

Volume comparison with respect to scalar curvature

Wei Yuan

School of Mathematics Sun Yat-sen University

Sichuan University

January 11th, 2019

- 1 Classic volume comparison theorem
- 2 V-static metrics
- 3 Volume comparison for V-static geodesic balls
- 4 Volume comparison for closed Einstein manifolds
- 5 Volume comparision with respect to Q-curvature

- 1 Classic volume comparison theorem
- 2 V-static metrics
- 3 Volume comparison for V-static geodesic balls
- 4 Volume comparison for closed Einstein manifolds
- 5 Volume comparision with respect to Q-curvature

Classic volume comparison theorem

Suppose (M^n, g) is a closed Riemannian manifold with

$$Ric_g \ge (n-1)g$$
,

then

 $V_M(g) \leq |\mathbb{S}^n|.$

Assumptions about Ricci curvature:

$$Ric_g \ge (n-1)g;$$

Ricci curvature controls Jacobi field.

Question: Can we replace the assumptions on Ricci curvature with scalar curvature?

Answer: It depends.

- 1 Classic volume comparison theorem
- 2 V-static metrics
- 3 Volume comparison for V-static geodesic balls
- 4 Volume comparison for closed Einstein manifolds
- 5 Volume comparision with respect to Q-curvature

For a given manifold M^n , consider the volume functional

$$V_M(g)=\int_M dv_g,$$

with constraint

$$g \in \mathcal{C} := \{g : R_g = constant\}$$

and

$$g|_{\mathcal{T}\partial M} = \gamma.$$

Miao and Tam calculated the Euler-Lagrange's equation of the functional:

$$\gamma_{\bar{g}}^*f := \nabla_{\bar{g}}^2 f - \bar{g}\Delta_{\bar{g}}f - fRic_{\bar{g}} = \kappa \bar{g},$$

where $f \not\equiv 0$ is a smooth function on M and $\kappa \in \mathbb{R}$.

Metrics satisfies such a equation, is called V-static metrics.

- For κ = 0, V-static metrics are simply vacuum static metrics: typically spatial slices of Schwarzchild, de Sitter/Anti-de Sitter, Narai space-times etc.
- For f = 1 constantly, V-static metrics are simply Einstein metrics with scalar curvature $-n\kappa$: typically \mathbb{S}^n , \mathbb{H}^n and Ricci flat manifolds.

Theorem (Corvino-Eichmair-Miao, 2013)

Let (M, \overline{g}) be a Riemannian manifold and $\Omega \subset M$ be a pre-compact domain with smooth boundary. Suppose (Ω, \overline{g}) is not V-static, i.e the V-static equation only admits trivial solutions in $C^{\infty}(\Omega) \times \mathbb{R}$. Then there exists an $\delta_0 > 0$ such that for any $(\rho, V) \in C^{\infty}(M) \times \mathbb{R}$ with $supp(R_{\overline{g}} - \rho) \subset \Omega$ and

$$||R_{\overline{g}} - \rho||_{C^1(\Omega,\overline{g})} + |Vol_{\Omega}(\overline{g}) - V| < \delta_0,$$

there exists a metric g on M such that $supp(g - \bar{g}) \subset \Omega$, $R_g = \rho$ and $Vol_{\Omega}(g) = V$.

Question: What about V-static metrics?

Answer: Yes for geodesic balls; it depends for closed manifolds.

Wei Yuan - Volume comparison with respect to scalar curvature

- 1 Classic volume comparison theorem
- 2 V-static metrics
- 3 Volume comparison for V-static geodesic balls
- 4 Volume comparison for closed Einstein manifolds
- 5 Volume comparision with respect to Q-curvature

Theorem A (Y., 2016)

For $n \ge 3$, suppose $(M^n, \overline{g}, f, \kappa)$ is a V-static space. For any $p \in M$ with f(p) > 0, there exist constants $r_0 > 0$ and $\varepsilon_0 > 0$ such that for any geodesic ball $B_r(p) \subset M$ with radius $0 < r < r_0$ and metric g on $B_r(p)$ satisfies

- $\blacksquare R_g \geq R_{\bar{g}} \text{ in } B_r(p)$
- $H_g \geq H_{\bar{g}}$ on $\partial B_r(p)$

g and \overline{g} induce the same metric on $\partial B_r(p)$

 $||g - \bar{g}||_{C^2(B_r(p),\bar{g})} < \varepsilon_0,$

the following volume comparison hold:

• if $\kappa < 0$, then $Vol_{\Omega}(g) \leq Vol_{\Omega}(\bar{g})$;

• if $\kappa > 0$, then $Vol_{\Omega}(g) \ge Vol_{\Omega}(\bar{g})$;

with equality holds in either case if and only if the metric g is isometric to \bar{g} .

 Considering the functional
 F[g] = ∫_Ω R(g) fdvol_{g̃} + 2 ∫_Σ H(g) fdσ_{g̃} - 2κV_M(g);
 Fixing the gauge: ∃φ : Ω → Ω with φ|_{∂Ω} = id and

$$\delta_{\bar{g}}h = \delta_{\bar{g}}\left(\varphi^*(g) - \bar{g}\right) = 0;$$

Considering the expansion

$$\mathcal{F}[g] - \mathcal{F}[\bar{g}] - \mathcal{F}'[\bar{g}](h) - \frac{1}{2} \mathcal{F}''[\bar{g}](h,h) = \int_{\Omega} \left(R_g - R_{\bar{g}} \right) f d \operatorname{vol}_{\bar{g}} + I_{\Omega} + B_{\Omega};$$

- Assume $\kappa(Vol_{B_r(p)}(\varphi^*g) Vol_{B_r(p)}(\bar{g})) \leq 0;$
- An Eigenvalue estimate:

$$I_{\Omega} \geq \frac{1}{8} \left(\inf_{B_r(p)} f \right) ||h||^2_{W^{1,2}(B_r(p))};$$

Using mean curvature comparison:

$$B_{\Omega} \geq -C||h||_{C^{1}(B_{r}(p))}||h||^{2}_{W^{1,2}(B_{r}(p))};$$

Obtain rigidity:

$$||h||_{W^{1,2}(\Omega)}^2 \leq C||h||_{C^2(\Omega)}||h||_{W^{1,2}(\Omega)}^2$$

implies that $h \equiv 0$, since $||h||_{C^2(\Omega)}$ small. *i.e.* $\varphi^*(g) = \bar{g}$.

- By replacing (f, κ) with $(-f, -\kappa)$, we only need to consider the case f(p) > 0;
- If $\kappa = 0$, *V*-static metrics reduce to *vacuum static metrics*. Under same assumptions on *g*, Qing-Y. showed rigidity holds and thus volume keeps the same.

- 1 Classic volume comparison theorem
- 2 V-static metrics
- 3 Volume comparison for V-static geodesic balls
- 4 Volume comparison for closed Einstein manifolds
- 5 Volume comparision with respect to Q-curvature

Schoen's Conjecture A

For $n \ge 3$, let (M^n, \overline{g}) be a closed hyperbolic manifold. Then the Yamabe invariant

$$Y(M) := \sup_{[g]} Y(M, [g])$$

is achieved at the hyperbolic metric \bar{g} .

Schoen's Conjecture B

For $n \ge 3$, let (M^n, \bar{g}) be a closed hyperbolic manifold. Then for any metric g on M with

$$R_g \ge R_{\bar{g}},$$

we have the volume comparison

$$Vol_M(g) \geq Vol_M(\bar{g}).$$

Schoen's Conjecture A & B are equivalent!

Wei Yuan - Volume comparison with respect to scalar curvature

Corollary B (Besson-Courtois-Gallot, 1991; Y., 2016)

For $n \ge 3$, let (M^n, \overline{g}) be a closed hyperbolic manifold. There exists a constant $\varepsilon_0 > 0$ such that for any metric g on M with

$$R_g \ge R_{\bar{g}}$$

and

$$|g-\bar{g}||_{C^2(M,\bar{g})} < \varepsilon_0,$$

we have

$$Vol_M(g) \ge Vol_M(\bar{g})$$

with equality holds if and only if the metric g is isometric to \bar{g} .

■ n = 3: true. (Hamilton, Perelman, Agol-Storm-Thurston, 2007)

■ $Ric_g \ge Ric_{\overline{g}}$: true. (Besson-Courtois-Gallot, 1995)

Bray's Conjecture

For $n \ge 3$, there is a positive constant $\varepsilon_n < 1$ such that for any closed manifold (M^n, \overline{g}) with scalar curvature

$$R_g \geq n(n-1)$$

and Ricci curvature

$$\operatorname{Ric}_{g} \geq \varepsilon_{n}(n-1)g,$$

the volume comparison

 $Vol_M(g) \leq Vol_{\mathbb{S}^n}(g_{\mathbb{S}^n})$

holds.

- *n* = 3: true. (Bray, 1997)
- No other (even partial) results!

Corollary A (Y., 2016)

For $n \ge 3$, let $(\mathbb{S}^n, g_{\mathbb{S}^n})$ be the unit round sphere. There exists a constant $\varepsilon_0 > 0$ such that for any metric g on \mathbb{S}^n with

$$R_g \geq n(n-1)$$

and

$$||g-\bar{g}||_{C^2(\mathbb{S}^n,g_{\mathbb{S}^n})} < \varepsilon_0,$$

we have

$$\operatorname{Vol}_{\mathbb{S}^n}(g) \leq \operatorname{Vol}_{\mathbb{S}^n}(g_{\mathbb{S}^n})$$

with equality holds if and only if the metric g is isometric to $g_{\mathbb{S}^n}$.

Theorem B (Y., 2016)

There is a constant $\alpha(n, \lambda)$ such that for any closed Einstein manifold (M^n, \bar{g}) with

$$\mathsf{Ric}_{ar{g}} = (n-1)\lambdaar{g}$$

and

$$||W||_{L^{\infty}(M,\bar{g})} < \alpha(n,\lambda),$$

we can find a constant $\varepsilon_0 > 0$ such that for any metric g on M satisfies

$$R_g \ge n(n-1)\lambda$$

and

$$||g-\bar{g}||_{C^2(M,\bar{g})} < \varepsilon_0,$$

Theorem B (continued)

the following volume comparison hold:

• if $\lambda > 0$, then

 $Vol_M(g) \leq Vol_M(\bar{g});$

if $\lambda < 0$, then

 $Vol_M(g) \geq Vol_M(\bar{g});$

with equality holds in either case if and only if the metric g is isometric to \bar{g} .

The functional

$$\mathcal{F}[g] = \int_{\Omega} R(g) fdvol_{ar{g}} + 2(n-1)\lambda V_M(g)$$

works for the case $\lambda < 0$, but not for $\lambda > 0$;

For $\lambda > 0$, need to consider the scaling-invariant functional

$$\mathcal{G}[g] = \left(V_M(g)\right)^{\frac{2}{n}} \int_{\Omega} R(g) f dvol_{\overline{g}};$$

 For λ = 0, *i.e.* Ricci-flat metric, there is no volume comparison simply from rescaling of the metric;

Morse lemma for Banach manifold.

- 1 Classic volume comparison theorem
- 2 V-static metrics
- 3 Volume comparison for V-static geodesic balls
- 4 Volume comparison for closed Einstein manifolds
- 5 Volume comparision with respect to Q-curvature

Gauss-Bonnet Theorem :

Let (M^2, g) be a closed surface, then

$$\int_{M} K_{g} dv_{g} = 2\pi \chi(M).$$

Uniformazation Theorem:

Any metric on M^2 is locally conformally flat.

Let (M^4, g) be a closed 4-dimensional Riemannian manifold, define the Q-curvature:

$$Q_g = -rac{1}{6}\Delta_g R_g - rac{1}{2}|Ric_g|_g^2 + rac{1}{6}R_g^2.$$

It satisfies the Gauss-Bonnet-Chern Formula

$$\int_{M} \left(Q_g + \frac{1}{4} |W_g|_g^2 \right) dv_g = 8\pi^2 \chi(M).$$

In particular, if $W_g = 0$, *i.e.* (M,g) is locally conformally flat,

$$\int_M Q_g dv_g = 8\pi^2 \chi(M).$$

Thus, Q_g is a generalization of Gaussian curvature.

In 1985, for $n \ge 3$, Branson extended the definition to arbitrary *n*-dimensional Riemannian manifold (M^n, g) :

$$Q_g = A_n \Delta_g R_g + B_n |Ric_g|_g^2 + C_n R_g^2,$$

where $A_n = -\frac{1}{2(n-1)}$, $B_n = -\frac{2}{(n-2)^2}$ and $C_n = \frac{n^2(n-4)+16(n-1)}{8(n-1)^2(n-2)^2}.$

Define the Paneitz operator

$$P_g := \Delta_g^2 - div_g \left[(a_n R_g g + b_n Ric_g) d \right] + rac{n-4}{2} Q_g,$$

where
$$a_n = \frac{(n-2)^2+4}{2(n-1)(n-2)}$$
 and $b_n = -\frac{4}{n-2}$.

Then

$$\begin{aligned} Q_{\hat{g}} &= e^{-4u} \left(P_g u + Q_g \right), & \text{for } n = 4 \text{ and } \hat{g} = e^{2u} g \\ Q_{\hat{g}} &= \frac{2}{n-4} u^{-\frac{n+4}{n-4}} P_g u, & \text{for } n \neq 4 \text{ and } \hat{g} = u^{\frac{4}{n-4}} g \end{aligned}$$

Theorem C (Huang-Lin-Y., 2018)

There is a constant β_n such that for any closed Einstein manifold (M^n, \bar{g}) with $Ric_{\bar{g}} = (n-1)\bar{g}$ and $||W||_{L^{\infty}(M,\bar{g})} < \beta_n$, we can find a constant $\varepsilon_1 > 0$ such that for any metric g on M satisfies

$$Q_g \geq Q_{ar{g}}$$

and

$$||g-\bar{g}||_{C^4(M,\bar{g})} < \varepsilon_0,$$

then the following volume comparison hold

$$Vol_M(g) \leq Vol_M(\bar{g})$$

with equality holds in either case if and only if the metric g is isometric to \bar{g} .

Corollary C (Huang-Lin-Y., 2018)

For $n \ge 3$, let $(\mathbb{S}^n, g_{\mathbb{S}^n})$ be the unit round sphere. There exists a constant $\varepsilon_1 > 0$ such that for any metric g on \mathbb{S}^n with

$$Q_g \geq \frac{n(n-2)(n+2)}{8}$$

and

$$||g-\bar{g}||_{C^4(\mathbb{S}^n,g_{\mathbb{S}^n})} < \varepsilon_1,$$

we have

$$\operatorname{Vol}_{\mathbb{S}^n}(g) \leq \operatorname{Vol}_{\mathbb{S}^n}(g_{\mathbb{S}^n})$$

with equality holds if and only if the metric g is isometric to g_{S^n} .

- Yuan, W.: Volume comparison with respect to scalar curvature, arXiv:1609.08849, submitted. (2016)
- Huang, Y.-C., Lin, Y.-L. and Yuan, W.: Deformations of Q-curvature II, in preparition. (2018)

Thank You for Your Attentions!

Wei Yuan - Volume comparison with respect to scalar curvature