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Introduction

• The theory of algebras of operators acting on Hilbert 
space began in 1930s with a series of papers by von 
Murray and Neumann ( On Rings of Operators,   I-IV). 
The principal motivations of these authors were the 
theory of unitary group representations and certain 
aspects of the quantum mechanical formalism. They 
analyzed in great details the structure of the family of 
algebras which are referred nowadays as von Neumann 
algebras or W*-algebras. These algebras have the 
distinctive property of being closed in the weak operator 
topology.

• In 1943 Gelfand and Naimark characterized and 
analyzed uniformly closed operator algebras, the so-
called C*-algebras.



• Nowadays the theory of Operator Algebras is an 
intensively developed field, which is 
characterized by interlace of pure mathematical 
and application aspects. An important role which 
is played by this theory in the arsenal of 
methods of mathematical physics is motivated 
by the fact that in terms of  operator algebras, 
their states, representations, groups of 
automorphisms, and derivations one can 
describe and investigate the properties of model 
systems with infinite number of degrees of 
freedom, studied in quantum field theory and 
statistical physics.



ALGEBRAS

– a complex algebra, i.e. linear space over       

equipped with an associative   (but not commutative in 

general) multiplication                  with usual relations 

between algebraic operations           Equivalently 

– is an associative ring which is also a complex linear 

space. 

A C

( )x y xy → 

+ 

A



3.             ( resp.             ) algebra of all measurable (resp. 

essentially bounded measurable) complex functions on 

[0,1].

2.              ( resp.              ) algebra of all continuous (resp. 

infinitely differentiable) complex functions on  [0,1].

EXAMPLES

Commutative case

1.                                                                     – algebra of all 

complex polynomial on the variable t.

0 1[ ] { } 1 2n

n iP t a a t a t a C i= + +    =  

[0 1]C  [0 1]C 

0[0 1]L  [0 1]L 



5.           – algebra of all bounded linear operators on a 

complex Hilbert space  

6.           – algebra of all bounded linear operators on a 

complex Banach space 

EXAMPLES

Non commutative case

4.               – algebra of matrices over  ( )nM C C

( )B H

H

( )B X

X 



Examples. Commutative case:

1.

2.

DERIVATIONS

Definition. A linear operator                  is called a 

derivation on the algebra     if

for all  

d A A →

A

( ) ( ) ( ) (Leibniz rule)d xy d x y xd y= +

x y A  

[ ]A P t=

1

0 1 1 2( ) 2n n

n nd a a t a t a a t na t −+ + = + + 

[0 1] ( ) (0 1)
df

dt
A C d f f C =   =    



4.             subalgebra (or ideal)            

If                              

then  d is called spatial derivation on

3.      – non commutative, fixed.

Such derivation is called inner derivation.

A a A

( ) [ ]ad x a x ax xa x A=  = −   

A B a B 

ad d A A=  → 

A



Algebras which have only inner derivations: 

– finite dimensional simple central algebras; 

– simple unital       -algebras; 

– von Neumann algebras; 

– – algebra of all bounded linear operators 

on a Banach space 

C

( )B X

X 



MORE GENERAL PROBLEM: 

Given an algebra       , does there exist an algebra       such 

that: 

(i)      is an ideal in      so that any element           defines a 

derivation on      by    

(ii) any derivation of       is inner; 

(iii) any derivation of the algebra      is spatial and 

implemented by an element from  

A B

A B a B

A ( ) [ ]ad x a x x A=    

B

A

B



Examples of such algebras

– simple (non unital)       -algebras; 

– – finite rank operators on an infinite dimensional 

Banach space  

– standard operator algebras on       i.e. subalgebras 

of            which contain            etc. 

C

( )F X

X 

X 

( )B X ( )F X 
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- ALGEBRAS AND VON NEUMANN ALGEBRAS

– a complex Hilbert space 

– algebra of all bounded linear operators on  

a *-subalgebra. 

Definition. is called a  -algebra if it is closed in the 

norm topology. 

Examples: 1)                      – compact operators on  

2) Commutative case.                           – compact Hausdorf 

space. Conversely any commutative       -algebra is 

isomorphic to some  

C

H

H( )B H

( )M B H

C

( )B H  ( )K H H 

[0 1] ( )C C Q Q  

C

( )C Q 

M



Definition. A    -algebra                  is said to be a 

von Neumann algebra, if it is closed in the weak 

operator topology and           (identity operator). 

Equivalently if                           where

– commutant of  

( )B H

[0 1]L 

( )L   ( ) 

( )L  

Examples: 1)  

2) Commutative case.                 or more 

general                 for a measure space  

Conversely, any commutative von Neumann 

algebra is isomorphic to                  for an 

appropriate measure space. 

C ( )M B H

1 M

( )M M M  = = 

{ ( ) }M x B H xy yx y M =   =  

M 



STATES AND TRACES

– C*-algebra. A linear functional                 is 

called a state if 

i)      – positively defined, i.e.  

ii)  

A state      is said to be normal, if                    for 

any monotone net                 decreasing to  

A    C*-algebra       is a von Neumann algebra if 

and only if       is monotone complete and admits 

a separating family of normal states. 

M f M C →

f ( ) 0f x x x M    

(1) 1f = 

f ( ) 0f x →

{ }x M  M  

M

M



Definition. A map                            on a von Neumann 

algebra      is a trace if 

i)  

ii)  

iii)  

[0 ]M + → +

M

( ) ( ) ( ) { }x y x y x y M a a a M   + + = +    =   

( ) ( )x x x R x M    + +=      

( ) ( )x x xx x M  =   



A trace       is normal if                         for any 

increasing net                    which monotone 

increases and  

A trace      is faithful, if  (x)=0, xM+ implies  x=0

A trace      is called semifinite, if the set                                        

is weakly dense in  

A trace      is said to be finite, if                   

equivalently,  

Any finite trace can be extended to a positive linear 

functional        on        with 

 ( ) ( )x x →

supx x = 







{ ( ) }M x M x +=     M 

M M

+= 

(1)  +

 M ( ) ( )x x xx x M   +=   

{ }x M 



PROJECTIONS AND CLASSIFICATION OF 

VON NEUMANN ALGEBRAS

– a von Neumann algebra. 

An element             is called a projection, if                 

(i.e. self-adjoint idempotent). 

The set             of all projections in      form a complete 

orthomodular lattice. 

Two projection                are equivalent ( e ~ f ) if there 

exists             such that  

A projection            is said to be finite if it is not equivalent 

to a proper subprojection, otherwise it is said to be 

infinite. 

M

e M
2e e e = =

( )P M M

e f M 

u M e u u f uu =  = 

e M



The algebra M is called semifinite, if any projection in M

contains a nonzero finite projection. 

M is called finite if 1 is finite projection, otherwise M is 

called infinite. 

M is properly infinite if all nonzero projections in the center 

are infinite. 

M is purely infinite or type III if all nonzero projection in M

are infinite. 

A von Neumann algebra  M is finite if and only if it admits a 

separating family of finite normal traces 

A von Neumann algebra is semifinite if and only if it admits 

a faithful normal semifinite trace. 

A von Neumann algebra is of type III if and only if it has no 

nonzero normal semifinite trace.



A projection             is called abelian, if          is 

commutative. A projection    is said to be faithful, if the 

smallest central projection majorazing      is 1.

A von Neumann algebra M is said to be of type I if it has a 

faithful abelian projection.   M is said to be continuous if it 

contains no nonzero abelian projection. 

e M eMe

e

e



Given any von Neumann algebra      there exist five 

orthogonal central projection with sum  1  

(i.e.                                        ) such that 

and 

– is of type I finite (type      ) 

– is of type I infinite and semifinite (type    ) 

– is finite and continuous (type     ) 

– is properly infinite, semifinite and continuous 

(type     ) 

– is purely infinite (type III). 

S. Sakai (1971), C*-algebras and W*-algebras. Springer-Verlag. 

M. Takesaki (1991), Theory of Operator Algebras. I, Springer-Verlag, New-
York; Heildelberg; Berlin. 

M

1 50 1i je e i j e e=    +  + =

1 2 3 4 5M e M e M e M e M e M=    

1e M

2e M

3e M

4e M

5e M

finI

I

1II

II



DERIVATIONS AND AUTOMORPHISMS OF 

-ALGEBRAS AND VON NEUMANN ALGEBRAS

– -algebra. One-to-one mapping                      is  

called a * -automorphism of        if 

for all  

A (one-parameter) group of automorphisms of       is a 

mapping                                      which is a group 

homomorpism of the additive group       into the group                    

of all   * -automorphisms of       i.e. 

– identical automorphism of  

for all  

C

M C M M  →
M

( ) ( ) ( )x y x y  + = + 

( ) ( )x x  = 

( ) ( ) ( )xy x y  = 

( ) ( )x x  = x y M C    

M
( )tt R Aut M→  →

R

( )Aut M M

0 I = M 

t s t s  + = t s R  



The infinitesimal generator of the group       is the linear 

operator  d on       with domain           = { : there 

exists the (norm) limit 

}.

From algebraic properties of the group       it easily follows 

that      is a symmetric derivations on              i.e. 

(i)  

(ii)  

t

M ( )D d x M

0

( )
lim ( )t

t

x x
d x

t



→

−
= 

t

d ( )D d 

( ) ( ) ( )d x d x x D d =   

( ) ( ) ( ) ( )d xy d x y xd y x y D d= +    



The most studied  is the case when  

Theorem 1. Let      be a commutative    C*-algebra. Then 

any derivation on       is identically zero.

Theorem 2. Let     be a derivation on an arbitrary C*-

algebra. Then      is automatically bounded i.e. norm 

continuous.

Theorem 3. Let     be a von Neumann algebra. Then any 

derivation     on      is inner, i.e. there exists an element  

such that 

S. Sakai (1971), C*-algebras and W*-algebras. Springer-Verlag. 

S. Sakai (1991), Operator algebras in dynamical systems. Cambridge 
University Press. 

( )D d M= 

M

M

d

d M

d

M

a M

( ) ( ) [ ]ad x d x a x ax xa x M= =  = −   



PHYSICAL BACKGROUND

Physical theories consist of two elements: 

1) Kinematical structure describing the instantaneous 

states and observables of the system. 

2) Dynamical rule describing the change of these states 

and observables with time. 



KINEMATICAL STRUCTURE

Classical mechanics of point particle: 

states = points of a differentiable manifold    

observables = functions over the manifold  

Quantum mechanics (systems with a finite number of 

degrees of freedom): 

states = unit vectors (rays) in a Hilbert space  

observables = operators acting on  

Quantum field theory (systems with the infinite number of 

degrees of freedom): 

states = states on an Operator Algebra  

observables = elements of the algebra  

X 

X 

H 

H 

M 

M 



DYNAMICAL EVOLUTION

Classical mechanics:

group of diffeomorphisms of the manifold  

Quantum mechanics:

group of unitary operators on the Hilbert space  

Quantum field theory:

group of *-automorphism of the operator algebra   

X 

H 

M 



INFINITESIMAL MOTION: 

The infinitesimal motion is described by some form of 

Hamiltonian formalism, incorporating the interparticle 

interaction.

Classical mechanics:

vector field on the manifold       = a derivation on the 

algebra              of all infinitely differentiable functions on  

Quantum mechanics:

self-adjoint Hamiltonian operator      on the Hilbert space       

which gives a spatial derivation  

Quantum field theory:

a derivation      on the operator algebra        of observables. 

X

( )C X X 

h H

( ) [ ] ( )d x ih x x B H=    

d M



The basic problem which occurs in this approach –

is the integration of these infinitesimal motion in order to 

obtain the dynamical flow. 

In terms of operator algebras this means: 

to prove that the given derivation on the algebra of 

observables is the infinitesimal generator of a one-

parameter automorphisms group, moreover it is spatial (i.e. 

defined by some Hamiltonian operator) or even inner (i.e. 

the Hamiltonian operator itself is an observables in the 

considered physical system). 

O. Bratteli, D. Robinson (1979), Operator algebras and quantum 
statistical mechanics, Vol. 1, Springer-Verlag. 



Physical Theories

Kinematical Structure Dynamical Evolution

Observables States Dynamical Flow Infinitesimal 

Motion

Classical Mechanics

Differentiable Manifold Group of Automorphisms

Function over 

Manifold X

Points of the 

Manifold X

Group of Diffeomor-

phisms of X

Vector Field on 

X

Quantum Mechanics
Hilbert Space H Group of Automorphisms

Operators on H Unit vectors in H Group of Unitary 

operators on H

Self-adjoint  Ha-

miltonian on H

Quantum Field Theory
Operator Algebra M Group of Automorphisms

Elements of the 

Algebra M

States on the 

Algebra M

Group of * automor-

phisms of M

Derivation on 

the Algebra M



-MODELS

Let be a -algebra in

Suppose that the dynamical evolution is given by a

Hamiltonian operator on

where – the operator exponent.

Generator

is a spatial derivation implemented by the (unbounded)

operator

In particular, if (i.e. the Hamiltonian operator is an

observable), then the derivation is inner.

C

M C ( )B H 

h h= H 

( ) iht iht

t x e xe −=

0

na a
n

n

e




=

=

0

( )
( ) lim [ ] [ ]t

t

x x
d x i h x ih x

t



→

−
= =  = 

ih

h M

d

h



Now Theorem 3 implies the following solution of the problem

of integration of “infinitesimal dynamics” in the case

Theorem 4. Let be a a derivation on a von Neumann

algebra Then is the infinitesimal generator of a norm

continuous one-parameter automorphism group of the

algebra where

and is a self-adjoint element of

( )D d M= 

d

M  d

{ }t

M 

( ) iht iht

t x e xe −=

h M 



DERIVATION ON UNBOUNDED OPERATOR ALGEBRAS

There are various classes of unbounded operator algebras 

which are important in analysis and mathematical physics:

Algebras of measurable operators

I. Segal (1953), A non commutative extension of abstract integration, 
Ann. Math. 57, 401-457. 

E. Nelson (1975), Notes on non-commutative integration, J. Funct. 
Anal, 15, 91-102.

-algebras,

-algebras,

-algebras, etc.

J. P. Antoine, A. Inoue, C. Trapani ( 2002), Partial *-Algebras and 
Their Operator Realizations, Kluwer AP, Dordrecht /Boston/ London. 

K. Schmüdgen (1990), Unbounded Operator Algebras and 
Representation Theory. Akademie, Verlag. Berlin.

O

EW 

GB



ALGEBRAS OF MEASURABLE OPERATORS 

AFFILIATED WITH VON NEUMANN ALGEBRAS

– semi-finite von Neumann algebra on the Hilbert 

space                -the lattice of projections in  

Definition. A densely-defined closed operator      in      is 

said to be affiliated with if               for all unitary 

operators             where      – commutant        in  

Let      be a faithful normal semifinite trace on       (i.e.        

is semifinite von Neumann algebra). 

Definition. An operator      affiliated with      is said to be    

-measurable if for each          there exists                 with                  

such that                   – domain of    where  

Denote by              – the set of all    -measurable operators 

affiliated with   

M
H  ( )P M M 

x H

M xu ux=
u M   M  M ( )B H 

 M M

x M

 0  ( )e P M

( )e ⊥  ( ) ( )e H D x x 1e e⊥ = − 

( )L M  
M 



Definition. An operator    affiliated with      is said to be 

measurable if there exists a sequence of projections          

in      such that                                    and                   is 

finite for all 

Definition. A closed linear operator     in       is said to be 

locally measurable with respect to if             and there 

exists a sequence        of central projections in      such that 

and       is measurable for all

M

1{ }n np 

=

M 1, ( ) ( )n np p H D x 

x

1n np p⊥ = −
.n N

x H

M x M
{ }nz M

1nz  nz x .n N



Denote by           (resp.           ) the set of all measurable 

(resp. locally measurable) operators with respect to     . It is 

known that              is a unital *-algebra when equipped 

with the algebraic operations of strong addition and 

multiplication and taking the adjoint of an operator, and 

contains           as a solid *-subalgebra, while             

contains               as a solid *-subalgebra.

( )S M ( )LS M

M

( )LS M

( )S M

( )L M 

( )S M



The measure topology, in              is the one given by the 

following system of neighborhoods of zero: 

where                 and      denotes the uniform norm on   

equipped with the measure topology    is a complete 

metrizable topological  * -algebra.

The center  Z of  M is a commutative von Neumann algebra                          

where     is a measurable space which a      

-finite measure   

Moreover the center of             is *-isomorphic with 

t  ( )L M 

( ) { ( ) ( ) ( ) }V x L M e P M e xe M xe     ⊥ =            

0 0     M 

( )L M  t

 ( )Z L =   

 

( )L M  0( )L  



1. DERIVATIONS ON ALGEBRAS OF MEASURABLE     
OPERATORS

Sh. A. Ayupov (2000), Derivations in measurable operator algebras, DAN RUz, № 3, 14-17. 

Sh. A. Ayupov (2005), Derivations on unbounded operators algebras, Abstracts of the   

international conference Operators Algebras and Quantum Probability. Tashkent 2005. 

Problems: Are theorem 1-3 remain valid for the algebra  

Commutative case. If                             then (Theorem 1) any 

derivation on      is zero. 

Consider                                 – all measurable functions on  

In particular  

Does                    admit a non zero derivation?

A. F. Ber, V. I. Chilin, F. A. Sukochev (2006), Non-trivial derivation on commutative regular 
algebras, Extracta Math., 21, 107-147. 

A. G. Kusraev (2006), Automorphisms and Derivations on a Universally Complete Complex f-
Algebra, Sib. Math. Jour. 47, 77-85. 

admits a non-zero (and hence discontinuous and non 

inner) derivation. 

( )L M  

( )M L =  

M
0( ) ( )L M L  =  

0 (0 1)L  
0 ( )L 

0 (0 1)L 



Let                                 be a derivation. 

If          central projection, then 

i.e.                 

Since the linear span of           is dense in Z  in measure 

topology  

any derivation which is continuous in the measure 

topology (in particular, any inner derivation) is identically 

zero on Z, i.e.  

Therefore                                                                                

i.e.     is necessary Z-linear. 

Conjecture. A derivation on              is inner (or at least 

continuous) if and only if it is  Z -linear. 

( ) ( )d L M L M   → 

e Z
2( ) ( ) 2 ( ) ( ) 0d e d e d e d e= =  = 

( )| 0P Zd  

( )P Z



| 0Zd  

( ) ( ) ( ) ( ) ( )d zx d z x zd x zd x z Z x L M = + =     

d

( )L M 



Theorem 5.   If  M  is a von Neumann algebra of type I, 

then any  Z-linear derivation on the algebra               is 

inner.

Corollary. Let  M be a type I von Neumann algebra. 

Then

(i) any Z-linear derivation on               is automatically 

continuous in the measure topology.

(ii) a derivation on               is inner if and only if it is 

continuous in the measure topology.

See for details 
S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, Derivations on 
the Algebra of Measurable Operators Affiliated with a Type I von 
Neumann Algebra // Siberian Advances in Mathematics, 
18(2008),86-94.

( )L M 

( )L M 

( )L M 



EXAMPLE OF NON Z-LINEAR DERIVATION

Let     be any of the non zero derivations on                  

constructed in 

A. F. Ber, V. I. Chilin,F. A. Sukochev, Non-trivial derivation on 
commutative regular   algebras, Extracta Math., 21 (2006) 418-419. 

Consider the von Neumann algebra                                  = the 

algebra of all          matrices              with entries from               

Then the algebra              Mn of all          matrices with 

entries         from the algebra

Define the mapping D : Mn Mn by 

Then  D is a derivation on Mn which is not Z-linear 

(where                           and  D is discontinuous and hence 

can not be inner. 

 0[0,1]L

[0,1] ( )nM L M C=  

n n 1( )n

i j i jf   =
[0,1]L 

( )L M  n n

i jf 
0[0,1]L 

1 1(( ) ) ( ( ))n n

i j i j i j i jD f f  =   == 

[0,1])Z L= 











Theorem 6. If   M is a von Neumann algebra of type       , 

then any derivation on the algebra                 is inner, 

and in particular is continuous in the measure 

topology.

• Sh.Ayupov, S.Albeverio, K.K.Kudaybergenov ,Structure of 
derivations on various algebras of measurable operators for type I 
von Neumann algebras. Journal of Functional  Analysis, 256 
(2009), 2917-2943.

• Sh.Ayupov, S.Albeverio, K.K.Kudaybergenov , Description of 
Derivations on Locally Measurable Operator Algebras of Type I. 
Extracta Mathematicae, 24 (2009), No 1, 1-15.

( )L M 

I



The following result gives a complete description of derivations on the 
algebra of measurable operators in the type I case. 

Theorem 7. If  M is a von Neumann algebra of type I  then every 
derivation  D  on    can be uniquely represented in the form

D = D  + D  ,

Where  D  is inner and implemented by an element       from              

and D  is a  derivation generated by a derivation      on the  center of    

Problem. Obtain similar results for arbitrary    von Neumann algebras.

S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, Structure of Derivations 
on Various Algebras of  Measurable Operators for Type I von Neumann 
Algebra. J. of Functional Analysis, 256 (2009), 2917-2943.

Sh. A. Ayupov, K. K. Kudaybergenov, Derivations on Algebras of  
Measurable Operators. Infinite dimensional analysis, Quantum Probability and 
related topics,13(2010), No. 2, 305-337.  

( )L M  

( )L M  
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• Later the above result has been generalized for type III 

von Neumann algebras in the following sense.

• Theorem  8.   Let  M    be  a direct sum of von Neumann 

algebras of type      and type III. Then every derivation 

on the algebra              of locally measurable operators 

affiliated with M   is inner.

• Sh.A.Ayupov, K.K.Kudaybergenov. Additive derivation on 

algebras of measurable operators. Journal of Operator Theory

62:2 (2012), 101-116.

I
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( )LS MSince                 contains             as a solid *-subalgebra, and              contains

as a solid *-subalgebra, from the above theorem 8 it follows that 

similar results are valid for derivations on the algebras                 and  

for type I and type III von Neumann algebras  M .

( )S M ( )S M

( )L M 

( )S M

( )L M 

Thus the remaining case in the problem of description of derivations on the 

above algebras is the case of type II von Neumann algebras.



Recently A.Ber, V.Chilin and F.Sukochev in the paper

“Continuity of derivations of algebras of locally measurable operators”.
Integral Equations and Operator Theory 75 (2013), 527 – 557

have proved that any derivation on the algebra             of all locally 

measurable operators affiliated with a properly infinite von Neumann 

algebra       is continuous with respect to the so called local measure 

topology. For type I and type III cases this follows from our theorem 8.   

This is a  new result for the type      case.

( )LS M

M

II



Later in the paper

“Continuous derivations on algebras of locally measurable 
operators are inner.” Proc. London Math. Soc. ( 2014)

they proved the following extension of our Theorem 8 for the

type     case.

Theorem 9.  Every derivation on the algebra              is inner, 
provided that      is a properly infinite von Neumann algebra. 

Therefore, the only remaining case is type    von Neumann

algebra.

II

( )LS M
M
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A partial answer to this case is given in the following theorem.

Theorem 10.  If       is finite von Neumann algebra with a faithful normal 

semi-finite trace   , equipped with the local measure topology t, then 

every t-continuous derivation                                 is inner. 

Sh.Ayupov, K.Kudaybergenov. Innerness of continuous 

derivations on algebras of measurable operators affiliated with finite 

von Neumann algebras. J.Math. Anal. Appl. 408 (2013) 256-267.

The above theorem follows also from the above mentioned paper of 

A.Ber, V.Chilin and F.Sukochev in   Proc. London Math. Soc. 2014.

M



: ( ) ( )D S M S M→



Thus the only remaining problem concerning innerness of derivations 

on algebras of measurable operators is the case of type      von 

Neumann algebras. In this case all the algebras                           and

coincide with the algebra of all closed operators affiliated with 

the      (this is so called Murray - von Neumann algebra) – see also

R.Kadison, Zhe Liu  A note on derivations of Murray - von Neumann 

algebras. PNAS. www.pnas.org/sgi/doi/10.1073/pnas.132158111.

Problem. Given a type       von  Neumann algebra  M, does there exist 

a derivation on            , which is not continuous in the local measure 

topology or is every derivation on              inner?

1II
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M

( )S M

1II
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( )S M( )L M  

http://www.pnas.org/sgi/doi/10.1073/pnas.132158111

