An Analytic Grothendieck Riemann Roch Theorem

Xiang Tang

Washington University in St. Louis

March 26, 2019

Outline

Outline

• In this talk, we will discuss an index problem arising from functional analysis, i.e. the Arveson-Douglas conjecture. We will present some recent progress in the study of this index problem.

Outline

- In this talk, we will discuss an index problem arising from functional analysis, i.e. the Arveson-Douglas conjecture. We will present some recent progress in the study of this index problem.
- This is a fundamental and beautiful problem connected to many different branches of Mathematics. We would like to take this opportunity to encourage our audience to join our journey of exploring this problem.

Outline

- In this talk, we will discuss an index problem arising from functional analysis, i.e. the Arveson-Douglas conjecture. We will present some recent progress in the study of this index problem.
- This is a fundamental and beautiful problem connected to many different branches of Mathematics. We would like to take this opportunity to encourage our audience to join our journey of exploring this problem.
- This talk is based on joint work with R. Douglas, M. Jabbari, and G. Yu.

1 Toeplitz Index Theorem

- Toeplitz operators on the unit disk
- Toeplitz operators on the ball

2 Arveson-Douglas Conjecture

- Essential normality
- Geometry and an index problem

3 Recent Progress

- Radical case
- Non-radical case
- Beyond topology

Toeplitz operators on the unit disk Toeplitz operators on the ball

Table of Contents

1 Toeplitz Index Theorem

- Toeplitz operators on the unit disk
- Toeplitz operators on the ball

2 Arveson-Douglas Conjecture

- Essential normality
- Geometry and an index problem

3 Recent Progress

- Radical case
- Non-radical case
- Beyond topology

Toeplitz operators on the unit disk Toeplitz operators on the ball

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} .

Toeplitz operators on the unit disk Toeplitz operators on the ball

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . Let $L^2_a(\mathbb{D})$ be the Hilbert space of square integrable analytic functions on \mathbb{D} with respect to the Lebesgue measure.

Toeplitz operators on the unit disk Toeplitz operators on the ball

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . Let $L^2_a(\mathbb{D})$ be the Hilbert space of square integrable analytic functions on \mathbb{D} with respect to the Lebesgue measure. Let z be the coordinate function on \mathbb{C} .

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . Let $L^2_a(\mathbb{D})$ be the Hilbert space of square integrable analytic functions on \mathbb{D} with respect to the Lebesgue measure. Let z be the coordinate function on \mathbb{C} . Consider the Toeplitz operator $T_z: L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D})$ by

$$T_z(\xi) := z\xi.$$

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . Let $L^2_a(\mathbb{D})$ be the Hilbert space of square integrable analytic functions on \mathbb{D} with respect to the Lebesgue measure. Let z be the coordinate function on \mathbb{C} . Consider the Toeplitz operator $T_z: L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D})$ by

$$T_z(\xi) := z\xi.$$

Proposition

The kernel of the operator T_z is trivial.

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . Let $L^2_a(\mathbb{D})$ be the Hilbert space of square integrable analytic functions on \mathbb{D} with respect to the Lebesgue measure. Let z be the coordinate function on \mathbb{C} . Consider the Toeplitz operator $T_z: L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D})$ by

$$T_z(\xi) := z\xi.$$

Proposition

The kernel of the operator T_z is trivial. The cokernel of T_z , i.e. $\ker(T_z^*)$, is spanned by the constant function 1 in $L^2_a(\mathbb{D})$.

Toeplitz operators on the unit disk Toeplitz operators on the ball

Fredholm Index

Operators with finite dimensional kernel an cokernel are called Fredholm operators.

Toeplitz operators on the unit disk Toeplitz operators on the ball

Fredholm Index

Operators with finite dimensional kernel an cokernel are called Fredholm operators.

Example

The operator T_z is a Fredholm operator.

Fredholm Index

Operators with finite dimensional kernel an cokernel are called Fredholm operators.

Example

The operator T_z is a Fredholm operator.

The most important invariant associated to a Fredholm operator T is called the Fredholm index,

 $\operatorname{ind}(T) := \dim \left(\ker(T) \right) - \dim \left(\operatorname{coker}(T) \right).$

Fredholm Index

Operators with finite dimensional kernel an cokernel are called Fredholm operators.

Example

The operator T_z is a Fredholm operator.

The most important invariant associated to a Fredholm operator T is called the Fredholm index,

$$\operatorname{ind}(T) := \dim \left(\ker(T) \right) - \dim \left(\operatorname{coker}(T) \right).$$

Example

 $\operatorname{ind}(T_z) = -1.$

Toeplitz operators on the unit disk Toeplitz operators on the ball

Toeplitz index

The dimension of $\ker(T)$ may change with small perturbations, but the Fredholm index $\operatorname{ind}(T)$ stays constant with respect to continuous variations.

Toeplitz operators on the unit disk Toeplitz operators on the ball

Toeplitz index

The dimension of $\ker(T)$ may change with small perturbations, but the Fredholm index $\operatorname{ind}(T)$ stays constant with respect to continuous variations.

Let f be a continuous function on $\overline{\mathbb{D}}$.

Toeplitz index

The dimension of $\ker(T)$ may change with small perturbations, but the Fredholm index $\operatorname{ind}(T)$ stays constant with respect to continuous variations.

Let f be a continuous function on $\overline{\mathbb{D}}$. Define

 $T_f: L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D}), \ T_f(\xi) := S(f\xi),$

where $S: L^2(\mathbb{D}) \to L^2_a(\mathbb{D})$ is the orthogonal projection to the closed subspace $L^2_a(\mathbb{D}) \subset L^2(\mathbb{D})$.

Toeplitz index

The dimension of $\ker(T)$ may change with small perturbations, but the Fredholm index $\operatorname{ind}(T)$ stays constant with respect to continuous variations.

Let f be a continuous function on $\overline{\mathbb{D}}$. Define

 $T_f: L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D}), \ T_f(\xi) := S(f\xi),$

where $S: L^2(\mathbb{D}) \to L^2_a(\mathbb{D})$ is the orthogonal projection to the closed subspace $L^2_a(\mathbb{D}) \subset L^2(\mathbb{D})$.

Theorem

- $T_f: L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D})$ is Fredholm if and only if $f|_{\partial \overline{\mathbb{D}}}$ is invertible;
- **2** When T_f is Fredholm, $ind(T_f)$ is

$$-\operatorname{wind}\Big(f|_{\partial\overline{\mathbb{D}}}:S^1\to\mathbb{C}^*\Big).$$

Toeplitz operators on the unit disk Toeplitz operators on the ball

Extension and K-homology

Proposition

The commutator $[T_z, T_z^*]$ is a compact operator on $L^2_a(\mathbb{D})$.

Toeplitz operators on the unit disk Toeplitz operators on the ball

Extension and K-homology

Proposition

The commutator $[T_z, T_z^*]$ is a compact operator on $L^2_a(\mathbb{D})$.

• Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$.

Toeplitz operators on the unit disk Toeplitz operators on the ball

Extension and K-homology

Proposition

The commutator $[T_z, T_z^*]$ is a compact operator on $L^2_a(\mathbb{D})$.

- Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$.
- Let $\mathcal{T}(\mathbb{D})$ be the closed *-subalgebra of $B(L^2_a(\mathbb{D}))$ generated by T_z and $\mathcal{K}(L^2_a(\mathbb{D}))$ with respect to the operator norm topology.

Toeplitz operators on the unit disk Toeplitz operators on the ball

Extension and K-homology

Proposition

The commutator $[T_z, T_z^*]$ is a compact operator on $L^2_a(\mathbb{D})$.

- Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$.
- Let $\mathcal{T}(\mathbb{D})$ be the closed *-subalgebra of $B(L^2_a(\mathbb{D}))$ generated by T_z and $\mathcal{K}(L^2_a(\mathbb{D}))$ with respect to the operator norm topology.
- Let $C(S^1)$ be the algebra of continuous functions on $S^1 = \partial \mathbb{D}$.

Toeplitz operators on the unit disk Toeplitz operators on the ball

Extension and K-homology

Proposition

The commutator $[T_z, T_z^*]$ is a compact operator on $L^2_a(\mathbb{D})$.

- Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$.
- Let $\mathcal{T}(\mathbb{D})$ be the closed *-subalgebra of $B(L^2_a(\mathbb{D}))$ generated by T_z and $\mathcal{K}(L^2_a(\mathbb{D}))$ with respect to the operator norm topology.
- Let $C(S^1)$ be the algebra of continuous functions on $S^1 = \partial \mathbb{D}$.

We have the following short exact sequence,

$$0 \longrightarrow \mathcal{K}(L^2_a(\mathbb{D})) \longrightarrow \mathcal{T}(\mathbb{D}) \longrightarrow C(S^1) \longrightarrow 0.$$

Toeplitz operators on the unit disk Toeplitz operators on the ball

Extension and K-homology

Proposition

The commutator $[T_z, T_z^*]$ is a compact operator on $L^2_a(\mathbb{D})$.

- Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$.
- Let $\mathcal{T}(\mathbb{D})$ be the closed *-subalgebra of $B(L^2_a(\mathbb{D}))$ generated by T_z and $\mathcal{K}(L^2_a(\mathbb{D}))$ with respect to the operator norm topology.
- Let $C(S^1)$ be the algebra of continuous functions on $S^1 = \partial \mathbb{D}$.

We have the following short exact sequence,

$$0 \longrightarrow \mathcal{K}(L^2_a(\mathbb{D})) \longrightarrow \mathcal{T}(\mathbb{D}) \longrightarrow C(S^1) \longrightarrow 0.$$

The above extension defines a K-homology class $[\mathcal{T}(\mathbb{D})]$ in $K_1(S^1)$.

Toeplitz operators on the unit disk Toeplitz operators on the ball

The Atiyah-Singer index theorem

And an invertible function f in $C(S^1)$ defines an element [f] in $K^1(S^1)$.

The Atiyah-Singer index theorem

And an invertible function f in $C(S^1)$ defines an element [f] in $K^1(S^1)$.

The Fredholm index $\operatorname{ind}(T_f)$ can be interpreted as the pairing,

 $\operatorname{ind}(T_f) = \langle [\mathcal{T}(\mathbb{D})], [f] \rangle.$

The Atiyah-Singer index theorem

And an invertible function f in $C(S^1)$ defines an element [f] in $K^1(S^1)$.

The Fredholm index $\operatorname{ind}(T_f)$ can be interpreted as the pairing,

$$\operatorname{ind}(T_f) = \langle [\mathcal{T}(\mathbb{D})], [f] \rangle.$$

The operator $\frac{1}{\sqrt{-1}} \frac{d}{d\theta}$ is an elliptic differential operator on S^1 of order 1. It also defines an element in $K_1(S^1)$.

The Atiyah-Singer index theorem

And an invertible function f in $C(S^1)$ defines an element [f] in $K^1(S^1)$.

The Fredholm index $\operatorname{ind}(T_f)$ can be interpreted as the pairing,

$$\operatorname{ind}(T_f) = \langle [\mathcal{T}(\mathbb{D})], [f] \rangle.$$

The operator $\frac{1}{\sqrt{-1}} \frac{d}{d\theta}$ is an elliptic differential operator on S^1 of order 1. It also defines an element in $K_1(S^1)$.

Theorem (Baum-Douglas)

In $K_1(S^1)$, $[\mathcal{T}(\mathbb{D})] = [\frac{1}{\sqrt{-1}} \frac{d}{d\theta}]$.

The Atiyah-Singer index theorem

And an invertible function f in $C(S^1)$ defines an element [f] in $K^1(S^1)$.

The Fredholm index $\operatorname{ind}(T_f)$ can be interpreted as the pairing,

$$\operatorname{ind}(T_f) = \langle [\mathcal{T}(\mathbb{D})], [f] \rangle.$$

The operator $\frac{1}{\sqrt{-1}} \frac{d}{d\theta}$ is an elliptic differential operator on S^1 of order 1. It also defines an element in $K_1(S^1)$.

Theorem (Baum-Douglas)

In $K_1(S^1)$, $[\mathcal{T}(\mathbb{D})] = [\frac{1}{\sqrt{-1}} \frac{d}{d\theta}]$.

Corollary (Atiyah-Singer)

$$\langle [\mathcal{T}(\mathbb{D})], [f] \rangle = \langle [\frac{1}{\sqrt{-1}} \frac{d}{d\theta}], [f] \rangle = \operatorname{ind}(T_f) = -\operatorname{wind}(f|_{\partial \overline{\mathbb{D}}}).$$

Toeplitz operators on the unit disk Toeplitz operators on the ball

Unit ball

Let \mathbb{B}^m be the unit ball in the complex plane \mathbb{C}^m .

Toeplitz operators on the unit disk Toeplitz operators on the ball

Unit ball

Let \mathbb{B}^m be the unit ball in the complex plane \mathbb{C}^m . Let $L^2_a(\mathbb{B}^m)$ be the Hilbert space of square integrable analytic functions on \mathbb{B}^m with respect to the Lebesgue measure.

Toeplitz operators on the unit disk Toeplitz operators on the ball

Unit ball

Let \mathbb{B}^m be the unit ball in the complex plane \mathbb{C}^m . Let $L^2_a(\mathbb{B}^m)$ be the Hilbert space of square integrable analytic functions on \mathbb{B}^m with respect to the Lebesgue measure. Let z^1, \dots, z^m be the coordinate function on \mathbb{C}^m .

Toeplitz operators on the unit disk Toeplitz operators on the ball

Unit ball

Let \mathbb{B}^m be the unit ball in the complex plane \mathbb{C}^m . Let $L^2_a(\mathbb{B}^m)$ be the Hilbert space of square integrable analytic functions on \mathbb{B}^m with respect to the Lebesgue measure. Let z^1, \dots, z^m be the coordinate function on \mathbb{C}^m . Consider the Toeplitz operator $T_{z^i}: L^2_a(\mathbb{B}^m) \to L^2_a(\mathbb{B}^m)$ by

$$T_{z^i}(\xi) := z^i \xi.$$
Toeplitz operators on the unit disk Toeplitz operators on the ball

Unit ball

Let \mathbb{B}^m be the unit ball in the complex plane \mathbb{C}^m . Let $L^2_a(\mathbb{B}^m)$ be the Hilbert space of square integrable analytic functions on \mathbb{B}^m with respect to the Lebesgue measure. Let z^1, \dots, z^m be the coordinate function on \mathbb{C}^m . Consider the Toeplitz operator $T_{z^i}: L^2_a(\mathbb{B}^m) \to L^2_a(\mathbb{B}^m)$ by

$$T_{z^i}(\xi) := z^i \xi.$$

Proposition

The commutators

$$[T_{z^i},T_{z^j}^*],\ i,j=1,...,m,$$

are compact operators on $L^2_a(\mathbb{B}^m)$.

Toeplitz operators on the unit disk Toeplitz operators on the ball

To plitz index theorem for \mathbb{B}^m

Toeplitz operators on the unit disk Toeplitz operators on the ball

To plitz index theorem for \mathbb{B}^m

Let $\mathcal{T}(\mathbb{B}^n)$ be the unital C^* -algebra, norm closed *-subalgebra of $B(L^2_a(\mathbb{B}^m))$, generated by T_{z^1}, \cdots, T_{z^m} and $\mathcal{K}(L^2_a(\mathbb{B}^m))$.

Toeplitz operators on the unit disk Toeplitz operators on the ball

To plitz index theorem for \mathbb{B}^m

Let $\mathcal{T}(\mathbb{B}^n)$ be the unital C^* -algebra, norm closed *-subalgebra of $B(L^2_a(\mathbb{B}^m))$, generated by T_{z^1}, \cdots, T_{z^m} and $\mathcal{K}(L^2_a(\mathbb{B}^m))$. Let $C(\mathbb{S}^{2m-1})$ be the algebra of continuous functions on $\mathbb{S}^{2m-1} = \partial \mathbb{B}^m$.

Toeplitz operators on the unit disk Toeplitz operators on the ball

To eplitz index theorem for \mathbb{B}^m

Let $\mathcal{T}(\mathbb{B}^n)$ be the unital C^* -algebra, norm closed *-subalgebra of $B(L^2_a(\mathbb{B}^m))$, generated by T_{z^1}, \cdots, T_{z^m} and $\mathcal{K}(L^2_a(\mathbb{B}^m))$. Let $C(\mathbb{S}^{2m-1})$ be the algebra of continuous functions on $\mathbb{S}^{2m-1} = \partial \mathbb{B}^m$.

We have the following short exact sequence of C^* -algebras,

$$0 \longrightarrow \mathcal{K}(L^2_a(\mathbb{B}^m)) \longrightarrow \mathcal{T}(\mathbb{B}^m) \longrightarrow C(\mathbb{S}^{2m-1}) \longrightarrow 0.$$

Toeplitz operators on the unit disk Toeplitz operators on the ball

To eplitz index theorem for \mathbb{B}^m

Let $\mathcal{T}(\mathbb{B}^n)$ be the unital C^* -algebra, norm closed *-subalgebra of $B(L^2_a(\mathbb{B}^m))$, generated by T_{z^1}, \cdots, T_{z^m} and $\mathcal{K}(L^2_a(\mathbb{B}^m))$. Let $C(\mathbb{S}^{2m-1})$ be the algebra of continuous functions on $\mathbb{S}^{2m-1} = \partial \mathbb{B}^m$.

We have the following short exact sequence of C^* -algebras,

$$0 \longrightarrow \mathcal{K}(L^2_a(\mathbb{B}^m)) \longrightarrow \mathcal{T}(\mathbb{B}^m) \longrightarrow C(\mathbb{S}^{2m-1}) \longrightarrow 0.$$

Theorem (Venugopalkrishna, Boutet de Monvel, Baum-Douglas-Taylor)

In $K_1(\mathbb{S}^{2m-1})$, $[\mathcal{T}(\mathbb{D})] = [D]$, where D is the Spin^c Dirac operator associated to the CR structure on \mathbb{S}^{2m-1} .

Table of Contents

1 Toeplitz Index Theorem

- Toeplitz operators on the unit disk
- Toeplitz operators on the ball

2 Arveson-Douglas Conjecture

- Essential normality
- Geometry and an index problem

3 Recent Progress

- Radical case
- Non-radical case
- Beyond topology

Essential normality Geometry and an index problem

Arveson-Douglas Conjecture

Let $A = \mathbb{C}[z^1, \cdots, z^m]$ be the algebra of polynomials of *m*-variables.

Arveson-Douglas Conjecture

Let $A = \mathbb{C}[z^1, \cdots, z^m]$ be the algebra of polynomials of *m*-variables.

Let I an ideal of A, and \overline{I} be the closure of I in $L^2_a(\mathbb{B}^m)$.

Arveson-Douglas Conjecture

Let $A = \mathbb{C}[z^1, \cdots, z^m]$ be the algebra of polynomials of *m*-variables.

Let I an ideal of A, and \overline{I} be the closure of I in $L^2_a(\mathbb{B}^m)$. **Observation :** \overline{I} is an invariant subspace of $L^2_a(\mathbb{B}^m)$ with respect to the operators T_{z^1}, \dots, T_{z^m} .

Arveson-Douglas Conjecture

Let $A = \mathbb{C}[z^1, \cdots, z^m]$ be the algebra of polynomials of *m*-variables.

Let I an ideal of A, and \overline{I} be the closure of I in $L^2_a(\mathbb{B}^m)$. **Observation :** \overline{I} is an invariant subspace of $L^2_a(\mathbb{B}^m)$ with respect to the operators T_{z^1}, \dots, T_{z^m} .

Conjecture (Arveson-Douglas)

The commutators

$$[T_{z^i}|_{\bar{I}}, (T_{z^j}|_{\bar{I}})^*], \ i, j = 1, ..., m,$$

are all compact.

Arveson-Douglas Conjecture

Let $A = \mathbb{C}[z^1, \cdots, z^m]$ be the algebra of polynomials of *m*-variables.

Let I an ideal of A, and \overline{I} be the closure of I in $L^2_a(\mathbb{B}^m)$. **Observation :** \overline{I} is an invariant subspace of $L^2_a(\mathbb{B}^m)$ with respect to the operators T_{z^1}, \dots, T_{z^m} .

Conjecture (Arveson-Douglas)

The commutators

$$[T_{z^i}|_{\bar{I}}, (T_{z^j}|_{\bar{I}})^*], \ i, j = 1, ..., m,$$

are all compact.

Remark

When the above property holds, we say that \overline{I} is essentially normal.

Researchers from all over the world have studied this conjecture. And many cases of the Arveson-Douglas conjecture are verified.

Researchers from all over the world have studied this conjecture. And many cases of the Arveson-Douglas conjecture are verified. The following are the techniques that have been applied.

Operator theory

- Operator theory
- 2 Harmonic analysis

- Operator theory
- **2** Harmonic analysis
- 3 Geometry

- Operator theory
- **2** Harmonic analysis
- 3 Geometry
- ④ Commutative algebra

- Operator theory
- **2** Harmonic analysis
- 3 Geometry
- ④ Commutative algebra
- O PDE

- Operator theory
- **2** Harmonic analysis
- 3 Geometry
- ④ Commutative algebra
- 6 PDE
- Noncommutative geometry

Researchers from all over the world have studied this conjecture. And many cases of the Arveson-Douglas conjecture are verified. The following are the techniques that have been applied.

- Operator theory
- **2** Harmonic analysis
- 3 Geometry
- ④ Commutative algebra
- 6 PDE

...

• Noncommutative geometry

The quotient module

Let Q_I be the quotient $L^2_a(\mathbb{B}^m)/\overline{I}$. Then we have the following exact sequence of Hilbert spaces.

$$0 \longrightarrow \bar{I} \longrightarrow L^2_a(\mathbb{B}^m) \longrightarrow Q_I \longrightarrow 0.$$

The quotient module

Let Q_I be the quotient $L^2_a(\mathbb{B}^m)/\overline{I}$. Then we have the following exact sequence of Hilbert spaces.

$$0 \longrightarrow \bar{I} \longrightarrow L^2_a(\mathbb{B}^m) \longrightarrow Q_I \longrightarrow 0.$$

Proposition

The module \overline{I} is essentially normal if and only if the quotient Q_I is essentially normal.

The quotient module

Let Q_I be the quotient $L^2_a(\mathbb{B}^m)/\overline{I}$. Then we have the following exact sequence of Hilbert spaces.

$$0 \longrightarrow \bar{I} \longrightarrow L^2_a(\mathbb{B}^m) \longrightarrow Q_I \longrightarrow 0.$$

Proposition

The module \overline{I} is essentially normal if and only if the quotient Q_I is essentially normal.

Let $\sigma_e(Q_I)$ be the essential spectrum space associated to $(T_{z^1}, \cdots, T_{z^m})$, and $\mathcal{T}(Q_I)$ be the unital C^* -algebra generated by T_{z^1}, \cdots, T_{z^m} and $\mathcal{K}(L^2_a(Q_I))$.

An index problem

We are interested in the following index problem.

Question (R. Douglas)

Suppose that the Arveson-Douglas conjecture holds true for an ideal I. Identify the K-homology class $[\mathcal{T}(Q_I)]$ defined by the following extension

$$0 \longrightarrow \mathcal{K}(L^2_a(Q_I)) \longrightarrow \mathcal{T}(Q_I) \longrightarrow C(\sigma_e(Q_I)) \longrightarrow 0,$$

in $K_1(\sigma_e(Q_I))$.

An index problem

We are interested in the following index problem.

Question (R. Douglas)

Suppose that the Arveson-Douglas conjecture holds true for an ideal I. Identify the K-homology class $[\mathcal{T}(Q_I)]$ defined by the following extension

$$0 \longrightarrow \mathcal{K}(L^2_a(Q_I)) \longrightarrow \mathcal{T}(Q_I) \longrightarrow C(\sigma_e(Q_I)) \longrightarrow 0,$$

in $K_1(\sigma_e(Q_I))$.

Example

In the case that $I = \{0\}$ and m = 1, the Toeplitz index theorem for $S^1 = \partial \mathbb{D}$ gives the answer to the above question.

Let Z_I be the zero set of the ideal I, i.e.

$$Z_I := \{ z | f(z) = 0, \forall f \in I \}.$$

Let Ω_I be the intersection $\Omega_I := Z_I \cap \mathbb{B}^m$ with the boundary $\partial \Omega_I \subset \mathbb{S}^{2m-1} = \partial \mathbb{B}^m$.

Let Z_I be the zero set of the ideal I, i.e.

$$Z_I := \{ z | f(z) = 0, \forall f \in I \}.$$

Let Ω_I be the intersection $\Omega_I := Z_I \cap \mathbb{B}^m$ with the boundary $\partial \Omega_I \subset \mathbb{S}^{2m-1} = \partial \mathbb{B}^m$. Intuition : The quotient space Q_I can be viewed as " $L^2_a(\Omega_I)$ ".

Let Z_I be the zero set of the ideal I, i.e.

$$Z_I := \{ z | f(z) = 0, \forall f \in I \}.$$

Let Ω_I be the intersection $\Omega_I := Z_I \cap \mathbb{B}^m$ with the boundary $\partial \Omega_I \subset \mathbb{S}^{2m-1} = \partial \mathbb{B}^m$.

Intuition : The quotient space Q_I can be viewed as " $L^2_a(\Omega_I)$ ". Suppose that I is homogeneous, i.e. I is generated by homogeneous polynomials.

$$f(\lambda z^1, \cdots, \lambda z^m) \in I, \ \forall f \in I.$$

Let Z_I be the zero set of the ideal I, i.e.

$$Z_I := \{ z | f(z) = 0, \forall f \in I \}.$$

Let Ω_I be the intersection $\Omega_I := Z_I \cap \mathbb{B}^m$ with the boundary $\partial \Omega_I \subset \mathbb{S}^{2m-1} = \partial \mathbb{B}^m$.

Intuition : The quotient space Q_I can be viewed as " $L^2_a(\Omega_I)$ ". Suppose that I is homogeneous, i.e. I is generated by homogeneous polynomials.

$$f(\lambda z^1, \cdots, \lambda z^m) \in I, \ \forall f \in I.$$

The zero variety Z_I is equipped with a \mathbb{C}^* -action, and $\partial \Omega_I$ is equipped with an S^1 -action.

Let Z_I be the zero set of the ideal I, i.e.

$$Z_I := \{ z | f(z) = 0, \forall f \in I \}.$$

Let Ω_I be the intersection $\Omega_I := Z_I \cap \mathbb{B}^m$ with the boundary $\partial \Omega_I \subset \mathbb{S}^{2m-1} = \partial \mathbb{B}^m$.

Intuition : The quotient space Q_I can be viewed as " $L^2_a(\Omega_I)$ ". Suppose that I is homogeneous, i.e. I is generated by homogeneous polynomials.

$$f(\lambda z^1, \cdots, \lambda z^m) \in I, \ \forall f \in I.$$

The zero variety Z_I is equipped with a \mathbb{C}^* -action, and $\partial \Omega_I$ is equipped with an S^1 -action.

Denote by $\mathcal{Y}_I := \partial \Omega_I / S^1$, an algebraic subset of $\mathbb{C}P^{m-1}$.

Grothendieck Riemann Roch Theorem

Theorem (Grothendieck)

Let $i: \mathcal{Y}_I \hookrightarrow \mathbb{C}P^{m-1}$ be the natural embedding. Assume that \mathcal{Y}_I is smooth. The following commutative diagram holds.

$$\begin{array}{ccc} K_0(\mathcal{Y}_I) & \stackrel{i_!}{\longrightarrow} & K_0(\mathbb{C}P^{m-1}) \\ & & & & \downarrow^{\mathrm{Ch}} \\ & & & & \downarrow^{\mathrm{Ch}} \\ & & & & A(\mathcal{Y}_I) & \stackrel{i_*}{\longrightarrow} & A(\mathbb{C}P^{m-1}) \end{array}$$

In particular, for $\mathcal{E} \in K_0(\mathcal{Y}_I)$,

$$i_*(\operatorname{Ch}(\mathcal{E}) \cup Td(\mathcal{Y}_I)) = \operatorname{Ch}(i_!(\mathcal{E})) \cup Td(\mathbb{C}P^{m-1})$$

Analytic Grothendieck Riemann Roch Theorem

When \mathcal{Y}_I is not smooth, the geometric fundamental class of \mathcal{Y}_I is not unique. Algebraic geometers have developed intersection homology, perverse sheaves, \cdots , to study the generalization of Grothendieck Riemann Roch Theorem.

Analytic Grothendieck Riemann Roch Theorem

When \mathcal{Y}_I is not smooth, the geometric fundamental class of \mathcal{Y}_I is not unique. Algebraic geometers have developed intersection homology, perverse sheaves, \cdots , to study the generalization of Grothendieck Riemann Roch Theorem.

Observation : Though the geometric fundamental class is not unique, the extension class $[\mathcal{T}(Q_I)]^{S^1} \in K_0(\mathcal{Y}_I)$ is canonically defined.

Analytic Grothendieck Riemann Roch Theorem

When \mathcal{Y}_I is not smooth, the geometric fundamental class of \mathcal{Y}_I is not unique. Algebraic geometers have developed intersection homology, perverse sheaves, \cdots , to study the generalization of Grothendieck Riemann Roch Theorem.

Observation : Though the geometric fundamental class is not unique, the extension class $[\mathcal{T}(Q_I)]^{S^1} \in K_0(\mathcal{Y}_I)$ is canonically defined.

Conjecture (Douglas-T-Yu)

The extension class $[\mathcal{T}(Q_I)]^{S^1}$ is a fundamental class of \mathcal{Y}_I .

Radical case Non-radical case Beyond topology

Table of Contents

1) Toeplitz Index Theorem

- Toeplitz operators on the unit disk
- Toeplitz operators on the ball
- 2 Arveson-Douglas Conjecture
 - Essential normality
 - Geometry and an index problem

3 Recent Progress

- Radical case
- Non-radical case
- Beyond topology
Radical case Non-radical case Beyond topology

Result in the case of complete intersection I

Let I be generated by $p_1, \dots, p_M \in A = \mathbb{C}[z_1, \dots, z_m].$

Result in the case of complete intersection I

Let I be generated by $p_1, \dots, p_M \in A = \mathbb{C}[z_1, \dots, z_m]$. We make the following assumptions.

Assumption

- $M \le m 2;$
- 2 The Jacobian matrix $(∂p_i/∂z_j)_{i,j}$ is of maximal rank on the boundary $∂Ω_I = Z_I ∩ ∂𝔅^m;$
- $\Im Z_I$ intersects $\partial \mathbb{B}^m$ transversely.

Result in the case of complete intersection I

Let I be generated by $p_1, \dots, p_M \in A = \mathbb{C}[z_1, \dots, z_m]$. We make the following assumptions.

Assumption

- $M \le m 2;$
- 2 The Jacobian matrix $(∂p_i/∂z_j)_{i,j}$ is of maximal rank on the boundary $∂Ω_I = Z_I ∩ ∂𝔅^m;$
- $\Im Z_I$ intersects $\partial \mathbb{B}^m$ transversely.

Theorem (Douglas-T-Yu)

Under the above assumptions, the ideal \overline{I} and also the quotient Q_I are essentially normal.

Result in the case of complete intersection I

Let I be generated by $p_1, \dots, p_M \in A = \mathbb{C}[z_1, \dots, z_m]$. We make the following assumptions.

Assumption

- $M \le m 2;$
- ② The Jacobian matrix $(∂p_i/∂z_j)_{i,j}$ is of maximal rank on the boundary $∂Ω_I = Z_I ∩ ∂𝔅^m;$
- $\Im Z_I$ intersects $\partial \mathbb{B}^m$ transversely.

Theorem (Douglas-T-Yu)

Under the above assumptions, the ideal \overline{I} and also the quotient Q_I are essentially normal. The K-homology class $[\mathcal{T}(Q_I)]$ is equal to $[\mathcal{D}]$, where \mathcal{D} is the spin^c-Dirac operator defined by the CR-structure on $\partial\Omega_I$.

Radical case Non-radical case Beyond topology

Some remarks

Radical case Non-radical case Beyond topology

Some remarks

• It was proved recently by Ronald Douglas and Yi Wang that the first two assumptions that $M \leq m-2$ and the Jacobian matrix $(\partial p_i/\partial z_j)_{i,j}$ is of maximal rank on the boundary $\partial \Omega_I = Z_I \cap \partial \mathbb{B}^m$ can be weakened and simplified to one assumption, namely

Radical case Non-radical case Beyond topology

Some remarks

• It was proved recently by Ronald Douglas and Yi Wang that the first two assumptions that $M \leq m-2$ and the Jacobian matrix $(\partial p_i/\partial z_j)_{i,j}$ is of maximal rank on the boundary $\partial \Omega_I = Z_I \cap \partial \mathbb{B}^m$ can be weakened and simplified to one assumption, namely

"the zero variety Z_I has isolated singularities away from $\partial(\Omega_I)$ ".

Radical case Non-radical case Beyond topology

Some remarks

• It was proved recently by Ronald Douglas and Yi Wang that the first two assumptions that $M \leq m-2$ and the Jacobian matrix $(\partial p_i/\partial z_j)_{i,j}$ is of maximal rank on the boundary $\partial \Omega_I = Z_I \cap \partial \mathbb{B}^m$ can be weakened and simplified to one assumption, namely

"the zero variety Z_I has isolated singularities away from $\partial(\Omega_I)$ ".

2 There is an independent work by Engliš-Eschmeier, which is called "Geometric Arveson-Douglas conjecture".

Radical case Non-radical case Beyond topology

Some remarks

• It was proved recently by Ronald Douglas and Yi Wang that the first two assumptions that $M \leq m-2$ and the Jacobian matrix $(\partial p_i/\partial z_j)_{i,j}$ is of maximal rank on the boundary $\partial \Omega_I = Z_I \cap \partial \mathbb{B}^m$ can be weakened and simplified to one assumption, namely

"the zero variety Z_I has isolated singularities away from $\partial(\Omega_I)$ ".

- 2 There is an independent work by Engliš-Eschmeier, which is called "Geometric Arveson-Douglas conjecture".
- Ideals satisfying the assumptions in the theorem are radical, i.e.

Radical case Non-radical case Beyond topology

Some remarks

• It was proved recently by Ronald Douglas and Yi Wang that the first two assumptions that $M \leq m-2$ and the Jacobian matrix $(\partial p_i/\partial z_j)_{i,j}$ is of maximal rank on the boundary $\partial \Omega_I = Z_I \cap \partial \mathbb{B}^m$ can be weakened and simplified to one assumption, namely

"the zero variety Z_I has isolated singularities away from $\partial(\Omega_I)$ ".

- 2 There is an independent work by Engliš-Eschmeier, which is called "Geometric Arveson-Douglas conjecture".
- Objective
 Ideals satisfying the assumptions in the theorem are radical, i.e.
 f|_{ZI} = 0 if and only if f ∈ I.

An example of a non-radical ideal

When I is not radical, the geometry of the space $\partial \Omega_I$ is not sufficient to catch the full information of the K-homology class $[\mathcal{T}(Q_I)]$. This can be seen in the following example.

An example of a non-radical ideal

When I is not radical, the geometry of the space $\partial \Omega_I$ is not sufficient to catch the full information of the K-homology class $[\mathcal{T}(Q_I)]$. This can be seen in the following example.

Example

For
$$m = 2$$
, consider the ideal $I = \langle z_1^2 \rangle \triangleleft A = \mathbb{C}[z_1, z_2].$

An example of a non-radical ideal

When I is not radical, the geometry of the space $\partial \Omega_I$ is not sufficient to catch the full information of the K-homology class $[\mathcal{T}(Q_I)]$. This can be seen in the following example.

Example

For m = 2, consider the ideal $I = \langle z_1^2 \rangle \triangleleft A = \mathbb{C}[z_1, z_2]$. The quotient Q_I can be written as the sum of two space

$$L^2_{a,1}(\mathbb{D})\oplus L^2_{a,2}(\mathbb{D}),$$

where \mathbb{D} is the unit disk inside the complex plane \mathbb{C} , and $L^2_{a,1}(-)$ (and $L^2_{a,2}(-)$) is the weighted Bergman space with respect to the weight defined by the defining function $1 - |z|^2$ (and $(1 - |z|^2)^2$).

A resolution type of result

We generalize the example of $\langle z_1^2 \rangle$ to the following result.

Theorem (Douglas-Jabbari-T-Yu)

Let I be an ideal of $\mathbb{C}[z_1, \dots, z_m]$ generated by monomials, and \overline{I} be its closure in the Bergman space $L^2_a(\mathbb{B}^m)$. There are Bergman space like Hilbert A-modules $\mathcal{A}_0 = L^2_a(\mathbb{B}^m), \mathcal{A}_1, \dots, \mathcal{A}_k$ together with bounded A-module morphisms $\Psi_i : \mathcal{A}_i \to \mathcal{A}_{i+1}$, $i = 0, \dots, k-1$ such that the following exact sequence of Hilbert modules holds

$$0 \longrightarrow \overline{I} \hookrightarrow L^2_a(\mathbb{B}^m) \xrightarrow{\Psi_0} \mathcal{A}_1 \xrightarrow{\Psi_1} \cdots \xrightarrow{\Psi_{k-1}} \mathcal{A}_k \longrightarrow 0.$$

A resolution type of result

We generalize the example of $\langle z_1^2 \rangle$ to the following result.

Theorem (Douglas-Jabbari-T-Yu)

Let I be an ideal of $\mathbb{C}[z_1, \dots, z_m]$ generated by monomials, and \overline{I} be its closure in the Bergman space $L^2_a(\mathbb{B}^m)$. There are Bergman space like Hilbert A-modules $\mathcal{A}_0 = L^2_a(\mathbb{B}^m), \mathcal{A}_1, \dots, \mathcal{A}_k$ together with bounded A-module morphisms $\Psi_i : \mathcal{A}_i \to \mathcal{A}_{i+1}$, $i = 0, \dots, k-1$ such that the following exact sequence of Hilbert modules holds

$$0 \longrightarrow \overline{I} \hookrightarrow L^2_a(\mathbb{B}^m) \xrightarrow{\Psi_0} \mathcal{A}_1 \xrightarrow{\Psi_1} \cdots \xrightarrow{\Psi_{k-1}} \mathcal{A}_k \longrightarrow 0.$$

Like the example of $\langle z_1^2 \rangle$, the Hilbert A-module \mathcal{A}_i , $i = 1, \dots, k$, has a similar geometric structure as a direct sum of (weighted) Bergman spaces on lower dimensional balls.

Radical case Non-radical case Beyond topology

K-homology class

As a corollary of the previous resolution type of result, we obtain the following identification of the K-homology class.

K-homology class

As a corollary of the previous resolution type of result, we obtain the following identification of the K-homology class.

Theorem (Douglas-Jabbari-T-Yu)

Let $\mathcal{T}(\mathcal{A}_i)$ be the unital C^* -algebra generated by Toeplitz operators on \mathcal{A}_i , and σ_i^e be the associated essential spectrum space, i = 1, ..., k. In $K_1(\sigma_1^e \cup \cdots \cup \sigma_k^e)$, the following equation holds,

$$[\mathcal{T}(Q_I)] = [\mathcal{T}(\mathcal{A}_1)] - [\mathcal{T}(\mathcal{A}_2)] + \dots + (-1)^{k-1} [\mathcal{T}(\mathcal{A}_k)],$$

K-homology class

As a corollary of the previous resolution type of result, we obtain the following identification of the K-homology class.

Theorem (Douglas-Jabbari-T-Yu)

Let $\mathcal{T}(\mathcal{A}_i)$ be the unital C^* -algebra generated by Toeplitz operators on \mathcal{A}_i , and σ_i^e be the associated essential spectrum space, i = 1, ..., k. In $K_1(\sigma_1^e \cup \cdots \cup \sigma_k^e)$, the following equation holds,

$$[\mathcal{T}(Q_I)] = [\mathcal{T}(\mathcal{A}_1)] - [\mathcal{T}(\mathcal{A}_2)] + \dots + (-1)^{k-1} [\mathcal{T}(\mathcal{A}_k)],$$

Every algebra $\mathcal{T}(\mathcal{A}_i)$, $i = 1, \dots, k$, can be identified as the algebra of Toeplitz operators on square integrable holomorphic sections of a hermitian vector bundle on a disjoint union of subsets of \mathbb{B}^m . In this way, we obtain a geometric identification of the class $[\mathcal{T}(Q_I)]$.

Radical case Non-radical case Beyond topology

Brieskorn varieties

Take m = 5. Consider the following polynomials

$$p_k := (z^1)^2 + (z^2)^2 + (z^3)^2 + (z^4)^3 + (z^5)^{6k-1}, \ k \in \mathbb{N}.$$

Radical case Non-radical case Beyond topology

Brieskorn varieties

Take m = 5. Consider the following polynomials

$$p_k := (z^1)^2 + (z^2)^2 + (z^3)^2 + (z^4)^3 + (z^5)^{6k-1}, \ k \in \mathbb{N}.$$

The origin $0 \in \mathbb{C}^5$ is an isolated singularity of Z_{p_k} . Choose a sufficiently small $\epsilon > 0$. Let \mathbb{B}^5_{ϵ} be the ball of radius ϵ centered at 0.

Brieskorn varieties

Take m = 5. Consider the following polynomials

$$p_k := (z^1)^2 + (z^2)^2 + (z^3)^2 + (z^4)^3 + (z^5)^{6k-1}, \ k \in \mathbb{N}.$$

The origin $0 \in \mathbb{C}^5$ is an isolated singularity of Z_{p_k} . Choose a sufficiently small $\epsilon > 0$. Let \mathbb{B}^5_{ϵ} be the ball of radius ϵ centered at 0.

The zero set Z_{p_k} intersects transversely with the sphere $\mathbb{S}^9_{\epsilon} := \partial \mathbb{B}^5_{\epsilon}$.

Brieskorn varieties

Take m = 5. Consider the following polynomials

$$p_k := (z^1)^2 + (z^2)^2 + (z^3)^2 + (z^4)^3 + (z^5)^{6k-1}, \ k \in \mathbb{N}.$$

The origin $0 \in \mathbb{C}^5$ is an isolated singularity of Z_{p_k} . Choose a sufficiently small $\epsilon > 0$. Let \mathbb{B}^5_{ϵ} be the ball of radius ϵ centered at 0.

The zero set Z_{p_k} intersects transversely with the sphere $\mathbb{S}^9_{\epsilon} := \partial \mathbb{B}^5_{\epsilon}$.

The intersection $Z_{p_k} \cap \mathbb{S}^9$ is a topological 7-sphere, but has a distinct smooth structure with k = 1, ..., 28.

Radical case Non-radical case Beyond topology

New invariant is needed

Let $I_k = \langle p_k \rangle$ be the principal ideal generated by p_k . Our analytic Grothendieck Riemann Roch theorem applies to the ideal I_k .

New invariant is needed

Let $I_k = \langle p_k \rangle$ be the principal ideal generated by p_k . Our analytic Grothendieck Riemann Roch theorem applies to the ideal I_k .

It states that the K-homology class $[\mathcal{T}(Q_{I_k})]$ associated to Q_{I_k} is equal to the class $[\not\!D_k]$, where $\not\!D_k$ is the spin^c Dirac operator associated to the CR-structure on $Z_{p_k} \cap \mathbb{S}^9 = \mathbb{S}^7$.

New invariant is needed

Let $I_k = \langle p_k \rangle$ be the principal ideal generated by p_k . Our analytic Grothendieck Riemann Roch theorem applies to the ideal I_k .

It states that the K-homology class $[\mathcal{T}(Q_{I_k})]$ associated to Q_{I_k} is equal to the class $[\mathcal{D}_k]$, where \mathcal{D}_k is the spin^c Dirac operator associated to the CR-structure on $Z_{p_k} \cap \mathbb{S}^9 = \mathbb{S}^7$. Unfortunately, "K-homology invariant is not fine enough to

detect smooth structures."

New invariant is needed

Let $I_k = \langle p_k \rangle$ be the principal ideal generated by p_k . Our analytic Grothendieck Riemann Roch theorem applies to the ideal I_k .

It states that the K-homology class $[\mathcal{T}(Q_{I_k})]$ associated to Q_{I_k} is equal to the class $[\mathcal{D}_k]$, where \mathcal{D}_k is the spin^c Dirac operator associated to the CR-structure on $Z_{p_k} \cap \mathbb{S}^9 = \mathbb{S}^7$. Unfortunately, "K-homology invariant is not fine enough to

detect smooth structures."

Question

Find the right analytic invariant to detect the smooth structure on $Z_{p_k} \cap \mathbb{S}^9$.

Radical case Non-radical case Beyond topology

A Hilbert bundle (work in progress)

Let $u \in \mathbb{C} - \{0\}$. Consider $I_{p_k}(u) = \langle p_k - u \rangle$, a family of principle ideals.

Radical case Non-radical case Beyond topology

A Hilbert bundle (work in progress)

Let $u \in \mathbb{C} - \{0\}$. Consider $I_{p_k}(u) = \langle p_k - u \rangle$, a family of principle ideals. Let \mathcal{H}^k_u be the orthogonal complement of $\bar{I}_{p_k}(u)$ in $L^2_a(\mathbb{B}^5)$.

A Hilbert bundle (work in progress)

Let $u \in \mathbb{C} - \{0\}$. Consider $I_{p_k}(u) = \langle p_k - u \rangle$, a family of principle ideals.

Let \mathcal{H}_{u}^{k} be the orthogonal complement of $\bar{I}_{p_{k}}(u)$ in $L_{a}^{2}(\mathbb{B}^{5})$.

Proposition (Douglas-Jabbari-T-Yu)

The family \mathcal{H}_{u}^{k} forms a Hilbert bundle \mathcal{H}^{k} over the punctured disk $\mathbb{D}_{\epsilon_{0}}^{*}$ with a sufficiently small radius ϵ_{0} .

A Hilbert bundle (work in progress)

Let $u \in \mathbb{C} - \{0\}$. Consider $I_{p_k}(u) = \langle p_k - u \rangle$, a family of principle ideals.

Let \mathcal{H}_{u}^{k} be the orthogonal complement of $\bar{I}_{p_{k}}(u)$ in $L_{a}^{2}(\mathbb{B}^{5})$.

Proposition (Douglas-Jabbari-T-Yu)

The family \mathcal{H}_{u}^{k} forms a Hilbert bundle \mathcal{H}^{k} over the punctured disk $\mathbb{D}_{\epsilon_{0}}^{*}$ with a sufficiently small radius ϵ_{0} . And there is a canonical Hermitian connection ∇ on the Hilbert bundle \mathcal{H}_{u}^{k} .

A Hilbert bundle (work in progress)

Let $u \in \mathbb{C} - \{0\}$. Consider $I_{p_k}(u) = \langle p_k - u \rangle$, a family of principle ideals.

Let \mathcal{H}_{u}^{k} be the orthogonal complement of $\bar{I}_{p_{k}}(u)$ in $L_{a}^{2}(\mathbb{B}^{5})$.

Proposition (Douglas-Jabbari-T-Yu)

The family \mathcal{H}_{u}^{k} forms a Hilbert bundle \mathcal{H}^{k} over the punctured disk $\mathbb{D}_{\epsilon_{0}}^{*}$ with a sufficiently small radius ϵ_{0} . And there is a canonical Hermitian connection ∇ on the Hilbert

bundle \mathcal{H}_u^k .

Remark

We would like to view (\mathcal{H}^k, ∇) as the analytic analog of the Milnor fibration in his study of hypersurfaces with isolated singularities.

Radical case Non-radical case Beyond topology

Thank you !