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Abstract. We propose a new numerical technique to deal with nonlinear terms in gradient flows. By
introducing a scalar auxiliary variable (SAV), we construct efficient and robust energy stable schemes for
a large class of gradient flows. The SAV approach is not restricted to specific forms of the nonlinear part
of the free energy, and only requires to solve decoupled linear equations with constant coefficients. We
use this technique to deal with several challenging applications which cannot be easily handled by existing
approaches, and present convincing numerical results to show that our schemes are not only much more
efficient and easy to implement, but can also better capture the physical properties in these models. Based
on this SAV approach, we can construct unconditionally second-order energy stable schemes; and we can
easily construct even third or fourth order BDF schemes, although not unconditionally stable, which are
very robust in practice. In particular, when coupled with an adaptive time stepping strategy, the SAV
approach can be extremely efficient and accurate.

Key words. gradient flows; energy stability; Allen–Cahn and Cahn–Hilliard equations; phase field
models; nonlocal models.

AMS subject classifications. 65M12; 35K20; 35K35; 35K55; 65Z05.

1. Introduction. Gradient flows are dynamics driven by a free energy. Many physical
problems can be modeled by PDEs that take the form of gradient flows, which are often
derived from the second law of thermodynamics. Examples of these problems include inter-
face dynamics [4, 42, 46, 52, 53, 76], crystallization [27, 26, 28], thin films [38, 58], polymers
[56, 34, 35, 36] and liquid crystals [49, 23, 47, 48, 33, 32, 60, 75].

A gradient flow is determined not only by the driving free energy, but also the dissipa-
tion mechanism. Given a free energy functional E [φ(x)] bounded from below. Denote its
variational derivative as µ = δE/δφ. The general form of the gradient flow can be written
as

(1.1)
∂φ

∂t
= Gµ,

supplemented with suitable boundary conditions. To simplify the presentation, we assume
throughout the paper that the boundary conditions are chosen such that all boundary terms
will vanish when integrating by parts are performed. This is true with periodic boundary
conditions or homogeneous Neumann boundary conditions.

In the above, a non-positive symmetric operator G gives the dissipation mechanism. The
commonly adopted dissipation mechanisms include the L2 gradient flow where G = −I, the
H−1 gradient flow where G = ∆, or more generally non-local H−α gradient flow where
G = −(−∆)α (0 < α < 1) (cf. [1]). For more complicated dissipation mechanisms, G
may be nonlinear and may depend on φ. An example is the Wasserstein gradient flow for
φ > 0, where Gµ = ∇ · (φ∇µ) (cf. [23, 44]). As long as G is non-positive, the free energy is
non-increasing,

(1.2)
dE [φ]

dt
=
δE
δφ
· ∂φ
∂t

= (µ,Gµ) ≤ 0,
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where (φ, ψ) =
∫

Ω
φψdx. In this paper, we will focus on the case where G is non-positive,

linear and independent of φ.
Although gradient flows take various forms, from the numerical perspective, a scheme

is generally evaluated from the following aspects:
(i) whether the scheme keeps the energy dissipation;
(ii) whether the scheme is convergent, and if error bounds can be established;
(iii) its efficiency;
(iv) whether the scheme is easy to implement.
Among these the first aspect is particularly important, and is crucial to eliminate numerical
results that are not physical. Oftentimes, if this is not put into thorough consideration when
constructing the scheme, it may require a time step extremely small to keep the energy
dissipation.

Usually, the free energy functional contains a quadratic term, which we write explicitly
as

(1.3) E [φ] =
1

2
(φ,Lφ) + E1[φ],

where L is a symmetric non-negative linear operator (also independent of φ), and E1[φ]
are nonlinear but usually with only lower-order derivatives than L. To obtain an energy
dissipative scheme, the linear term is usually treated implicitly in some manners, while
different approaches have to be used for nonlinear terms. In the next few paragraphs, we
briefly review the existing approaches for dealing with the nonlinear terms.

The first approach is the convex splitting method which was perhaps first introduced
in [29] but popularized by [31, 8, 9]. If we can express the free energy as the difference of
two convex functional, namely E = Ec − Ee where both Ec and Ee are convex about φ, then
a simple convex splitting scheme reads

(1.4)
φn+1 − φn

∆t
= G

(
δEc
δφ

[φn+1]− δEe
δφ

[φn]

)
.

By using the property of convex functional,

Ec[φ2]− Ec[φ1] ≥ δEc
δφ

[φ1](φ2 − φ1),

and multiplying (1.4) with (δEc/δφ)[φn+1]−(δEe/δφ)[φn], it is easy to check that the scheme
satisfies the discrete energy law E [φn+1] ≤ E [φn] unconditionally. Because the implicit part
δEc/δφ is usually nonlinear about φ, we need to solve nonlinear equations at each time
step, which can be expensive. The scheme (1.4) is only first-order. While it is possible
to construct second-order convex splitting schemes for certain situations on a case by case
basis (see, for instance, [67, 10, 72]), a general formulation of second-order convex splitting
schemes is not available.

The second approach is the so-called stabilization method which treats the nonlin-
ear terms explicitly, and add a stabilization term to avoid strict time step constraint
[79, 69]. More precisely, if we can find a simple linear operator L̃ such that both L̃ and
L̃ − (δ2E1/δφ2)[φ] are positive, then we may choose a particular convex splitting,

Ec =
1

2
(φ,Lφ) +

1

2
(φ, L̃φ), Ee =

1

2
(φ, L̃φ)− E1[φ],

which leads to the following unconditionally energy stable scheme:

(1.5)
φn+1 − φn

∆t
= G

(
Lφn+1 +

δE1
δφ

[φn] + L̃(φn+1 − φn)

)
.
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Hence, the stabilization method is in fact a special class of convex splitting method. A
common choice of L̃ is

L̃ = a0 + a1(−∆) + a2(−∆)2 + . . . .

The advantage of the stabilization method is that when the dissipation operator G is also
linear, we only need to solve a linear system like (1−∆tG(L+ L̃))φn+1 = bn at each time
step. However, it is not always the case that L̃ can be found. The stabilization method can
be extended to second-order schemes, but in general it cannot be unconditionally energy
stable, see however a recent work in [51]. On the other hand, a related method is the
exponential time differencing (ETD) approach in which the operator L̃ is integrated exactly
(see, for instance, [45] for an example on related applications).

The third approach is the method of invariant energy quadratization (IEQ), which was
proposed very recently in [74, 77]. This method is a generalization of the method of Lagrange
multipliers or of auxiliary variables originally proposed in [6, 41]. In this approach, E1 is
assumed to take the form E1[φ] =

∫
Ω
g(φ)dx where g ∈ C1(R) and g(s) > −C0, ∀s ∈ R for

some C0 > 0. The IEQ also allows us to deal with g = g(φ,∇φ) where g ∈ C1(R4) and
g > −C0, or involving higher-order derivatives. For simplicity, we only present the case
where g = g(φ). One then introduces an auxiliary variable q =

√
g + C0, and transform

(1.1) into an equivalent system,

∂φ

∂t
=G

(
Lφ+

q√
g(φ) + C0

g′(φ)

)
,(1.6a)

∂q

∂t
=

g′(φ)

2
√
g(φ) + C0

∂φ

∂t
.(1.6b)

Using the fact that E1[φ] =
∫

Ω
q2dx is convex about q, we can easily construct simple and

linear energy stable schemes. For instance, a first-order scheme is given by

φn+1 − φn

∆t
=Gµn+1,(1.7a)

µn+1 =Lφn+1 +
qn+1√

g(φn) + C0

g′(φn),(1.7b)

qn+1 − qn

∆t
=

g′(φn)

2
√
g(φn) + C0

φn+1 − φn

∆t
.(1.7c)

One can easily show that the above scheme is unconditionally energy stable. Furthermore,
eliminating qn+1 and µn+1, we obtain a linear system for φn+1 in the following form:

(1.8)

(
1

∆t
− GL − G (g′(φn))2

2g(φn)

)
φn+1 = bn.

Similarly, one can also construct unconditionally energy stable second-order schemes. The
IEQ approach is remarkable as it allows us to construct linear, unconditionally stable,
and second-order unconditionally energy stable schemes for a large class of gradient flows.
However, it still suffer from the following drawbacks:

• Although one only needs to solve a linear system at each time step, the linear
system usually involves variable coefficients which change at each time step.

• For gradient flows with multiple components, the IEQ approach will lead to coupled
systems with variable coefficients.



4 J. SHEN, J. XU, J. YANG

• It requires that E1 has the form
∫

Ω
g(φ)dx, or more generally

∫
Ω
g(φ,∇φ, . . . ,∇mφ)dx,

with the energy density g is bounded from below. However, in some case, E1 does
not take such a form. Even if one can find such a g, it might be unbounded from
below but E1[φ] is bounded from below.

In [65], we introduced the so-called scalar auxiliary variable (SAV) approach, which inherits
all advantages of IEQ approach but also overcome most of its shortcomings. More precisely,
by using the Cahn-Hilliard equation and a system of Cahn-Hilliard equations as examples,
we showed that the SAV approach has the following advantages:

(i) For single-component gradient flows, it leads to, at each time step, linear equations
with constant coefficients so it is remarkably easy to implement.

(ii) For multi-component gradient flows, it leads to, at each time step, decoupled linear
equations with constant coefficients, one for each component.

The main goals of this paper are (i) to expand the SAV approach to a more general setting,
and apply it to several challenging applications, such as non-local phase field crystals,
molecular beam epitaxial without slope section, a Q-tensor model for liquid crystals; (ii)
to numerically show that, besides its simplicity and efficiency, the novel schemes present
better accuracy compared with other schemes for many equations; and (iii) to validate the
effectiveness and robustness of the SAV approach coupled with high-order BDF schemes
and adaptive time stepping.

We emphasize that the schemes are formulated in a general form that are applicable
to a large class of gradient flows. We also suggest some criteria on the choice of L and
E1, which is useful when attempting to construct numerical schemes for particular gradient
flows.

The rest of paper is organized as follows. In Section 2, we describe the construction of
SAV schemes for gradient flows in a general form. In Section 3, we present several numerical
examples to validate the SAV approach. In Section 4, we describe how to construct higher-
order SAV schemes and how to implement adaptive time stepping. We then apply the SAV
approach to construct second-order unconditionally stable, decoupled linear schemes for
several challenging situations in Section 5, followed by some concluding remarks in Section
6.

2. SAV approach for constructing energy stable schemes. In this section, we
formulate the SAV approach introduced in [65] for a class of general gradient flows.

2.1. Gradient flows of a single function. We consider the gradient flow (1.1) with
free energy in the form of (1.3) such that E1[φ] is bounded from below. Without loss of
generality, we assume that E1[φ] ≥ C0 > 0, otherwise we may add a constant to E1 without
altering the gradient flow. We introduce a scalar auxiliary variable r =

√
E1, and rewrite

the gradient flow (1.1) as

∂φ

∂t
= Gµ,(2.1a)

µ = Lφ+
r√
E1[φ]

U [φ],(2.1b)

dr

dt
=

1

2
√
E1[φ]

∫
Ω

U [φ]
∂φ

∂t
dx,(2.1c)

where

(2.2) U [φ] =
δE1
δφ

.
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Taking the inner products of the above with µ, ∂φ∂t and 2r, respectively, we obtain the energy
dissipation law for (2.1):

(2.3)
dE [φ(t)]

dt
=

d

dt

[
1

2
(φ,Lφ) + r2

]
= (µ,Gµ).

Note that this equivalent system (2.1) is similar to the system (1.6a) and (1.6b) in the IEQ
approach, except that a scalar auxiliary variable r is introduced instead of a function q(φ).
To illustrate the advantage of SAV over IEQ, we start from a first-order scheme:

φn+1 − φn

∆t
=Gµn+1,(2.4a)

µn+1 =Lφn+1 +
rn+1√
E1[φn]

U [φn],(2.4b)

rn+1 − rn

∆t
=

1

2
√
E1[φn]

∫
Ω

U [φn]
φn+1 − φn

∆t
dx.(2.4c)

Multiplying the three equations with µn+1, (φn+1−φn)/∆t, 2rn+1, integrating the first two
equations, and adding them together, we obtain the discrete energy law:

1

∆t

[
Ẽ [φn+1, rn+1]− Ẽ [φn, rn]

]
+

1

∆t

[1

2
(φn+1 − φn,L(φn+1 − φn)) + (rn+1 − rn)2

]
= (µn+1,Gµn+1),

where we defined a modified energy

(2.5) Ẽ [η, s] =
1

2
(η,Lη) + s2.

Thus, the scheme is unconditionally energy stable with the modified energy. Note that, while
r =

√
E1[φ], we do not have rn =

√
E1[φn] so the modified energy Ẽ [φn, rn] is different from

the original energy E [φn].

Remark 2.1. Notice that the SAV scheme (2.4) is unconditionally energy stable (with
a modified energy) for arbitrary energy splitting in (1.3) as long as E1 is bounded from
below. One might wonder why not taking L = 0? Then, the scheme (2.4) would be totally
explicit, i.e., without having to solve any equation, but unconditionally energy stable (with
a modified energy Ẽ [η, s] = 1

2 (η,Lη) + s2 = s2)! However, energy stability alone is not
sufficient for convergence. Such a scheme will not be able to produce meaningful results,
since the modified energy (2.5) reduces to s2 which cannot control any oscillation due to
derivative terms. Hence, it is necessary that L contains enough dissipative terms (with at
least linearized highest derivative terms).

An important fact is that the SAV scheme (2.4) is easy to implement. To this end, we
write (2.4) in the following form:

(2.6)

 1
∆tI −G 0
−L I ∗
∗ 0 1

∆t

φn+1

µn+1

rn+1

 = b̄n,

where b̄n is the vector with known quantities, and ∗ is some vector with variable coefficients.
Hence, we can solve rn+1 with a block Gaussian elimination, which requires solving a system
with constant coefficients of the form

(2.7)

(
1

∆tI −G
−L I

)(
φ
µ

)
= b̄.
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Once rn+1 is known, we can obtain (φn+1, µn+1) by solving one more equation in the above
form.

For the readers’ convenience, we write down below another explicit procedure for solving
(2.4). Taking (2.4b) and (2.4c) into (2.4a), we obtain

φn+1 − φn

∆t
=G

[
Lφn+1 +

U [φn]√
E1[φn]

(
rn +

∫
Ω

U [φn]

2
√
E1[φn]

(φn+1 − φn)dx

)]
.(2.8)

Denote

bn = U [φn]/
√
E1[φn].

Then the above equation can be written as

(2.9) (I −∆tGL)φn+1 − ∆t

2
Gbn(bn, φn+1) = φn + ∆trnGbn − ∆t

2
(bn, φn)Gbn.

Denote the righthand side of (2.9) by cn. Multiplying (2.9) with (I−∆tGL)−1, then taking
the inner product with bn, we obtain

(2.10) (bn, φn+1) +
∆t

2
γn(bn, φn+1) = (bn, (I −∆tGL)−1cn),

where γn = −(bn, (I −∆tGL)−1Gbn) = (bn, (−G−1 + ∆tL)−1bn) > 0, if we assume that G
is negative definite and L is non-negative. Hence

(2.11) (bn, φn+1) =
(bn, (I −∆tGL)−1cn)

1 + ∆tγn/2
.

To summarize, we implement (2.4) as follows:
(i) Compute bn and cn (the righthand side of (2.9));
(ii) Compute (bn, φn+1) from (2.11);
(iii) Compute φn+1 from (2.9).
Note that in (ii) and (iii) of the above procedure, we only need to solve, twice, a linear
equation with constant coefficients of the form

(2.12) (I −∆tGL)x̄ = b̄,

which is exactly (2.7) with µ eliminated. Therefore, the above procedure is extremely
efficient. In particular, if L = −∆ and G = −1 or −∆, with a tensor-product domain Ω,
fast solvers are available. In contrast, the convex splitting schemes usually require solving a
nonlinear system, the IEQ scheme requires solving (1.8) which involves variable coefficients.

A main advantage of the SAV approach (as well as the IEQ approach) is that linear
second- or even higher-order energy stable schemes can be easily constructed. We start by a
semi-implicit second-order scheme based on Crank–Nicolson, which we denote as SAV/CN:

φn+1 − φn

∆t
=Gµn+1/2,(2.13a)

µn+1/2 =L1

2
(φn+1 + φn) +

rn+1 + rn

2
√
E1[φ̄n+1/2]

U [φ̄n+1/2],(2.13b)

rn+1 − rn =

∫
Ω

U [φ̄n+1/2]

2
√
E1[φ̄n+1/2]

(φn+1 − φn)dx.(2.13c)
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In the above, φ̄n+1/2 can be any explicit approximation of φ(tn+1/2) with an error of O(∆t2).
For instance, we may let

(2.14) φ̄n+1/2 =
1

2
(3φn − φn−1)

be the extrapolation; or we can use a simple first-order scheme to obtain it, such as the
semi-implicit scheme

(2.15)
φ̄n+1/2 − φn

∆t/2
= G

(
Lφ̄n+1/2 + U [φn]

)
,

which has a local truncation error of O(∆t2).
Just as in the first-order scheme, one can eliminate µn+1 and rn+1 from the second-

order schemes (2.13) to obtain a linear equation for φ similar to (2.9), so it can be solved
by using the Sherman–Morrison–Woodbury formula (2.26) which only involves two linear
equations with constant coefficients of the form (2.12).

Regardless of how we obtain φ̄n+1/2, multiplying the three equations with µn+1/2,
(φn+1 − φn)/∆t, (rn+1 + rn)/∆t, we derive the following:

Theorem 2.1. The scheme (2.13) is second-order accurate, and unconditionally energy
stable in the sense that

1

∆t

(
Ẽ [φn+1, rn+1]− Ẽ [φn, rn]

)
= (µn+1/2,Gµn+1/2),

where Ẽ is the modified energy defined in (2.5), and one can obtain (φn+1, µn+1, rn+1) by
solving two linear equations with constant coefficients of the form (2.12).

We can also construct semi-implicit second-order scheme based on BDF formula, which
we denote as SAV/BDF:

3φn+1 − 4φn + φn−1

2∆t
=Gµn+1,(2.16a)

µn+1 =Lφn+1 +
rn+1√
E1[φ̄n+1]

U [φ̄n+1],(2.16b)

3rn+1 − 4rn + rn−1 =

∫
Ω

U [φ̄n+1]

2
√
E1[φ̄n+1]

(3φn+1 − 4φn + φn−1)dx.(2.16c)

Here, φ̄n+1 can be any explicit approximation of φ(tn+1) with an error of O(∆t2). Multi-
plying the three equations with µn+1, (3φn+1 − 4φn + φn−1)/∆t, rn+1/∆t and integrating
the first two equations, and using the identity:

2(ak+1, 3ak+1 − 4ak + ak−1) =|ak+1|2 + |2ak+1 − ak|2 + |ak+1 − 2ak + ak−1|2

− |ak|2 − |2ak − ak−1|2,
(2.17)

we obtain the following:

Theorem 2.2. The scheme (2.16) is second-order accurate, and unconditionally energy
stable in the sense that

1

∆t

{
Ẽ [(φn+1, rn+1), (φn, rn)]− Ẽ [(φn, rn), (φn−1, rn−1)]

}
+

1

∆t

{1

4

(
φn+1 − 2φn + φn−1,L(φn+1 − 2φn + φn−1)

)
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+
1

2
(rn+1 − 2rn + rn−1)2

}
= (µn+1,Gµn+1),

where the modified discrete energy is defined as

Ẽ [(φn+1, rn+1), (φn, rn)] =
1

4

(
(φn+1,Lφn+1) +

(
2φn+1 − φn,L(2φn+1 − φn)

))
+

1

2

(
(rn+1)2 + (2rn+1 − rn)2

)
,

and one can obtain (φn+1, µn+1, rn+1) by solving two linear equations with constant coeffi-
cients of the form (2.12).

We observe that the modified energy Ẽ [(φn+1, rn+1), (φn, rn)] is an approximation of
the original energy E [φn+1] if (rn+1)2 is an approximation of E1[φn+1].

2.2. Gradient flows of multiple functions. We describe below the SAV approach
for gradient flows of multiple functions φ1, . . . , φk:

E [φ1, . . . , φk] =
1

2

k∑
i,j=1

dij(φi,Lφj) + E1[φ1, . . . , φk],(2.18)

where L is a self-adjoint non-negative linear operator, the constant matrix (dij)i,j=1,...k is
symmetric positive definite. Also we assume that E1 ≥ C1 > 0. We consider the gradient
flow that contains linear couplings between µi = δE/δφi. Let G be a non-positive dissipation
operator, and (gij)i,j=1,...k be another symmetric positive definite constant matrix. Denote
Ui = δE1/δφi, and introduce r(t) =

√
E1 as the scalar auxiliary variable. The gradient flow

is then given by

∂φi
∂t

=

k∑
l=1

gilGµl,(2.19a)

µi =

k∑
j=1

dijLφj +
r√
E1
Ui,(2.19b)

dr

dt
=

1

2
√
E1

∫
Ω

Ui
∂φi
∂t

dx.(2.19c)

Taking the inner products of the above three equations with µi,
∂φi

∂t and 2r, summing over
i and using the facts that L is self-adjoint and dij = dji, we obtain the energy law:

(2.20)
d

dt
E [φ1, . . . , φk] =

d

dt

1

2

k∑
i,j=1

dij(φi,Lφj) + E1[φ1, . . . , φk]

 =

k∑
i,l=1

gil(Gµi, µl).

A simple case with decoupled linear terms, i.e. dij = gij = δij , is considered in [65].
However, some applications (cf. for example [30, 8, 9, 17, 11, 57, 24]) involve coupled linear
operators which render the problem very difficult to solve numerically by existing methods.
But we can easily construct simple and accurate schemes using the SAV approach, an
example is the following second-order SAV/CN scheme:

φn+1
i − φni

∆t
=

k∑
l=1

gilGµn+1/2
l ,(2.21a)
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µ
n+1/2
i =

1

2

k∑
j=1

dijL(φn+1
j + φnj ) +

Ui[φ̄
n+1/2
1 , · · · , φ̄n+1/2

k ]

2

√
E1[φ̄

n+1/2
1 , · · · , φ̄n+1/2

k ]
(rn+1 + rn),(2.21b)

rn+1 − rn =

∫
Ω

k∑
j=1

Uj [φ̄
n+1/2
1 , · · · , φ̄n+1/2

k ]

2

√
E1[φ̄

n+1/2
1 , · · · , φ̄n+1/2

k ]
(φn+1
j − φnj )dx,(2.21c)

where φ̄
n+1/2
j can be any second-order explicit approximation of φj(t

n+1/2). We multiply

the above three equations with ∆tµ
n+1/2
i , φn+1

i − φni , rn+1 + rn and take the sum over i.
Since L is self-adjoint and dij = dji, we have

1

2

( k∑
j=1

dijL(φn+1
j + φnj ), φn+1

i − φni
)

=
1

2

k∑
j=1

dij [(Lφn+1
j , φn+1

i )− (Lφnj , φni )],

which immediately leads to energy stability. Next, we describe how to implement (2.21)
efficiently.

Denote

pni =
Ui[φ̄

n+1/2
1 , · · · , φ̄n+1/2

k ]√
E1[φ̄

n+1/2
1 , · · · , φ̄n+1/2

k ]
,

and substitute (2.21b) and (2.21c) into (2.21a), we can eliminate µ
n+1/2
i and rn+1 to obtain

a coupled linear system of k equations of the following form

φn+1
i − ∆t

2

k∑
l,j=1

gildljGLφn+1
j − ∆t

4

k∑
j=1

(φn+1
j , pnj )

k∑
l=1

gilGpnl = bni , i = 1, · · · , k,(2.22)

where bni includes all known terms in the previous time steps. Let us denoteD = (∆t
2 dij)i,j=1,··· ,k,

G = (gij)i,j=1,··· ,k, and

φ̄n+1 = (φn+1
1 , · · · , φn+1

k )T , b̄n = (bn1 , · · · , bnk )T ,

ū =
∆t

4

( k∑
l=1

g1lGpn1 , · · · ,
k∑
l=1

gklGpnk
)
, v̄ = (pn1 , · · · , pnk ).

(2.23)

The above system can be written in the following matrix form:

(2.24) (A+ ūv̄T )φ̄n+1 = b̄n,

where the operator A is defined by

(2.25) Aφ̄n+1 = φ̄n+1 − GLGDφ̄n+1.

The above equation can be solved using the Sherman–Morrison–Woodbury formula [39]:

(2.26) (A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1,

where A is an n×n matrix, U and V are n×k matrices, and I is the k×k identity matrix.
We note that if k � n and A can be inverted efficiently, the Sherman–Morrison–Woodbury
formula provides an efficient algorithm to invert the perturbed matrix A+UV T . The system
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(2.24) corresponds to a case with U and V being n×1 vectors, so it can be efficiently solved
by using (2.26).

It remains to describe how to solve the linear system Aφ̄ = b̄ efficiently. Since D
and G are both symmetric positive definite, we first compute the eigen-decomposition of
G as G = E1ΓET1 where E1 is orthogonal Γ is diagonal, and obtain G1/2 = E1Γ1/2ET1 .
Then, we write GD = G1/2(G1/2DG1/2)G−1/2, and compute another eigen-decomposition
of the symmetric positive definite matrix G1/2DG1/2 = E2ΛET2 where E2 is orthogonal and
Λ = diag(λ1, · · · , λk). Let E = G1/2E2. The eigen-decomposition of GD is thus written as
GD = EΛE−1. Setting ψ̄ = E−1φ̄, we have

Aφ̄ = φ̄− GLEΛE−1φ̄ = E(I − GLΛ)ψ̄.

Hence, Aφ̄ = b̄ decouples into a sequence of elliptic equations:

(2.27) ψi − λiGLψi = (E−1b̄)i, i = 1, · · · , k.

To summarize, Aφ̄ = b̄ can be efficiently solved as follows:
• Compute the eigen-decomposition G = E1ΓET1 , followed by G1/2. Then compute

another eigen-decomposition G1/2DG1/2 = E2ΛET2 .
• Compute E = G1/2E2 and E−1b̄;
• Solve the decoupled equations (2.27);
• Finally, the solution is: φ̄ = Eψ̄.

In summary:

Theorem 2.3. The scheme (2.21) is second-order accurate, and unconditionally energy
stable in the sense that

1

∆t

[1
2

k∑
i,j=1

dij(Lφn+1
j , φn+1

i ) + (rn+1)2
]
− 1

∆t

[1
2

k∑
i,j=1

dij(Lφnj , φni ) + (rn)2
]

=

k∑
i=1

(Gµi, µi),

and one can obtain rn+1 and (φn+1
j , µn+1

j )1≤j≤k by solving two sequences of decoupled linear
equations with constant coefficients of the form (2.27).

2.3. Full discretization. To simplify the presentation, we have only discussed the
time discretization in the above. However, since the stability proofs of SAV schemes are
all variational, they can be straightforwardly extended to fully discrete SAV schemes with
Galerkin finite element methods or Garlerkin spectral methods or even finite difference
methods with summation by parts.

3. Numerical validation. In this section, we apply the SAV/CN and SAV/BDF
schemes to several gradient flows to demonstrate the efficiency and accuracy of the SAV
approach. In all examples, we assume periodic boundary conditions and use a Fourier-
spectral method for space variables.

3.1. Allen-Cahn, Cahn-Hilliard and fractional Cahn-Hilliard equations. The
Allen-Cahn [2] and Cahn-Hilliard equations [13, 14], are widely used in the study of inter-
facial dynamics [2, 62, 4, 42, 46, 52, 53, 76, 1]. They are built with the free energy

(3.1) E [φ] =

∫
1

2
|∇φ|2 +

1

4ε2
(1− φ2)2dx.

We consider the H−α gradient flow, which leads to the fractional Cahn–Hilliard equa-
tion:

(3.2)
∂φ

∂t
= −γ(−∆)α(−∆φ− 1

ε2
φ(1− φ2)), 0 ≤ s ≤ 1.
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Here, the fractional Laplacian operator (−∆)α is defined via Fourier expansion. More
precisely, if Ω = (0, 2π)2, then we can express u ∈ L2(Ω) as

u =
∑
m,n

ûmne
imx+iny,

so the fractional Laplacian is defined as

(−∆)αu =
∑

(m2 + n2)αûmne
imx+iny,

When α = 0 (L2 gradient flow), (3.2) is the standard Allen–Cahn equation; when α = 1, it
becomes the standard Cahn–Hilliard equation.

To apply our schemes (2.13) or (2.16) to (3.2), we specify the operators L, G and the
energy E1 as

(3.3) L = −∆ +
β

ε2
, G = −(−∆)α, E1 =

1

4ε2

∫
Ω

(φ2 − 1− β)2dx.

Then we have

U [φ] =
δE1
δφ

=
1

ε2
φ(φ2 − 1− β).

Remark 3.1. In the above, β is a suitable parameter to ensure that there is enough
dissipation in the implicit part of the scheme. The effect of using β > 0 is similar to the
stabilization in a usual semi-implicit scheme [69]. For problems with free energy dominated
by the nonlinear part such as the case above, a suitable splitting is very important to ensure
the accuracy of SAV schemes without using exceedingly small time steps.

We illustrate it by a typical example. Consider the standard Cahn-Hilliard equation
using SAV/CN scheme in [0, 2π]. The parameters in the equation are chosen as ε = 0.1,
γ = 1. The initial condition is φ(x, 0) = 0.2 sinx. The space is discretized by Fourier
Galerkin method with N = 211.

Let us compare the results of β = 0 (without stabilization) and β = 1 (with stabilization)
with two different time steps ∆t = 10−4 and ∆t = 4 × 10−3. The solution at T = 0.1
is plotted in Fig. 1. It is clear that with small ∆t, the solutions are indistinguishable
regardless of whether we incorporate stabilization. However, with large ∆t, the scheme with
stabilization leads to the correct solution, but the scheme without stabilization does not.

Example 1. (Convergence rate of SAV/CN scheme for the standard Cahn-Hilliard equa-
tion) We choose the computational domain as [0, 2π]2, ε = 0.1, and γ = 1. The initial data
is chosen as smooth one φ(x, y, 0) = 0.05 sin(x) sin(y).

We use the Fourier Galerkin method for spatial discretization with N = 27, and choose
β = 1. To compute a reference solution, we use the fourth-order exponential time differenc-
ing Runge-Kutta method (ETDRK4)1 [21] with ∆t sufficiently small. The numerical errors
at t = 0.032 for SAV/CN and SAV/BDF are shown in TABLE 1, where we can observe the
second-order convergence for both schemes.

Example 2. We solve a benchmark problem for the Allen–Cahn equation (see [16]).
Consider a two-dimensional domain (−128, 128)2 with a circle of radius R0 = 100. In

1Although ETDRK4 has higher order of accuracy, it does not guarantees energy stability, and the
implementation can be difficult since it requires to calculate matrix exponential.



12 J. SHEN, J. XU, J. YANG

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

small time step

SAVnoSTA
SAVwithSTA

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

large time step

SAVnoSTA
SAVwithSTA

Fig. 1. (Effect of stabilization) The solution at T = 0.1. Left: ∆t = 10−4; Right: ∆t = 4 × 10−3.
The red dashed lines represent solutions with stabilization, while the black solid lines represent solutions
without stabilization.

Scheme ∆t=1.6e-4 ∆t=8e-5 ∆t=4e-5 ∆t=2e-5 ∆t=1e-5

SAV/CN
Error 1.74e-7 4.54e-8 1.17e-8 2.94e-9 2.01e-10
Rate - 1.93 1.96 1.99 2.01

SAV/BDF
Error 1.38e-6 3.72e-7 9.63e-8 2.43e-8 5.98e-9
Rate - 1.89 1.95 1.99 2.02

Table 1
(Example 1) Errors and convergence rates of SAV/CN and SAV/BDF scheme for the Cahn–Hilliard

equation.

other words, the initial condition is given by

(3.4) φ(x, y, 0) =

{
1, x2 + y2 < 1002,
0, x2 + y2 ≥ 1002.

By mapping the domain to (−1, 1)2, the parameters in the Allen-Cahn equation are given
by γ = 6.10351× 10−5 and ε = 0.0078.

In the sharp interface limit (ε → 0, which is suitable because the chosen ε is small), the
radius at the time t is given by

(3.5) R =
√
R2

0 − 2t.

We use the Fourier Galerkin method to express φ as

(3.6) φ =
∑

n1,n2≤N

φ̂n1n2
eiπ(n1x+n2y),

with N = 29. We choose β = 1 and let the time step ∆t vary. The computed radius R(t)
using the SAV/CN scheme is plotted in FIG. 2. We observe that R(t) keeps monotonically
decreasing and very close to the sharp interface limit value, even when we choose a relatively
large ∆t. In [69] this benchmark problem is solved using different stabilization methods.
Our result proves to be much better than the result in that work, where the oscillation
around the limit value is apparent, even if the time step has been reduced to ∆t = 10−3.
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Fig. 2. (Example 2) The evolution of radius R(t) and the free energy (both original and modified).
For the free energy, ∆t = 0.5.

We also plot the original energy and the modified energy 1
2 (φn,Lφn) + (rn)2 in FIG. 2 for

∆t = 0.5, and find that they are very close.

Example 3. (Comparison of SAV/CN and IEQ/CN schemes for the Allen–Cahn equa-
tion in 1D) The parameters are the same as the first example. The domain is chosen
as [0, 2π], discretized by the finite difference method with N = 210. The initial condition
φ(x, 0) is now a randomly generated function. The reference solution is also obtained using
ETDRK4.

We plot the numerical results at T = 0.1 and T = 1 by SAV/CN and IEQ/CN schemes
in FIG. 3. We used two different time steps ∆t = 10−4, 10−3. We observe that with ∆t =
10−4, both SAV/CN scheme and IEQ/CN scheme agree well with the reference solution.
However, with ∆t = 10−3, the solution by SAV/CN scheme still agree well with the reference
solution at both T = 0.1 and T = 1, while the solution obtained by IEQ/CN scheme has
visible differences with the reference solution, and violates the maximum principle |φ| ≤ 1.
This example clearly indicates that the SAV/CN scheme is more accurate than the IEQ/CN
scheme, in addition to its easy implementation.

Example 4. We examine the effect of fractional dissipation mechanism on the phase sep-
aration and coarsening process. Consider the fractional Cahn–Hilliard equation in [0, 2π]2.
We fix ε = 0.04 and take the fractional power α to be 0.1, 0.5, 1, respectively. We use the
Fourier Galerkin method with N = 27, and the time step ∆t = 8× 10−6. The initial value
is the sum of a randomly generated function φ0(x, y) with the average of φ:

φ̄ =
1

4π2

∫
0≤x,y≤2π

φ dxdy,

chosen as 0.25, 0, −0.25, respectively.

We used the SAV/BDF scheme to compute the configuration at T = 0.032, which is
shown in FIG. 4. We observe that regardless of φ̄, when α is smaller, the phase separation
and coarsening process is slower, which is consistent with the results in [1].

3.2. Phase field crystals. We now consider gradient flows of φ(x) that describe mod-
ulated structures. Free energy of this kind was first found in Brazovskii’s work [12], known
as the Landau-Brazovskii model. Since then, the free energy, including many variants, has
been adopted to study various physical systems (see for example [37, 3, 40, 73]). A usual
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Fig. 3. (Example 3) Comparison of SAV/CN and IEQ/CN schemes.

free energy takes the form,

(3.7) E(φ) =

∫
Ω

{
1

4
φ4 +

1− ε
2

φ2 − |∇φ|2 +
1

2
(∆φ)2

}
dx,

subjected to a constraint that the average φ̄ remains to be a constant. This constraint can
be automatically satisfied with an H−1 gradient flow, which is also referred to as phase field
crystals model because it is widely adopted in the dynamics of crystallization [27, 26, 28]. To
demonstrate the flexibility of SAV approach, we will focus on a free energy with a nonlocal
kernel. Specifically, we replace the Laplacian by a nonlocal linear operator Lδ [71]:

Lδφ(x) =

∫
B(x,δ)

ρδ(|y − x|)
(
φ(y)− φ(x)

)
dy,

leading to the free energy,

(3.8) E(φ) =

∫
Ω

{
1

4
φ4 +

1− ε
2

φ2 + φLδφ+
1

2
(Lδφ)2

}
dx.

Let the dissipation mechanism be given by G = Lδ. Then we obtain the following gradient
flow,

(3.9)
∂φ

∂t
= Lδ(L2

δφ+ 2Lδφ+ (1− ε)φ+ φ3).

For the above problem, it is difficult to solve the linear system resulted from the IEQ
approach, but it can be easily implemented with the SAV approach.
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φ̄ = 0.25 φ̄ = 0 φ̄ = -0.25

α=0.1

α=0.5

α=1.0

Fig. 4. (Example 4) Configurations at time T = 0.032 with random initial condition for different
values of fractional order α and means φ̄.

Let Ω be a rectangular domain [0, 2π)2 with periodic boundary conditions, the eigen-
values of L can be expressed explicitly. In fact, it is easy to check that for any integers m
and n, eimx+iny is an eigenfunction of Lδ, and the corresponding eigenvalue is given by

λδ(m,n) =

∫ δ

0

rρδ(r)

∫ 2π

0

(cos (r (m cos θ + n cos θ))− 1) dθdr,

which can be evaluated efficiently using a hybrid algorithm [25]. We choose

ρδ(|x− x′|) = c1
2(4− α1)

π

1

δ4−α1rα1
− c2

2(4− α2)

π

1

δ4−α2rα2
,

with c1 = 20, c2 = 19, α1 = 3, α2 = 0 and δ = 2. Numerical results indicate that all
eigenvalues are negative, which ensures the nonlocal operator Lδ is negative-semidefinite.

We applied the SAV/CN and SAV/BDF schemes to (3.9). As a comparison, we also
implemented the following stabilized semi-implicit (SSI) scheme used in [19]:

φn+1 − φn

∆t
= (1− ε)Lδφn+1 + 2L2

δφ
n+1 + L3

δφ
n+1 + (φn)3

+a1(1− ε)Lδ(φn+1 − φn)− 2a2L2
δ(φ

n+1 − φn) + a3L3
δ(φ

n+1 − φn).
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T=4800

T=0

T=2400

SAV/BDF SAV/CNSSI

Fig. 5. (Example 5) Configuration evolutions for NPFC models by three schemes.

Specifically, we choose a1 = 0, a2 = 1 and a3 = 0 which satisfy the parameters constraints
provided in [19].

For the SAV schemes, we specify the linear non-negative operator as L = L2
δ + 2Lδ + I.

The time step is fixed at ∆t = 1.

Example 5. We consider (3.9) in the two-dimensional domain [0, 50]× [0, 50] with pe-
riodic boundary conditions. Fix ε = 0.025 and φ̄ = 0.07. The Fourier Galerkin methods is
used for spatial discretization with N = 27.

The residual of the equation (3.9) is defined to measure the how far the solution is away
from the steady state,

residual =
∥∥Lδ(L2

δφ+ 2Lδφ+ (1− ε)φ+ φ3)
∥∥2

2
.

The initial value possesses a square structure, drawn in the first row in FIG. 5, and the
configurations at T = 2400 and 4800 are shown in the other two rows. There is no visible
difference between the results for all three schemes at T = 2400. However, for both SAV
schemes, the system eventually evolves to a stable hexagonal structure, while for the SSI
scheme it remains to be the unstable square structure. We also plot the free energy and
residual as functions of time for the three schemes (see FIG. 6). For the SSI scheme,
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Fig. 6. (Example 5) Energy evolutions, and residual evolutions for NPFC models by three schemes.

the residue started to increase when T > 3000, and the free energy eventually increases,
violating the energy law. On the other hand, the free energy curves for both SAV schemes
remain to be dissipative, with no visible difference between them. This example clearly
shows that our SAV schemes have much better stability and accuracy than the SSI scheme
for the nonlocal model (3.9).

4. Higher order SAV schemes and adaptive time stepping. We describe below
how to construct higher order schemes for gradient flows by combining the SAV approach
with higher order BDF schemes, and how to implement adaptive time stepping to further
increase the computational efficiency.

4.1. Higher order SAV schemes. For the reformulated system (2.1c)-(2.1b), we can
easily use the SAV approach to construct BDF-k (k ≥ 3) schemes. Since BDF-k (k ≥ 3)
schemes are not A-stable for ODEs, they will not be unconditionally stable. We will focus
on BDF3 and BDF4 schemes below, as for k > 4, the resulting BDF-k schemes do not
appear to be stable.

The SAV/BDF3 scheme is given by

11φn+1 − 18φn + 9φn−1 − 2φn−2

6∆t
= Gµn+1,

µn+1 = Lφn+1 +
rn+1√
E1[φ̄n+1]

U [φ̄n+1],

11rn+1 − 18rn + 9rn−1 − 2rn−2 =∫
Ω

U [φ̄n+1]

2
√
E1[φ̄n+1]

(11φn+1 − 18φn + 9φn−1 − 2φn−2)dx,

where φ̄n+1 is a third-order explicit approximation to φ(tn+1). The SAV/BDF4 scheme is
given by

25φn+1 − 48φn + 36φn−1 − 16φn−2 + 3φn−3

12∆t
= Gµn+1,

µn+1 = Lφn+1 +
rn+1√
E1[φ̄n+1]

U [φ̄n+1],

25rn+1 − 48rn + 36rn−1 − 16rn−2 + 3rn−3 =
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Ω

U [φ̄n+1]

2
√
E1[φ̄n+1]

(25φn+1 − 48φn + 36φn−1 − 16φn−2 + 3φn−3)dx,

where φ̄n+1 is a fourth-order explicit approximation to φ(tn+1).
To obtain φ̄n+1 in BDF3, we can use the extrapolation (BDF3A):

φ̄n+1 = 3φn − 3φn−1 + φn−2,

or prediction by one BDF2 step (BDF3B):

φ̄n+1 = BDF2{φn, φn−1,∆t}.

Similarly, to get φ̄n+1 in BDF4, we can do the extrapolation (BDF4A):

φ̄n+1 = 4φn − 6φn−1 + 4φn−2 − φn−3,

or prediction with one step of BDF3A (BDF4B):

φ̄n+1 = BDF3{φn, φn−1, φn−2,∆t}.

It is noticed that using the prediction with a lower order BDF step will double the total
computation cost.

Example 6. We take Cahn–Hilliard equation as an example to demonstrate the numeri-
cal performances of SAV/BDF3 and SAV/BDF4 schemes. We fix the computational domain
as [0, 2π)2 and ε = 0.1. We use the Fourier Galerkin method for spatial discretization with
N = 27. The initial data is u0(x, y) = 0.05 sin(x) sin(y).
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Fig. 7. (Example 6) Energy evolutions for BDF3 and BDF4 schemes.

We first examine the energy evolution of BDF3A, BDF3B, BDF4A, and BDF4B with
∆t = 10−3 and ∆t = 10−4, respectively. The numerical results are shown in Fig. 7. We
find that BDF4A is unstable, and BDF3A shows oscillations in energy with ∆t = 10−3.
Hence, in the following parts, we will focus on BDF3B and BDF4B, which, in what follows,
are denoted in abbreviation by BDF3 and BDF4.

Then, we examine the numerical errors of BDF3 and BDF4, plotted in Fig. 8. The
reference solution is obtained by ETDRK4 with a sufficiently small time step. It is observed
that BDF3 and BDF4 schemes achieve the third-order and fourth-order convergence rates,
respectively.
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Fig. 8. (Example 6) Numerical convergences of BDF3 and BDF4.
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Fig. 9. (Example 6) Comparison of BDF2, BDF3 and BDF4. Upper: ∆t = 10−3; Lower: ∆t = 10−4.
The line graphs give the energy evolution. All the snapshots are at t = 0.016.

Next, we compare the numerical results of BDF2, BDF3 and BDF4.
The energy evolution and the configuration at t = 0.016 are shown in FIG. 9 (for the

first row ∆t = 10−3, and for the second row ∆t = 10−4). We observe that at ∆t = 10−4, all
schemes lead to the correct solution although there is some visible difference in the energy
evolution between BDF2 and the other higher-order schemes, but at ∆t = 10−3, only BDF4
leads to the correct solution. The above results indicate that higher-order SAV schemes can
be used to improve accuracy.

4.2. Adaptive time stepping. In many situations, the energy and solution of gradi-
ent flows can vary drastically in a certain time interval, but only slightly elsewhere. A main
advantage of unconditional energy stable schemes is that they can be easily implemented
with an adaptive time stepping strategy so that the time step is only dictated by accuracy
rather than by stability as with conditionally stable schemes.

There are several adaptive strategies for the gradient flows. Here, we follow the adaptive
time-stepping strategy in [66] summarized in Algorithm 1, which has been shown to be
effective for Allen–Cahn equations. In Step 4 and Step 6 of Algorithm 1, the formula for
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updating the time step size is given by

(4.3) Adp(e, τ) = ρ

(
tol

e

)1/2

τ,

along with restriction of minimum and maximum time steps. In the above, ρ is a default
safety coefficient, tol is a reference tolerance, and e is the relative error at each time level
computed in Step 3 in the Algorithm 1. In the following example, we choose ρ = 0.9
and tol = 10−3. The minimum and maximum time steps are taken as τmin = 10−5 and
τmax = 10−2, respectively. The initial time step is taken as τmin.

Algorithm 1 Time step adaptive procedure

Given: Un, τn.

Step 1. Compute Un+1
1 by the first order SAV scheme with τn.

Step 2. Compute Un+1
2 by the second order SAV scheme with τn.

Step 3. Calculate en+1 =
||Un+1

1 −Un+1
2 ||

||Un+1
2 ||

Step 4. if en+1 > tol, then
Recalculate time step τn ← max{τmin,min{Adp(en+1, τn), τmax}}.

Step 5. goto Step 1
Step 6. else

Update time step τn+1 ← max{τmin,min{Adp(en+1, τn), τmax}}.
Step 7. endif

We take the 2D Cahn–Hilliard equation as an example to demonstrate the performence
of the time adaptivity.

Example 7. Consider the 2D Cahn–Hilliard equation on [0, 2π] × [0, 2π] with periodic
boundary conditions and random initial data. We take ε = 0.1, and use the Fourier spectral
method with Nx = Ny = 256.

For comparison, we compute a reference solution by the SAV/CN scheme with a small
uniform time step τ = 10−5 and a large uniform time step τ = 10−3. Snapshots of phase
evolutions, original energy evolutions and modified energy evolution, and the size of time
steps in the adaptive experiment are shown in Fig. 10. It is observed that the adaptive-
time solutions given in the middle row are in good agreement with the reference solution
presented in the top row. However, the solutions with large time step are far way from
the reference solution. This is also indicated by both the original energy evolutions and
modified energy evolutions. Note also that the time step changes accordingly with the
energy evolution. There are almost three-orders of magnitude variation in the time step,
which indicates that the adaptive time stepping for the SAV schemes is very effective.

5. Various applications of the SAV approach. We emphasize that the SAV ap-
proach can be applied to a large class of gradient flows. In this section, we shall apply the
SAV approach to several challenging gradient flows with different characteristics and show
that the SAV approach leads to very efficient and accurate energy stable numerical schemes
for these problems and those with similar characteristics.

5.1. Gradient flows with nonlocal free energy. In most gradient flows, the gov-
erning free energy is local, i.e. can be written as an integral of functions about order
parameters and their derivatives on a domain Ω. Actually, many of these models can be
derived as approximations of density functional theory (DFT) (see for example [54]) that
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Fig. 10. Example 7: Numerical comparisons among small time steps, adaptive time steps, and large
time steps

takes a non-local form. Recently, there have been growing interests in nonlocal models,
aiming to describe phenomena that are difficult to be captured in local models. Examples
include peridynamics [71] and quasicrystals [5, 7, 43].

Although more complicated forms are possible, we consider the following free energy
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functional that covers those in the models mentioned above,

E [φ] =

∫
Ω

(
F (φ) +

1

2
φLφ

)
dx +

1

2

∫
Ω

∫
Ω

K(|x− x′|)φ(x)φ(x′)dx′dx

:=(F (φ), 1) +
1

2
(Lφ, φ) +

1

2
(φ,Lnφ).(5.1)

where L is a local symmetric positive differential operator, K(|x−x′|) is a kernel function,
F (φ) is a nonlinear (local) free energy density, and the operator Ln is given by

(5.2) (Lnφ)(x) =

∫
K(|x− x′|)φ(x′)dx′.

Then, the corresponding gradient flow associated with energy dissipation G is

(5.3)
∂φ

∂t
= G (Lφ+ Lnφ+ f(φ)) ,

where f(φ) = F ′(φ).
In general, L may not be positive and shall be controlled by the nonlinear term F (φ), as

in the non-local models we mentioned above. In this case, we may put part of the non-local
term together with the nonlinear term, and handle the non-local term explicitly in the SAV
approach. More precisely, we split Ln = Ln1 + Ln2 set

El(φ) =
1

2
(Lφ, φ) +

1

2
(φ,Ln1φ), En(φ) =

1

2
(φ,Ln2φ) + (F (φ), 1),

where we assume that Ln1 is positive and En(φ) ≥ C0 > 0. We introduce a scalar auxiliary
variable

r(t) =
√
En(φ),

and rewrite the gradient flow (5.3) as

∂φ

∂t
= G

(
(L+ Ln1)φ+

r√
En(φ)

(Ln2φ+ f(φ))

)
,(5.4a)

dr

dt
=

1

2
√
En(φ)

(
∂φ

∂t
,Ln2φ+ f(φ)

)
.(5.4b)

Then the second-order BDF scheme based on SAV approach is:

3φn+1 − 4φn + φn−1

2∆t
= Gµn+1,(5.5a)

µn+1 = (L+ Ln1)φn+1 +
rn+1√
En[φ̄n+1]

(
Ln2φ̄

n+1 + f(φ̄n+1)
)
,(5.5b)

3rn+1 − 4rn + rn−1 =
1

2
√
En[φ̄n+1]

(
Ln2φ̄

n+1 + f(φ̄n+1), 3φn+1 − 4φn + φn−1
)
.(5.5c)

Similarly, it is easy to show that the above scheme is unconditionally energy stable, and
that the scheme only requires, at each time step, solving two linear systems of the form:

(5.6) (I − λ∆tG(L+ Ln1))φ = f.

In particular, if L > Ln, a good choice can be Ln1 = 0 and Ln2 = Ln, and only need to
solve equations with common differential operators. Note also that the phase field crystal
model considered in Subsection 3.2 is a special case with L = 0 and Ln2 = 0.

Note that the above problem cannot be easily treated with convex splitting or IEQ
approaches.
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5.2. Molecular beam epitaxial (MBE) without slope selection. The energy
functional for molecular beam epitaxial (MBE) without slope selection is given by [50]:

(5.7) E [φ] =

∫
Ω

[−1

2
ln(1 + |∇φ|2) +

η2

2
|∆φ|2]dx.

In [18], a first-order linear scheme is proposed, where a stabilized term is added to keep
the energy decaying property. A main difficulty is that the first part of the energy den-
sity, − 1

2 ln(1 + |∇φ|2), is unbounded from below, so the IEQ approach cannot be applied.
However, the SAV approach is still applicable, which is analyzed and implemented in [20].
Below we summarize the main points in that work to show how the SAV approach works.

One can show that ([20] Lemma 3.1) for any α0 > 0, there exist C0 > 0 such that

(5.8) E1[φ] =

∫
Ω

[−1

2
ln(1 + |∇φ|2) +

α

2
|∆φ|2]dx ≥ −C0, ∀α ≥ α0 > 0.

Hence, we can choose α0 < α < η2, and split E [φ] as

E [φ] = E1[φ] +

∫
Ω

η2 − α
2
|∆φ|2dx.

Now we introduce a scalar auxiliary variable

r(t) =

√∫
Ω

α

2
|∆φ|2 − 1

2
ln(1 + |∇φ|2)dx + C0,

and rewrite the gradient flow for MBE as

∂φ

∂t
+ (η2 − α)∆2φ+G(φ)r(t) = 0,(5.9a)

dr

dt
=

1

2

∫
Ω

G(φ)
∂φ

∂t
dx,(5.9b)

where G(φ) is written down by following (2.1c),

G(φ) =

δE1[φ]
δφ√
E1[φ]

=
α∆2φ+∇ ·

(
∇φ

1+|∇φ|2

)
√∫

Ω
α
2 |∆φ|2 −

1
2 ln(1 + |∇φ|2)dx + C0

.

Therefore, we can use the SAV approach to construct, for (5.9), second-order, linear, uncon-
ditionally energy stable schemes which only require, at each time step, solving two linear
equations of the form

(I + ∆t∆2)φ = f.

It is clear that the SAV approach is more efficient and easier to implement than existing
energy stable schemes which involve solving nonlinear equations (cf., for instance, [50, 67,
61]). We refer to [20] for more detail about the SAV schemes and their numerical validations.

5.3. Q-tensor model for rod-like liquid crystals. In many liquid crystal models,
a symmetric traceless second-order tensor Q ∈ R3×3 is used to described the orientational
order. We consider the Landau-de Gennes free energy [22] that has been applied to study
various phenomena, both analytically (see for example [55, 59]) and numerically (see for
example [70, 63, 78]). It can be written as E [Q(x)] = Eb + Ee, where

Eb =

∫
Ω

fb(Q)dx =

∫
Ω

[
a

2
trQ2 − b

3
trQ3 +

c

4
(trQ2)2]dx,(5.10)
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Ee =

∫
Ω

[
L1

2
|∇Q|2 +

L2

2

3∑
k=1

∂iQik∂jQjk +
L3

2

3∑
k=1

∂iQjk∂jQik]dx.(5.11)

To ensure the lower-boundedness, it requires c > 0, L1, L1 + L2 + L3 > 0 so that we have
Eb, Ee ≥ 0.

We consider the L2 gradient flow,

∂Qij
∂t

= −
(
δE
δQ

[Q]

)
ij

, 1 ≤ i, j ≤ 3,(5.12)

with (
δEb
δQ

[Q]

)
ij

=aQij − b(QikQkj −
1

3
trQ2 · δij) + ctrQ2 ·Qij ,(5.13)

(
δEe
δQ

[Q]

)
ij

=− L1∆Qij −
L2 + L3

2

( 3∑
k=1

(∂ikQjk + ∂jkQik)− 2

3

3∑
k,l=1

∂klQklδij

)
.(5.14)

We can see that the components of Q are coupled both in Eb and Ee, which makes it difficult
to deal with numerically.

Since we have a positive quartic term c(trQ2)2, we can choose a1, C0 ≥ 0 such that
fb(Q)− a1trQ2/2 + C0 > 0. We introduce a scalar auxiliary variable

r(t) =
√
E1 :=

√
Eb(Q)−

∫
Ω

a1

2
trQ2dx + C0.

Let L be defined as

LQ = a1Q+
δEe
δQ

[Q],

where (δEe/δQ)[Q] defines a linear operator on Q. Hence, we can rewrite (5.12) as:

∂Q

∂t
= −µ,

µ = LQ+
r(t)√
E1
δE1
δQ

[Q];

dr

dt
=

1

2
√
E1

(
δE1
δQ

[Q],
∂Q

∂t
).

(5.15)

where we define the inner product as (A,B) =
∫

Ω

∑3
i,j=1AijBijdx. Then, the SAV/CN

scheme for (5.15) is:

Qn+1 −Qn

∆t
=− µn+1/2,(5.16a)

µn+1/2 =L1

2
(Qn+1 +Qn) +

rn+1 + rn

2
√
E1[Q̄n+1/2]

δE1
δQ

[Q̄n+1/2],(5.16b)

rn+1 − rn =
1

2
√
E1[Q̄n+1/2]

(δE1
δQ

[Q̄n+1/2], Qn+1 −Qn
)
.(5.16c)

One can easily show that the above scheme is unconditionally energy stable. Below, we
describe how to implement it efficiently.
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Denoting

S =
1

2
√
E1[Q̄n+1/2]

δE1
δQ

[Q̄n+1/2],

we can rewrite (5.16) into a coupled linear system of the form

(1 + λL)Qn+1 +
λ

2
S(S,Qn+1) = bn, 1 ≤ i, j ≤ 3,(5.17)

where λ = ∆t
2 , and the scalar αn+1 = (S,Qn+1) can be solved explicitly as follows. Multi-

plying (5.17) with (1 + λL)−1, we get

Qn+1 +
λ

2
· αn+1(I + λL)−1S = (1 + λL)−1bn.(5.18)

Then taking the inner product of the above with S, we obtain

αn+1
(

1 +
λ

2

(
S,
(
1 + λL)−1S

))
=
(
S, (I + λL)−1bn

)
.(5.19)

Thus, we can find αn+1 by solving two equations of the form

(5.20) (I + λL)Q = g,

which can be efficiently solved since they are simply coupled second-order equations with
constant coefficients. For example, in the case of periodic boundary conditions, we can
write down the solution explicitly as follows. Because Q is symmetric and traceless, we
choose x = (Q11, Q22, Q12, Q13, Q23)T as independent variables. We expand the above five
variables by Fourier series,

Qij =
∑

k1,k2,k3

Q̂k1k2k3ij exp(i(k1x1 + k2x2 + k3x3)).

Then, when solving the linear equation (5.20), only the Fourier coefficients with the same
indices (k1, k2, k3) are coupled. More precisely, for each (k1, k2, k3), and the coefficient
matrix for the unknowns Q̂k1k2k3ij with (ij = 11, 22, 12, 13, 23) is given by

Ak1k2k3 = 1 + λ(a1 + L1(k2
1 + k2

2 + k2
3))I

− λ(L2 + L3)


− 2

3k
2
1 − 1

3k
2
3

1
3k

2
2 − 1

3k
2
3 − 1

3k1k2 − 1
3k1k3

2
3k2k3

1
3k

2
1 − 1

3k
2
3 − 2

3k
2
2 − 1

3k
2
3 − 1

3k1k2
2
3k1k3 − 1

3k2k3

− 1
2k1k2 − 1

2k1k2 − 1
2k

2
1 − 1

2k
2
2 − 1

2k2k3 − 1
2k1k3

0 1
2k1k3 − 1

2k2k3 − 1
2k

2
1 − 1

2k
2
3 − 1

2k1k2
1
2k2k3 0 − 1

2k1k3 − 1
2k1k2 − 1

2k
2
2 − 1

2k
2
3

 .

Hence, we can obtain the Fourier coefficients Q̂k1k2k3ij , for each i, j, by inverting the above
5× 5 matrix.

Example 8. We use SAV/CN to solve (5.12) in [0, L]2, L = 2π with periodic boundary
conditions, discretized with 64 × 64 Fourier series and ∆t = 10−3. The parameters are
chosen as a = −1/25, b = c = 1, L1 = L2 + L3 = 1 and a1 = 0, C0 = 10.

With these parameters, the global minimizers of the bulk energy density fb(Q) can be
written as

(5.21) Q =
3

5
(n⊗ n− 1

3
I),
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Fig. 11. (Example 8) Evolution of principal eigenvector.
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Fig. 12. (Example 8) Energy evolution.

where n is arbitrary unit vector. We choose the initial value such that Q(x, y) has this form
at each point, with

(5.22) n(x, y) =

{
(1, 0, 0)T , |x− L

2 | ≤
L
4 and |y − L

2 | ≤
L
4 ,

(0, 1, 0)T , |x− L
2 | >

L
4 or |y − L

2 | >
L
4 .

To present the result, we draw the field of principal eigenvector of Q(x, y) (see Fig. 11),
representing the direction along which liquid crystalline molecules accumulate. Initially,
the principal eigenvector is along the x-direction in a square region, while is along the y-
direction elsewhere. The square region is first driven into a circle by the gradient flow,
then shrinks until vanishes. The energy evolution, with the original and modified energy
indistinguishable, is shown in Fig. 12. We observe that the energy dissipation is satisfied.

6. Conclusion. We proposed a new SAV approach for dealing with a large class of gra-
dient flows. This approach keeps all advantages of the IEQ approach, namely, the schemes
are unconditionally stable about a modified energy, linear and second-order accurate, while
offers the following additional advantages:

• It greatly simplifies the implementation and is much more efficient: at each time
step of the SAV schemes, the computation of the scalar auxiliary variable rn+1

and the original unknowns are totally decoupled and only requires solving linear
systems with constant coefficients.

• It only requires E1[φ] =
∫

Ω
g(φ, . . . ,∇mφ)dx, instead of g(φ, . . . ,∇mφ), be bounded

from below. It also allows us to deal with nonlinear energy functional without the
above form, for example containing multiple integrals. Thus it applies to a larger
class of gradient flows. In particular, it offers an effective approach to deal with
gradient flows with non-local free energy.

Furthermore, we can even construct higher-order stiffly stable schemes with all the above
attributes by combining SAV approach with higher-order BDF schemes. And when cou-
pled with a suitable time adaptive strategy, the SAV schemes are extremely efficient and
applicable to a large class of gradient flows.

Although the SAV approach appears to be applicable for a large class of gradient flows,
an essential requirement for the SAV approach to produce physically consistent results is
that L in the energy splitting (1.3) contains enough dissipative terms (with at least linearized
highest derivative terms) such that E1[φ] is not ”dominant”. This can usually be achieved
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with a clever splitting of the free energy, (3.3) is such an example. A better splitting can
lead to better accuracy. The splitting of energy relies on the understanding of the free
energy and needs to be discussed case by case. Thus, it is a problem that requires further
studies.

We have focused in this paper on gradient flows with linear dissipative mechanisms.
For problems with highly nonlinear dissipative mechanisms, e.g., Gµ = ∇ · (a(φ)∇µ) with
degenerate or singular a(φ) such as in Wasserstein gradient flows or gradient flows with
strong anisotropic free energy [15], the direct application of SAV approach may not be the
most efficient as it leads to degenerate or singular nonlinear equations to solve at each time
step. In [64], we developed an efficient predictor-corrector strategy to deal with this type
of problems without the need to solving nonlinear equations.

There may also be obstacle potentials, such as logarithmic potentials, in the nonlinear
free energy, which impose constraints on the unknown functions. In some PDEs, these con-
straints are also crucial for the dissipative operators to be non-positive. The SAV approach
does not provide a mechanism that keep these constraints in the time-discretized schemes.
To let the numerical solutions satisfy these constraints, one may need to add restrictions
on the time step or find alternative approaches.

While it is important that numerical schemes for gradient flows obey a discrete energy
dissipation law, the energy dissipation itself does not guarantee the convergence. In another
work [68], convergence and error analysis for the SAV approach is carried out. It is proved
that with mild conditions on the nonlinear term E1, the SAV schemes converge to the exact
solution of the original problem at the rate identical to the truncation error. This applies
to most of the equations discussed in this paper.
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