(ũn+1/2) + δ

∫

Ω

F ′(|ũn+1/2|2) Re(ũn+1/2(ūn+1 − ūn))dx,

where q̃n+1/2 = 3
2q

n − 1
2q

n−1.

Taking the inner products with ūn+1 − ūn and rn+1 − rn, we
obtain, unconditionally,

1

2
‖∇un+1‖2 + |rn+1|2 − (

1

2
‖∇un‖2 + |rn|2) = 0.

Hence, it conserves the energy exactly.

It is a linear, second-order scheme which only requires solving
problems with constant coefficients.

Jie Shen
Structure preserving numerical schemes for complex dissipative/conservative nonlinear systems



Numerical experiments for a two-component NLS

τ

10-4 10-3 10-2 10-1

Er
ro

r

10-10

10-8

10-6

10-4

10-2

T=2
T=5
A line of slope 2

Figure 4: Maximum errors of Hermite SAV/CN method.

Figure:
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Interaction of two solitons

Figure 7: Interaction of Two Solitons with β = 1, λ1 = −λ2 = 0.5.

Figure:
Jie Shen
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Minimization via imaginary time gradient flows

Given a free energy E (φ), its minimizer can be computed by
finding the stationary solutions for the ”imaginary time” gradient
flow: φt = −G δE(φ)

δφ .
Consider the free energy for the one-component Bose-Einstein
condensates (BEC):

E (φ) =
1

2
(φ,Lφ) +

1

2

∫

Ω
F (|φ|2)dx

with Lφ = (−1
2 ∆ + V (x))φ, subject to the constraint

∫

Ω
|φ(x)|2dx = 1.

The imaginary time gradient flow is:

φt = −δE (φ)

δφ
= −Lφ− F

′
(|φ|2)φ,

∫

Ω
|φ(x , t)|2dx = 1.
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A backward Euler projection scheme (Bao & Du ’04)

Step 1:
φn+1
∗ − φn

∆t
= −Lφn+1

∗ − F
′
(|φn|2)φn+1

∗ ;

Step 2:

φn+1 =
φn+1
∗

‖φn+1
∗ ‖

.

It is a linear scheme but with time-dependent variable
coefficients.

One can prove E (φn+1
∗ ) ≤ E (φn) but we do not have

E (φn+1) ≤ E (φn).

Very efficient for computing ground states of one-component
BEC.

The scheme can NOT be easily extended to multi-component
BECs which require

∑N
i=1 ‖φi‖2 = 1.
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The SAV reformulation

Consider the penalized free energy (Cheng & S. SISC ’18)

E (φ) =
1

2
(φ,Lφ) +

1

2

∫

Ω
F (|φ|2)dx +

1

2ε
(

∫

Ω
|φ|2dx − 1)2.

Introducing

u =

√∫

Ω
F (|φ|2)dx + C0, v =

∫

Ω
|φ|2dx − 1.

Then, we can rewrite the BEC as

φt = −(Lφ+ u
δu

δφ
+

1

2ε
v
δv

δφ
),

ut =

∫

Ω

δu

δφ
φtdx , vt =

∫

Ω

δv

δφ
φtdx ,

where
δu

δφ
=

1√∫
Ω F (|φ|2)dx + C0

F
′
(|φ|2)φ,

δv

δφ
= 2φ.
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A first-order SAV scheme





φn+1 − φn
τ

= −Lφn+1 − un+1 · δu
δφ

(φn)− 1

2ε
vn+1 δv

δφ
(φn),

un+1 − un

τ
=

∫

Ω

δu

δφ
(φn)

φn+1 − φn
τ

dx ,

vn+1 − vn

τ
=

∫

Ω

δv

δφ
(φn)

φn+1 − φn
τ

dx .

The scheme is linear and with time-independent coefficients, so it
is more efficient to solve at each time step.
Theorem. The above scheme is unconditionally energy stable, i.e.,

Ẽ (φn+1, un+1, vn+1) ≤ Ẽ (φn, un, vn)

where

Ẽ (φ, u, v) = (Lφ, φ) + u2 +
1

2ε
v2.
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Numerical results: comparison with backward Euler
projection

τ K(BEFD) Eβ(BEFD) K(SAV1) Eβ(SAV1) K(SAV2) Eβ(SAV2)

10−1 40 6.075935 61 10.84403 29 21.03350

10−2 195 6.075947 263 6.403377 230 6.217449

10−3 1474 6.076074 1519 6.108345 1465 6.077424

10−4 11299 6.077382 11315 6.080623 11292 6.077404

Table: Iteration numbers and energies with different τ .

We observe that the SAV scheme is not as efficient as BEFD for
computing ground state.
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A modified first-order SAV scheme

First step:




φn+1 − φn
τ

= −Lφn+1 − un+1
∗

δu

δφ
(φn)− 1

2ε
vn+1
∗

δv

δφ
(φn),

un+1
∗ − un

τ
=

∫

Ω

δu

δφ
(φn)

φn+1 − φn
τ

dx ,

vn+1
∗ − vn

τ
=

∫

Ω

δv

δφ
(φn)

φn+1 − φn
τ

dx .

Second step:

un+1 =

√∫

Ω
F (|φn+1|2)dx , vn+1 =

∫

Ω

∣∣φn+1
∣∣2 dx − 1.

As in the backward Euler projection scheme, we only have

Ẽ (φn+1, un+1
∗ , vn+1

∗ ) ≤ Ẽ (φn, un, vn).
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Numerical results

τ K (MSAV1) Eβ(MSAV1) K (MSAV2) Eβ(MSAV2)

10−1 41 6.075943 840 6.651923

10−2 195 6.075956 180 6.075955

10−3 1474 6.076084 1463 6.076082

10−4 11301 6.077390 11292 6.077390

Table: Iteration numbers and energies of the modified SAV schemes with
different τ .

We observe that it takes essentially the same numbers of iteration
as BEFD, but less computational effort.
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Numerical results: convergence w.r.t. ε

We take F (u) = βu2, and consider also the influence of β.

ε�β 1 10 100 500 1000
10−6 6.0903e-07 1.0957e-06 4.2453e-06 1.3014e-05 2.1087e-05
10−5 2.5104e-06 8.5500e-06 4.1057e-05 1.2907e-04 2.1009e-04
10−4 2.7257e-05 8.3442e-05 4.0891e-04 0.0013 0.0021
10−3 2.7569e-04 8.3184e-04 0.0041 0.0126 0.0204
10−2 0.0028 0.0082 0.0384 0.0967 0.1210
10−1 0.0274 0.0736 0.2083 0.2345 0.2251

Table: Maximum errors max |φg − φε| with different ε and β. In this
table, the stopping criterion for the steady state solution is
max

∣∣φnε − φn+1
ε

∣∣ < 10−9.

We observe that the error decays linearly w.r.t. ε , and increases
sub-linearly w.r.t. β.
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Multi-component BECs

Consider the free energy

E(φ1, φ2) =

∫
Ω

(
1

2
|∇φ1|2 +

1

2
∇φ2|2) + V1(x)|φ1|2 + V2(x)|φ2|2)dx + E0(φ1, φ2),

where

E0(φ1, φ2) =

∫
Ω

[
β11

2
|φ1|4 +

β22

2
|φ2|4 + β12|φ1|2|φ2|2 + λφ1φ2 +

δ

2
(|φ1|2 − |φ2|2)

]
dx .

The imaginary time gradient flow
∂φ1

∂t
=

(
1

2
∆− V1(x)− δ

2
− (β11|φ1|2 + β12|φ2|2)

)
φ1 −

λ

2
φ2,

∂φ2

∂t
=

(
1

2
∆− V2(x) +

δ

2
− (β12|φ1|2 + β22|φ2|2)

)
φ2 −

λ

2
φ1,

subject to the constraint∫
Ω

|φ1(x , t)|2 dx +

∫
Ω

|φ2(x , t)|2 dx = 1, t ≥ 0,

models the two-component (pseudo spin-1/2) BEC system with Josephson

junction.
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SAV formulation for Multicomponent BECs

It is now difficult to project on the constraint space (Bao & Cai
’18), but the SAV approach with penalty can be easily applied.
Introduce two SAVs

u =
√
E0(φ1, φ2) + C0, v =

∫

Ω
|φ1(x , t)|2 dx +

∫

Ω
|φ2(x , t)|2 dx − 1,

and rewrite the problem as:





∂φ1

∂t
=

(
1

2
∆− V1(x)

)
φ1 − u

δu

δφ1
− 1

2ε
v
δv

δφ1
,

∂φ2

∂t
=

(
1

2
∆− V2(x)

)
φ2 − u

δu

δφ2
− 1

2ε
v
δv

δφ2
,

∂u

∂t
=

∫

Ω
(
δu

δφ1

∂φ1

∂t
+

δu

δφ2

∂φ2

∂t
)dx ,

∂v

∂t
=

∫

Ω
(
δv

δφ1

∂φ1

∂t
+

δv

δφ2

∂φ2

∂t
)dx .
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The modified SAV scheme for Multicomponent BECs

Step 1:

φn+1
1 − φn1
τ

=

[
1

2
∆− V1(x)− δ

2

]
φn+1

1 − rn11ũ
n+1 +

1

2ε
rn12ṽ

n+1,

φn+1
2 − φn2
τ

=

[
1

2
∆− V2(x) +

δ

2

]
φn+1

2 − rn21ũ
n+1 +

1

2ε
rn22ṽ

n+1,

ũn+1 − un =

∫

Ω
(rn11(φn+1

1 − φn1) + rn21(φn+1
2 − φn2))dx ,

ṽn+1 − vn =

∫

Ω
(rn12(φn+1

1 − φn1) + rn22(φn+1
2 − φn2))dx .

Step 2: Update un+1 and vn+1 via

un+1 =
√
E0(φn+1

1 , φn+1
2 ),

vn+1 =

∫

Ω

∣∣φn+1
1 (x , t)

∣∣2 dx +

∫

Ω

∣∣φn+1
2 (x , t)

∣∣2 dx − 1.
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Numerical results

τ K (MSAV1) E(MSAV1) K (SAV1) E(SAV1)

10−2 196 7.293210 284 8.055077

10−3 1461 7.293328 1555 7.366530

10−4 11396 7.294530 11429 7.301847

Table: Iteration number and energy of SAV1 and MSAV1 with different τ
for the case β = 100 and λ = −2 of the two-component BECs.

Summary:

Solutions of minimization/optimization problems can be
efficiently computed by using the imaginary time gradient
flow.

It is more efficient to use the first-order modified SAV scheme,
although it is not necessarily energy diminishing at every step.
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The Navier-Stokes equations

Consider the NSEs in a bounded domain Ω:

ut + (u · ∇)u = ν∆u −∇p, u|∂Ω = 0;

and
∇ · u = 0.

The NSE is not a gradient flow but it satisfy an energy dissipation
law:

1

2

d

dt

∫
|u|2 = −ν

∫

Ω
|∇u|2.

Q. Can we construct an unconditionally stable, linear scheme for
NSE?

Jie Shen
Structure preserving numerical schemes for complex dissipative/conservative nonlinear systems



A nonlinear SAV formulation (Lin and S. Dong ’18)

Let E (t) =
∫

Ω
1
2 |u|2dx + δ and R(t) =

√
E (t). We rewrite NSE as

ut +
R(t)√
E (t)

(u · ∇)u = ν∆u −∇p, u|∂Ω = 0;

∇ · u = 0;

2R(t)R ′(t) = (ut , u) = (ut +
R(t)√
E (t)

(u · ∇)u, u).

With R(0) =
√

1
2

d
dt

∫
|u(·, 0)|2 + δ, the above system is

equivalent to the original NSE.
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SAV approach with pressure-correction

ũn+1 − un

∆t
+

Rn+1

√
E (tn+1)

(un · ∇)un = ν∆ũn+1 −∇pn, ũn+1|∂Ω = 0;

un+1 − ũn+1

∆t
+∇(pn+1 − pn) = 0;

∇ · un+1 = 0, un+1 · n|∂Ω = 0;

2Rn+1R
n+1 − Rn

∆t
= (

un+1 − un

∆t
+

Rn+1

√
E (tn+1)

(un · ∇)un, un+1).

We can easily show that

1

∆t
(|Rn+1|2−|Rn|2)+

1

2
∆t(‖∇pn+1‖2−‖∇pn‖2)+ν‖∇un+1‖2 ≤ 0.

Second-order scheme can also be constructed.
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How to solve the coupled system?

Let us denote Sn+1 = Rn+1√
E(tn+1)

and set

ũn+1 = ũn+1
1 +Sn+1ũn+1

2 , un+1 = un+1
1 +Sun+1

2 , pn+1 = pn+1
1 +Sn+1pn+1

2 .

We first solve ũn+1
i (i = 1, 2) from:

ũn+1
1 − un

∆t
= ν∆ũn+1

1 −∇pn1 , un+1
1 |∂Ω = 0;

ũn+1
2

∆t
+ (un · ∇)un = ν∆ũn+1

2 −∇pn2 , un+1
2 |∂Ω = 0.

Then, we solve un+1
i , pn+1

i (i = 1, 2) from

un+1
i − ũn+1

i

∆t
+∇(pn+1

i − pni ) = 0;

∇ · un+1
i = 0, un+1

i · n|∂Ω = 0.

Once ũn+1
i , un+1

i , pn+1
i (i = 1, 2) are known, we can solve Sn+1 by

solving a nonlinear (algebraic) cubic equation.
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Remarks:

The scheme is very efficient: at each time step, it requires
only solving two sets of Poisson type equations.

One can not prove that there always exist a positive solution
for S . But in practice, this is always true as long as ∆t is not
”too” large.

The value of S provides a ”free” estimator for adaptive time
stepping: if S − 1 is not ”sufficiently small”, then, one needs
to reduce ∆t.

Ample numerical results by S. Dong et al. show that the SAV
approach is more efficient and robust than the usual
semi-implicit schemes.

This approach, coupled with the usual SAV approach for CH
or AC equations, can be applied to phase-field models of
multi-phase flows.
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Concluding remarks

The SAV approach enjoys the following advantages:

It is second-order unconditionally energy stable and can be
extended to higher-order.

It leads to linear, decoupled equations with CONSTANT
coefficients, even for gradient flows with multiple components.

It applies to a larger class of gradient flows, and can be
combined with any consistent Galerkin type spatial
discretization.

Rigorous convergence and error analyses are established
without the usually assumed uniform Lipschitz condition.
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To get the best out of the SAV approach:

A ”suitable splitting” (with stabilization) of the free energy is
often essential to improve the accuracy.
An adaptive time stepping strategy should be used to increase
the efficiency.

The SAV approach is not restricted to gradient flows:

It can be applied to a class of conservative systems such as
nonlinear Schrödinger equations, Zaharov equations etc.
As an example, SAV for nonlinear Schrödinger equations results
in a linear, second-order, energy and mass preserving scheme!

Some challenges:

How to deal with highly nonlinear free energies with no
apparent leading linear term?
How to design efficient schemes that are bound preserving?
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Thank you!
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