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Introduction

Markov chains: recurrent vs transient
Transience ⇐⇒ non-degenerated bounded harmonic function
exists.
Recurrence ⇐⇒ R(o ←→∞) = limN→∞ R(o ←→ N) =∞.

Nash-Williams, C.St.J.A., Random Walks and Electric Currents in Networks, Proc. of the Cambridge
Philosophical Soc., 65(1959), 181-194.
Griffeath, D. & Liggett, T.M., Critical phenomena for Spizer’s reversible nearest-particle systems. Ann.
Probab. 10 (1982), 881-895.
Lyons, T., A Simple criterion for transience of a reversible markov chain. Ann. Probab. 11 (1983), 393-402.

Doyle, P. G. & Snell, J. L., Random Walks and Electrical Networks, Mathematical Association of America,

1984.
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Introduction

An easy example
Td = regular tree, each vertex has d children (degree =d + 1)
|x | = the distance from vertex x to the root o.
|e| = the distance from edge e to the root o.
λ|e| = the resistance of edge e
Rn = the resistance between root o and the level n.

Rn =
n∑

k=1

(
λ

d
)k .

lim
n

Rn =∞⇐⇒ λ ≥ d .
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Introduction

Glaton-Watson process, {pk , k ≥ 0},
Xn the number of descendants of generation n.
m =

∑
k kpk = the mean of children.

subcritical, m < 1, limn Xn = 0 a.s., ;
critical, m = 1, EXn = 1, limn Xn = 0 a.s., the most delicate case.
supercritcal, m > 1, limn Xn =∞ a.s., limn Xn/m

n exists.
K. Athreya, P. Ney, Branching Processes. Die Grundlehren der mathematischen Wissenschaften, Band 196,

Springer–Verlag, New York–Heidelberg, 1972.
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Introduction

A supercritcal GW process⇐⇒ Random Trees
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Introduction

Galton-Watson tree
λ|e| = resistance of edge e
Rn = resistance between root o and the level n.

lim
n

Rn =∞⇐⇒ λ ≥ m.

R. Lyons. Random walks and percolation on trees. Ann. Probab. 18 (1990), 931–958.

R. Lyons. Random walks, capacity and percolation on trees. Ann. Probab. 20 (1992), 2043–2088.
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Introduction

Regular Tree with random resistance.
ξ(e)d |e| = the resistance of edge e.

E[Rn] = E[ξ] n − Var[ξ]

E[ξ]
log n + O(1)

E[Cn] =
1

E[ξ]

1

n
+

Var[ξ]

E[ξ]3
log n

n2
+ O(n−2)

where Cn = 1/Rn = the conductance,

Var[Rn] = O(1) and Var[Cn] = O(n−4).

A sub-Gaussian tail bound

E|Rn − E[Rn]|k = O(1) for all k ≥ 1.

L. Addario-Berry, N. Broutin and G. Lugosi. Effective resistance of random trees. Ann. Appl. Probab. 19

(2009), 1092–1107.

Dayue Chen Resistance Growth of Branching Random Networks



Main results

Assign a random resistance ξ(e)m|e| to edge e for a supercritical
Galton-Watson tree,

Theorem

lim
n→∞

nECn =
1

c1
.

If additionally p1 m < 1, then

lim
n→∞

ERn

n
= c1 E

1

W
.

D. Chen, Y Hu & S. Lin, Resistance growth of branching random networks, Electronic Journal of Probability,

Volume 23 (2018), paper no. 52, 17 pp. https://arxiv.org/abs/1801.05043,

https://projecteuclid.org/euclid.ejp/1527818430
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Main results

Theorem

Assuming that E[ξ + ξ−1 + ν2] <∞, we have the almost
convergence

lim
n→∞

Cn

ECn
= W . (1)

Assume that p0 = 0.
∑

pkklogk <∞.

Xn

mn
→W > 0 a.s., EW = 1. EW 2 =

∑
k2pk −m

m(m − 1)
.

W (x) = limn→∞m|x |−n#Tn[x ] has the same distribution as W .

W = m−n
∑
|x |=n

W (x).

ξ(e)m|e| = the resistance of edge e.
Dayue Chen Resistance Growth of Branching Random Networks



Main results

a1 := m−2 E[ν(ν − 1)], (2)

b1 := E[ξ],

c1 :=
a1b1

1−m−1
. (3)

a2 := m−3 E
[
ν(ν − 1)(ν − 2)1{ν≥2}

]
, (4)

b2 := E
[
ξ2
]
,

c2 := (1−m−2)−1
( 3a2

1

m − 1
+ a2

)
, (5)

c3 :=
2a1c1

m − 1
− 2b1c2

m
, (6)

c4 :=
b1

1−m−1

(c3

c1
+ a1

)
− b2

c2

c1
. (7)
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Main results

Theorem

Assume that E[ξ3 + ξ−1 + ν4] <∞. Then there exists a constant
c0 ∈ R such that, as n→∞,

ECn =
1

c1n
− c4

c2
1

log n

n2
− c0

c2
1

1

n2
+ O(

(log n)2

n3
).

The constant c0 will be defined later.
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Main results

Theorem

Assuming that E[ξ3 + ξ−1 + ν4] <∞, we have, as n→∞,

n
( Cn

ECn
−W

)
−→

∞∑
`=1

1

m`

∑
|x |=`

W (x)
(

1− ξx
c1

W (x)
)
,

in prob. P, and, Rn − An/W converges to 0 in prob. P as n→∞,
where

An = c1n+c4 log n+

(
c0−

1

W

∞∑
`=1

1

m`

∑
|x |=`

W (x)
(
c1−ξx W (x)

))
.

with the same constant c0 in Theorem 9.
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Related Results

Example, the infinite cluster of bond percolation on Zd can be
seen as a random electric network in which each open edge has
unit resistance and each closed edge has infinite resistance.

Grimmett, Kesten and Zhang proved that when d ≥ 3, the
effective resistance of this network between a fixed point and
infinity is a.s. finite,

Thus the simple random walk on this infinite percolation cluster is
a.s. transient.

G. Grimmett, H. Kesten and Y. Zhang. Random walk on the infinite cluster of the percolation model.
Probab. Theory Relat. Fields, 96 (1993), 33–44.

D. Chen. On the infinite cluster of the Bernoulli bond percolation in the Scherk’s graph. J. Applied Probab.,

Vol.38, No.4, (2001), 828–840
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Related Results
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Related Results
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Related Results

Benjamini and Rossignol showed that point-to-point effective
resistance has submean variance in Z2, whereas the mean and the
variance are of the same order when d ≥ 3.
I. Benjamini and R. Rossignol. Submean variance bound for effective resistance on random electric networks.

Commun. Math. Phys. 280 (2008), 445–462.
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Related Results

complete graph on n vertices.
For a particular class of resistance distribution on the edges, as
n→∞, the limit distribution of the random effective resistance
between two specified vertices was identified as the sum of two
i.i.d. random variables, each with the distribution of the effective
resistance between the root and infinity in a Galton–Watson tree
with a supercritical Poisson offspring distribution.
G. Grimmett and H. Kesten. Random electrical networks on complete graphs. J. London Math. Soc. (2) 30

(1984), 171–192.
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Sketch of Proof (1)

Theorem

For supercritical Galton-Watson tree,

lim
n→∞

nE[Cn] =
1

c1
.

If additionally p1 m < 1, then

lim
n→∞

E[Rn]

n
= c1 E

[ 1

W

]
.
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Sketch of Proof

Bounds on the expected conductance
The effective conductance Cn between the root and the level set
{x ∈ T : |x | = n} satisfies

Cn := C ({∅} ↔ Tn) = π(∅)P∅,ω
(
τn < T+

∅
)
,

where

τn := inf{k ≥ 0: |Xk | = n}, T+
∅ := inf{k ≥ 1: Xk = ∅}.

Immediately, Cn ≥ Cn+1.

Cn+1 =
1

m

ν∑
i=1

C
(i)
n

1 + ξiC
(i)
n

. (8)
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Sketch of Proof

Lemma

If Eξ−1 <∞, then ECn ≤ Eξ−1

n for all n ≥ 1.

Lemma

Assume that Eξ−1 <∞. For 2 ≤ k ≤ 4, if Eνk <∞, then

E(Cn)k = O(n−k) as n→∞.

Lemma

If Eξ ∈ (0,∞) and Eν2 <∞, then there exists a constant c > 0
such that ECn ≥ c

n for all n ≥ 1.
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Sketch of Proof

Flow, minimum energy, the Dirichlet principle.

Let θ be the a flow from A to Z with strength ‖θ‖, i.e., it satisfies
Kirchhoff’s node law that div θ(x) = 0 for all x /∈ A ∪ Z , and that

‖θ‖ =
∑
a∈A

∑
y∼a,y /∈A

θ(−→ay) =
∑
z∈Z

∑
y∼z,y /∈Z

θ(−→yz).

then
R(A↔ Z ) := inf

‖θ‖=1

∑
e∈E

r(e)θ(e)2. (9)

Dayue Chen Resistance Growth of Branching Random Networks



Sketch of Proof (2)

Theorem

Assume that E[ξ3 + ξ−1 + ν4] <∞. Then there exists a constant
c0 ∈ R such that, as n→∞,

ECn =
1

c1n
− c4

c2
1

log n

n2
− c0

c2
1

1

n2
+ O(

(log n)2

n3
).
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Sketch of Proof

Asymptotic expansion of the expected conductance
For every integer n ≥ 1, we write

xn := ECn, yn := EC 2
n , zn := EC 3

n .

By Lemma 7, xn = O(n−1), yn = O(n−2) and zn = O(n−3).

xn+1 = xn − b1yn + b2zn + O(n−4), (10)

yn+1 =
yn
m

+ a1 x
2
n+1 −

2b1

m
zn + O(n−4)

=
yn
m

+ a1 x
2
n −

(
2a1b1xnyn +

2b1

m
zn
)

+ O(n−4), (11)

zn+1 =
zn
m2

+
3a1

m
xn+1yn + a2x

3
n+1 + O(n−4)

=
zn
m2

+
3a1

m
xnyn + a2x

3
n + O(n−4). (12)
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Sketch of Proof

εn :=
1

xn+1
− 1

xn
− c1 =

c4

n
+ O(n−2long),

1

xn
− 1

x1
= c1(n − 1) +

n−1∑
i=1

εi = c1n + c4 log n + o(log n),

Finally

ECn = xn =
1

c1n
− c4

c2
1

log n

n2
− c0

c2
1

1

n2
+ O(

(log n)2

n3
).

Dayue Chen Resistance Growth of Branching Random Networks



Sketch of Proof (3)

Theorem

Assuming that E[ξ3 + ξ−1 + ν4] <∞, we have, as n→∞,

n
( Cn

ECn
−W

)
−→

∞∑
`=1

1

m`

∑
|x |=`

W (x)
(

1− ξx
c1

W (x)
)
,

in prob. (P), and, Rn − An/W converges to 0 in probability P as
n→∞, where

An = c1n+c4 log n+

(
c0−

1

W

∞∑
`=1

1

m`

∑
|x |=`

W (x)
(
c1−ξx W (x)

))
.

with the same constant c0 in Theorem 9.

Dayue Chen Resistance Growth of Branching Random Networks



Sketch of Proof

Almost sure convergence and rate of convergence

Yn :=
Cn

ECn
−W ,

Πn := Cn

( 1

xn+1
− 1

xn
− 1

xn+1

ξ Cn

1 + ξ Cn

)
.

Yn =
1

m

ν∑
i=1

Y
(i)
n−1 +

1

m

ν∑
i=1

Π
(i)
n−1.

Since W = m−k
∑
|x |=k W

(x), by induction,

Yn =
1

mk

∑
|x |=k

Y
(x)
n−k +

k∑
`=1

1

m`

∑
|y |=`

Π
(y)
n−` for any 1 ≤ k < n.

E
( 1

mk

∑
|x |=k

Y
(x)
n−k

)2
= m−k E(Yn−k)2 ≤ C ′m−k .
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Sketch of Proof

Meanwhile,

E

[ k∑
`=1

1

m`

∑
|y |=`

|Π(y)
n−`|

]
≤

k∑
`=1

C

n − `
≤ Ck

n − k
.

It follows that

E|Yn| ≤
√
C ′m−k +

Ck

n − k
.

By taking k = C ′′ log n for some constant C ′′ sufficiently large,

E|Yn| = O(
log n

n
).
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Questions

For Galton-Watson tree, resistance of edge e = ξ(e)λ|e|.
If λ < m, then the effective resistance R(o ←→∞) <∞ a.s.
What is the distribution of R(o ←→∞)?

Theorem

Fix λ > m. Assuming that E[ξ + ξ−1 + ν2] <∞, we have{
Cn(λ)

}
−→W a.s. asn→∞

If E[ξ2 + ξ−1 + ν3] <∞, then, as n→∞, the limit of( λ
m

)n
ECn(λ)

exists and is strictly positive.

can the limit be identified?
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